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Abstract: Onosma bracteatum Wall (O. bracteatum) has been used traditionally for the management
of arthritis; however, its therapeutic potential warrants further investigation. This study aimed to
evaluate the anti-arthritic effects of the aqueous–ethanolic extract of O. bracteatum leaves (AeOB) in
a rat model of complete Freund’s adjuvant (CFA)-induced arthritis. Rats were treated with AeOB
(250, 500, and 750 mg/kg), indomethacin (10 mg/kg), or a vehicle control from days 8 to 28 post-CFA
injection. Arthritic score, paw diameter, and body weight were monitored at regular intervals. X-ray
radiographs and histopathological analysis were performed to assess arthritic severity. Inflammatory
cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP)
were quantified by qPCR and icromatography. Phytochemical analysis of AeOB revealed alkaloids,
flavonoids, phenols, tannins, Saponins, and glycosides. AeOB also exhibited antioxidant potential
with an IC50 of 73.22 µg/mL in a DPPH assay. AeOB and diclofenac exhibited anti-inflammatory and
anti-arthritic activities. Rats treated with AeOB at 750 mg/kg and indomethacin showed significantly
reduced arthritic symptoms and joint inflammation versus the CFA control. The AeOB treatment
downregulated TNF-α and IL-6 and decreased CRP levels compared with arthritic rats. Radiography
and histopathology also showed improved prognosis. These findings demonstrate the anti-arthritic
potential of AeOB leaves.

Keywords: arthritis; Onosma bracteatum wall; inflammatory mediators; CFA; qRT-PCR

1. Introduction

Rheumatic disorders are a broad category of more than 100 autoimmune and chronic
degenerative illnesses that are accompanied by constant or chronic pain, inflammation,
and physical impairment [1]. Numerous biological processes, such as cell activation,
differentiation, proliferation, and inflammation, are influenced by cytokines [2]. Defective
innate and adaptive immune responses combine with chronic inflammation to induce
cytokines [3]. The acute phase’s increased production of proinflammatory cytokines such
as IL-1, TNF-α, NF-kB, and interleukin-6 ultimately results in bone deformation [2]. Along
with increasing levels of proinflammatory cytokines, elevated levels of oxidative stress are
significant elements in the pathophysiology of rheumatoid arthritis (RA), which harms the
joints. These elements promote the release of reactive oxygen species (ROS) in synovial

Molecules 2024, 29, 1830. https://doi.org/10.3390/molecules29081830 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29081830
https://doi.org/10.3390/molecules29081830
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-1328-4623
https://orcid.org/0000-0002-1519-9644
https://orcid.org/0000-0002-3328-3559
https://orcid.org/0000-0002-1748-2160
https://doi.org/10.3390/molecules29081830
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29081830?type=check_update&version=2


Molecules 2024, 29, 1830 2 of 20

fluid; boost the formation of inflammatory cells, particularly neutrophils and macrophages;
and cause further damage to the tissue [4]. Antioxidants protect cells from oxidative stress
by preventing the development of reactive oxygen species in elements like proteins, lipids,
and deoxyribonucleic acid, which are connected to pathologies including RA, diabetes,
cancer, and Alzheimer’s disease [5].

The rheumatic illness burden is enormous and rising rapidly, mostly due to popula-
tion increase and aging [1]. Between 0.5 and 1 percent of people globally have RA. Accord-
ing to reports, Pakistan has a 58–148/1000 prevalence of rheumatic illnesses, with at least
15 million people with rheumatic disorders [6]. The UK has reported a prevalence of
0.81 percent, whereas India has it at 0.75 percent [7]. Probable causes include injury leading
to degenerative joint pain and abnormal metabolism, which can lead to gout, immune
system malfunction, and systemic lupus erythematosus [8,9].

Medicinal plants are favored as an alternative to modern medications for treating
RA patients’ pain and reducing side effects [10]. The herb Peganum harmala has long been
used to treat rheumatoid arthritis (RA) and other autoimmune diseases [11]. In an in vivo
anti-arthritic study using CFA in rats, oral administration of P. harmala extract for 21 days
reduced C-reactive protein and rheumatoid factor levels, liver enzymes (alanine transami-
nase, aspartate transaminase, and alkaline phosphatase) and restored the immune system,
serum prostaglandin-E2, and TNF-α in polyarthritic rats [11]. Zingiber officinale has demon-
strated anti-rheumatic and anti-inflammatory properties by preventing the formation of
PGs and leukotrienes [12]. Withania somnifera is a strong anti-inflammatory plant that works
by systematically reducing IL-4, TNF-α, IL-5, and IL-6 levels. By inhibiting the nuclear
signaling system (NF-B), Arctium lappa has been demonstrated to have an outstanding effect
in the treatment of rheumatoid illnesses, as well as chronic inflammatory conditions [10]. A
well-known herbal remedy for rheumatism and inflammation is Glycyrrhiza glabra (Licorice),
which targets the cyclooxygenase-2 enzyme, a key participant in the etiology of tumors and
RA [13].

O. bracteatum Wall is a plant species belonging to the Boraginaceae family. It is com-
monly known as “gaozaban” or “kaner” and is native to the Himalayan region, including
India, Pakistan, and Nepal. This plant is widely used in traditional medicine for its ther-
apeutic properties and is known for its anti-inflammatory, antitussive, anti-asthmatic,
anti-tumor, and hepato-protective activities. The plant contains various bioactive com-
pounds such as pyrrolizidine alkaloids, flavonoids, and triterpenoids, which are responsible
for its medicinal properties. O. bracteatum has been extensively studied for its pharmaco-
logical activities. Several studies have reported its anti-inflammatory effects, which have
been attributed to the presence of pyrrolizidine alkaloids [14].

However, no scientific data are available on the in vivo anti-inflammatory or anti-
arthritic activity of O. bracteatum Wall. Therefore, the current study aimed to investigate the
anti-arthritic potential of O. bracteatum Wall leaves in a CFA-induced arthritic rat model.

2. Results
2.1. Percentage Yield

The percentage yield of an aqueous–ethanolic extract of O. bracteatum Wall leaves
was 6%.

2.2. Phytochemical Analysis

O. bracteatum Wall has been found to contain several classes of phytochemicals like
alkaloids, flavonoids, tannins, phenolic compounds, etc. (Table 1).
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Table 1. Qualitative phytochemical analysis of AeOB leaf aqueous–ethanolic extract.

Sr. NO. Class of Secondary Metabolites Result

1 Tannins +

2 Flavonoids +

3 Saponins +

4 Alkaloids +

5 Glycosides +

6 Carbohydrates +

7 Phenolic compounds +
Note: “+” sign indicates a positive class of secondary metabolites present in AeOB.

2.3. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis

A GC-MS analysis of O. bracteatum Wall leaf aqueous–ethanolic extract showed eight
compounds. In Table 2, the compound name, molecular weight, formula, and retention
time (RT) are provided, and Figure 1 shows a chromatogram of AeOB.

Table 2. Identification of AeOB ethanolic extract compounds by GC-MS analysis.

S. No. Compound M.W Formula Class RT Area % Biological
Activities Ref.

1. Matrine 248 C15H24N2O Alkaloid 3.94 3.09 Antitumor,
anti-inflammatory

[15,
16]

2. 3′,4′,5,7-
Tetramethoxyflavone 342 C19H18 O6 Flavonoid 6.02 0.29 Antioxidant [17]

3.
6-ethyl-2,3,5,7-
tetrahydroxy,
1,4-Naphthoquinone

250 C12H10O6 Spinochrome 10.15 0.92
Anti-
inflammatory,
Antimicrobial

[18]

4. Thebaine 311 C19H21NO3 Opiate alkaloid 10.82 0.64 Analgesic [19]

5. Pyrrolidine 207 C14H25N Alkaloid 15.16 0.57

Anticancer,
anti-inflammatory,
antiviral,
anti-tuberculosis

[20]

6. Quercetin-4’-
glucoside 464 C21H20O12

Flavonoid
o-glycosides 15.65 0.54 Antioxidant,

anti-inflammatory [21]

7.
Cyclohexane,
1,1′-(2-methyl-1,3
propanediyl) bis-

222 C16H30 - 20.62 1.07 Antioxidant [22]

8.

2,4,6-
Cycloheptatrien-1-
one,3,5-bis-
trimethylsilyl-

250 C13H22OSi2 - 26.65 16.73 Antioxidant,
antimicrobial [23]

2.4. In Vitro Antioxidant Activity by 2,2-Diphenyl-1-Picrylhydrazyl Assay

The results of the antioxidant experiment showed that AeOB has relatively less
free-radical-scavenging potentials than the ascorbic acid used as a standard, as shown
in Figure 2A,B. The determined IC50 concentrations for AeOB and ascorbic acid were
73.22 and 39.61 µg/mL, respectively, as shown in Figure 3A,B.
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Figure 3. (A). IC50 of AeOB in DPPH assay. Values shown are mean ± SD in triplicate (n = 3).
(B). IC50 of ascorbic acid (standard) in DPPH assay. Solid and dash lines are the trend line that
provides a visual representation of the concentration-response relationship and are essential for deter-
mining the potency, efficacy, and mechanism of action of compounds in pharmacological studies.

2.5. In Vitro Anti-Inflammatory Activity
2.5.1. Lipoxygenase (LOX) Inhibitory Assay

After conducting the LOX inhibition assay, we were able to illustrate the shielding
efficacy of AeOB and the standard (diclofenac sodium) through percentage values at
concentrations of 200, 400, and 600 µg/mL. The details are provided in Figure 4. The
comparison involves comparing these percentages with the standard drug Quercetin (with
a p-value < 0.05), showcasing inhibition percentages of 92% at the corresponding highest
concentration.
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2.5.2. Human Red Blood Cell (HRBC) Membrane Stabilization Method

Following the HRBC membrane stabilization method, the protective effects of AeOB
and diclofenac sodium (standard) at concentrations of 200, 400, and 600 µg/mL are demon-
strated as percentages in Figure 5. These percentages are in comparison with the standard
drug diclofenac sodium (Diclo), which exhibits inhibition percentages of 90% at the highest
corresponding concentration.
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2.5.3. Egg Albumin Denaturation Method

Following the protein denaturation method, the absorption percentages of AeOB and
the standard at concentrations of 200, 400, and 600 µg/mL are demonstrated in Figure 6.
These values are in comparison with the standard drug diclofenac sodium (standard),
which exhibits an inhibition of 97% at the 600 µg/mL concentration.
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2.6. Complete Freund’s Adjuvant-Induced Model Paw Diameter

Severe CFA-induced arthritis was evident in the arthritic control group (Group-II)
compared with Group-VI (AeOB, 750 mg/kg) and Group-III (indomethacin, 10 mg/kg). A
reduction in the arthritic phase was observed from day 12 to day 28 in all groups except
Group-II, as depicted in Figure 7. A reduction in paw diameter was also noted and was
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largest in Group-II compared with other treatment groups. However, the Group-VI (AeOB,
750 mg/kg) result was comparable to that of Group-III, as shown in Figure 8.
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2.6.1. The Visual Arthritic Scoring System

On the 28th day, the CFA model revealed that Group-II had a higher arthritic score.
Group-VI- and Group-III-treated rats showed a substantial (p ≤ 0.001) decrease in the
arthritic index on the 28th day compared with the arthritic control rats, as shown in
Figure 9.
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2.6.2. Hot Plate/Thermal Hyperalgesia

Animals treated with 250, 500, and 750 mg/kg of AeOB and indomethacin showed
a substantial increase in the paw withdrawal delay on days 0, 8, 14, 21, and 28, as shown
in Figure 10. On the 28th day, it was found that the Group-VI paw withdrawal latency
(2.75 ± 0.40) was comparable to that of Group-III (3.26 ± 0.70). However, it was found that
Group-IV and Group-V paw withdrawal values (1.21 ± 0.27; 1.48 ± 0.14) were substantially
shorter than Group-VI and Group-III values (p > 0.05).
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2.6.3. X-ray of Left Hind Paw

The paws’ X-ray radiographs on the 28th day are shown in Figure 11. This revealed
extensive erosion, soft tissue swelling, and joint space narrowing (inter-tarsal joints) in
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Group-II. The use of plant extract and indomethacin, however, decreased the narrowing
of joint space and enhanced the radiographic pattern of the joints. It was discovered that
Group-VI animals had better radiographic patterns in the joints than the Group-IV animals.
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2.6.4. Body Weight

From the 16th day onward, Group-III and Group-VI body weights increased as much
as in Group-I (normal rats), which was significant at p ≤ 0.001 for Group-II, as shown in
Figure 12. Overall, it was discovered that the rats’ body weights were positively impacted
by both the standard and AeOB.
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2.6.5. Effect of AEOB on Serum TNF-α, IL-6 Gene Expression, and CRP in CFA-Induced
Arthritic Model

During the treatment, in Group-VI and Group-III, which received AeOB (750 mg/kg)
and indomethacin (10 mg/kg), respectively, the serum fold change differences in TNF-α
(0.36 ± 0.43; 0.004 ± 0.00) and IL-6 (0.002 ± 0.0; 0.001 ± 0.00) were lower compared with
Group-II (1.0002 ±0.02, 1.0015 ± 0.06), which had considerably higher values, as shown in
Table 3, indicating that the treatment plants downregulated IL-6 and TNF-α. The CRP value
in Group-II was 4.92 ± 0.05 mg/dL, and it was discovered that this value was considerably
lower in Group-VI (1.40 ± 0.03 mg/dL) and Group-III (1.09 ± 0.03 mg/dL), as shown in
Table 4.

Table 3. Differences in fold changes in pro-inflammatory cytokines gene expressions in CFA induced
arthritic rat model.

Time
(Days)

Group-I
(Normal Control)

Group-II
(Negative)

Group-III
(Standard)

Group-IV
(AeOB, 250 mg/kg)

Group-V
(AeOB, 500 mg/kg)

Group-VI
(AeOB, 750 mg/kg)

TNF-α 0.5019 ± 0.03 * 1.0002 ±
0.02

0.004 ± 0.00
*** 7.32 07 ± 0.77 * 2.19 ± 0.39 *** 0.36 ± 0.43 ***

IL-6 0.0301± 0.00 *** 1.0015 ±
0.06

0.001 ± 0.00
*** 0.385 ± 0.04 *** 0.0052 ± 0.00 *** 0.002 ± 0.00 ***

Values are mean ± SD and n = 6 for pro-inflammatory cytokines genes in CFA-induced arthritic rats, where
* = p ≤ 0.05, and *** = p ≤ 0.001. Black-colored stars indicate a comparison of the treatment groups with the
arthritic control (Group-II). At the *** p ≤ 0.001 level, the mean difference is significant.

Table 4. Difference in CRP reduction in the arthritic group compared with treatment groups.

Time
(Days)

Group-II
(Normal)

Group-II
(Negative)

Group-III
(Standard)

Group-IV
(AeOB, 250 mg/kg)

Group-V
(AeOB, 500 mg/kg)

Group-VI
(AeOB, 750 mg/kg)

CRP 1.00 ± 0.00 4.92 ± 0.05 1.09 ± 0.03 *** 3.84 ± 0.17 *** 2.50 ± 0.17 *** 1.40 ± 0.03 ***

Values are mean ± SD and n = 6 for CRP in CFA-induced arthritic rats, where *** = p ≤ 0.001. Black-colored stars
indicate a comparison of the treatment groups with the arthritic control. At the *** p ≤ 0.001 level, the mean
difference is significant.

2.6.6. Hematological and Biochemical Estimation

The arthritic control group in the CFA-induced model displays signs of liver and
kidney dysfunction, increased WBCs, and anemia. Treatment with indomethacin and
AeOB, 750 mg/kg, appears to counteract these effects by reducing liver enzyme levels
and WBCs and improving anemia parameters, as shown in Figure 13. The results are
comparable to the standard drug indomethacin at p ≤ 0.001.

2.6.7. Histopathology of Left Hind Paw

At the end of the CFA model on the 28th day, a histopathological analysis of the
paws revealed that animals treated with AeOB (750 mg/kg) (Group-VI) and indomethacin
(Group-III) had considerably fewer abnormalities compared with the arthritic control
(Group-II), as shown in Table 5. Figure 14 shows microscopic images of the paws of
different groups.
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Table 5. Severity of different histopathological changes in the cartilage of rat left hind paws after
28 days of treatment.

Histopathological Lesions

Groups

Group-I
(Normal)

Group-II
(Arthritic)
Control

Group-III
(Standard)

Group-IV
(AeOB, 250 mg)

Group-V
(AeOB, 500 mg)

Group-VI
(AeOB, 750 mg)

Cartilage

Cartilage matrix destruction − ++++ + +++ ++ +

Degeneration and resorption − ++++ + +++ ++ +

Inflammatory cell infiltration − ++++ + +++ ++ +

Joint/synovial space
narrowing − ++++ + +++ ++ +

Cellular infiltration with
granuloma − ++++ + +++ ++ +

Edema − ++++ + +++ ++ +

Macrophage infiltration − ++++ + +++ ++ +

Synovial membrane

Hyperplasia of covering cells − ++++ + +++ ++ +

(−) (+) signs indicate (−) = absent/normal, + = mild, ++ = moderate, +++ = severe, and ++++ = very severe.
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500 mg/kg), and (f) Group-VI (AeOB, 750 mg/kg) on day 28 of treatment.
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3. Discussion

The high incidence of arthritis in low- to middle-income countries makes it difficult
for people to achieve their basic social and personal demands. Priority should be given
to fundamental initiatives for arthritis management and prevention [24]. The majority
of manufactured medications such as nonsteroidal anti-inflammatory drugs (NSAIDs),
disease-modifying anti-rheumatic drugs (DMARDs), corticosteroids, and analgesics affect
the symptoms but not the causes of the disease [25]. Surgical therapies can result in post-
operative complications with extreme adverse pharmacological effects [26]. Physicians
worldwide are interested in adopting natural products for the management of inflamma-
tory disorders and pain due to the danger of the adverse effects of available treatments [27].
The current study examined the anti-inflammatory and anti-arthritic potential of AeOB in
a CFA-induced arthritis rat model. The presence of phytochemicals with documented anti-
inflammatory and antioxidant properties, such as matrine [16], Quercetin-4′-glucoside [21],
Pyrrolidine [20], etc., was confirmed by a GC-MS analysis of AeOB. Plants have many valu-
able phytoconstituents that are essential to their biological actions. Flavonoids—in addition
to having outstanding inhibition properties in prostaglandin-producing enzymes such as
phospholipase A2, protein tyrosine kinase, and cyclooxygenases—are also powerful antiox-
idants [1] that can neutralize harmful free radicals in the body. By scavenging free radicals,
flavonoids help protect cells from oxidative stress [28]. Additionally, phenols and glyco-
sides may inhibit ROS, as well as inducible nitric oxide synthase (iNOS) pathways, from
exerting their anti-inflammatory effects [10]. Membrane stabilization and protein denatura-
tion are two widely employed methods used to evaluate the anti-inflammatory properties
of compounds, particularly in the context of plant-derived substances. These methods pro-
vide valuable insights into the mechanisms through which bioactive compounds exert their
anti-inflammatory effects. Previous studies have suggested that compounds exhibiting
membrane-stabilizing properties may interfere with the release of phospholipases. Phos-
pholipases play a crucial role in cellular responses, and their inhibition can mitigate the
release of inflammatory mediators, thereby contributing to the overall anti-inflammatory
activity of a substance [29]. In the current study, DPPH transformation from a violet to
yellow color indicated that AeOB has the ability to scavenge free radicals, which are the
cause of oxidative stress in RA. ROS can cause tissue damage and endothelial dysfunction
by acting as signaling molecules in inflammatory diseases [30]. Therefore, it can be assumed
that one of the primary mechanisms to suppress the expression of genes responsible for
producing inflammatory cytokines and the cyclooxygenase enzyme (COX-2) in RA is a
decline in oxidative stress caused by AeOB. Due to the CFA-induced arthritic model’s re-
semblance to human RA, it has been frequently used on rats for preclinical research [31,32].
The author Williams explores the utility of rodent models in understanding arthritis and
their relevance to human disease. They discuss how rodent models help dissect disease
mechanisms, test potential therapeutics, and identify biomarkers. Despite differences
between rodent and human arthritis, these models remain valuable for studying disease
pathogenesis and evaluating treatment strategies [32]. Similarly, JY Seo delves into the
role of 7α,25-dihydroxycholesterol (7α,25-OHC) in osteoarthritis (OA) pathogenesis. They
highlight how 7α,25-OHC triggers a cascade leading to chondrocyte death through oxi-
apoptophagy involving oxidative stress, apoptosis, and autophagy. The modulation of
the p53-Akt-mTOR axis is implicated in this process, suggesting a potential therapeutic
target for managing OA [33]. A study conducted by Ding et al. investigates the role of
RUNX1 in rheumatoid arthritis (RA) progression and identifies its mechanism of action
through the epigenetic inhibition of LRRC15. RUNX1 suppresses LRRC15 expression via
epigenetic modifications, thereby mitigating RA progression. This finding suggests a po-
tential therapeutic avenue for RA by targeting the RUNX1-LRRC15 axis [34]. CFA-induced
arthritis has two phases: an acute phase that lasts 0 to 10 days and is caused by immune
cells releasing histamine, serotonin, and prostaglandins and a chronic phase that lasts
11 to 28 days [35]. It has been noted that CFA stimulates the emission of IL-1, IL-6, and
TNF-α from macrophages and monocytes. TNF-α also increases the release of IL-6 and
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IL-1, which leads to an escalation in leukocyte infiltration and vasodilation at the site of
edema [36]. These pro-inflammatory cytokines also promote the production of chemokines,
which draw neutrophils and monocytes to the damaged joints. The gene expression of
matrix metalloproteinases is regulated by pro-inflammatory cytokines (TNF-α), which
must be inhibited to prevent the degradation of bone and cartilage [27]. In the current
study, after twenty-eight days of therapy, AeOB showed a statistically significant sub-
stantial decrease in paw edema, arthritic scores, and improvements in the histopathology
of paws compared with the arthritic control group. According to previous studies, RA
patients have higher levels of cytokines than healthy individuals, which are thought to
be involved in cellular responses under inflammatory situations after being released by
immune cells [37]. In our study, compared with the arthritic control, AeOB significantly
reduced inflammatory cytokine IL-6 and TNF-α expressions. One of the clinical features of
RA is anemia. Additionally, peri-articular osteoporosis and an increase in liver enzymes are
linked to bone degeneration [27]. In our study, in rats with arthritis, AeOB was observed to
restore the levels of liver enzymes. Additionally, AeOB kept hemoglobin levels stable in
the treated groups. Recent studies have unveiled promising connections between the tradi-
tional medicinal herb Onosma bracteatum and its potential therapeutic effects on rheumatoid
arthritis (RA). Onosma bracteatum, commonly used in traditional medicine systems like
Ayurveda and Unani, contains bioactive compounds known for their anti-inflammatory
and immunomodulatory properties [38]. This botanical remedy has shown notable efficacy
in preclinical models of arthritis by attenuating inflammatory pathways and ameliorating
joint destruction [39]. Furthermore, an elevated level of CRP is the main marker of systemic
inflammation, indicating active inflammation. Increased CRP levels also signal a worse
prognosis of arthritis. Previous studies have demonstrated that elevated IL-6 and TNF-
levels exacerbate CRP production [40]. As a consequence, AeOB probably reduces CRP
levels by reducing IL-6 and TNF-α, which shows that systemic inflammation is suppressed.

4. Material and Methods
4.1. Materials

O. bracteatum Wall plant leaves were purchased from the local market of Bahawalpur.
Ascorbic acid, 2,2-diphenyl-1-picrylhydrazyl (DPPH), ethanol, sodium dihydrogen phos-
phate, and sodium hydroxide were purchased from Merck, Darmstadt, Germany. CFA was
purchased from Zokeyo, Wuhan, China. Hydrochloric acid was purchased from Anala
BDH Laboratory, London, UK. Deionized water was from an industrial research laboratory,
the Islamia University of Bahawalpur, Bahawalpur, Pakistan. Normal saline, indomethacin
from Nishtar Medical Store, was from Bahawalpur.

4.2. Experimental Animals

Male Albino Wistar rats (weighing 150–250 g) were procured from an animal house
at the Islamia University of Bahawalpur. Animals were kept in a typical animal housing
facility at 24 ◦C, a relative humidity of 45–50%, and a 12 h dark/light cycle. Rats were given
a conventional pellet diet and water (ad libitum) [22]. Before beginning experimental inves-
tigations, all rats were allowed to adapt to the laboratory environment. The institutional
animal ethics committee provided study protocol approval with study No.487/AS&R.

4.3. Plant Assortment

Leaves of O. bracteatum Wall were collected from the local market of Bahawalpur in
September 2022 and were identified by Assistant Professor. Dr. Muhammad Sarwar, tax-
onomist at the Herbarium of Botany Department, Faculty of Life Sciences, the Islamia Uni-
versity of Bahawalpur, Pakistan. Voucher no. of O. bracteatum Wall was ref no.113.botany.

Method for Forming an Aqueous–Ethanolic Extract

The leaves of Onosma bracteatum were purchased in dried form (500 gm) from the
Shdab Dawakhana local market, Bahawalpur, Pakistan. The collected plant was cleaned
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and washed with double distilled water and dried under shade. Coarsely ground plant
material was passed through a no. 60 sieve. The net weight after processing was 400 gm,
which was then soaked in 2 L (70%) ethanol (solute to solvent ratio 1:5) at 25 ◦C for
six days. Stirring was performed on and off. Thereafter, the extract was filtered through
muslin cloth followed by Whatman filter paper (grade-1). A rotary evaporator (Heidolph,
TOKYO RIKAKIKAI Co., Ltd. (TN Koishikawa Bldg., 1-15-17 Koishikawa, Bunkyo-ku,
Tokyo 112-0002, Japan)) was used to dry the filtrate at 40 ◦C and 30 rotations per minute to
evaporate ethanol. The resultant extract was stored in an airtight glass jar in a dark and
cool place (refrigerator) at 4 ◦C for further use and labeled as AeOB. The percentage was
calculated by using Equation (1).

%yield =
Weight of extract obtained

Weight of raw plant
× 100 (1)

4.4. Screening of Phytochemical

Standard procedures were used to determine various phytoconstituents like carbo-
hydrates (Seliwanoff’s and Fehling tests), flavonoids (alkaline reagent test), alkaloids
(Dragendroff and Wagner’s tests), glycosides (Keller–Killani test), tannins (bromine water
and 10% NaOH tests), saponins (foam test), and phenols (iodine and FeCl3 tests) [41].

4.5. Estimation of Gas Chromatography–Mass Spectrometry (GC-MC)

Thermo Scientific (DSQII) GC was used to test AeOB. The GC was outfitted with a
TR-5MS capillary column that measured 30 m in length, 0.25 µM in film thickness, and
0.25 mm in internal diameter. Helium (He) was the carrier gas, and the flow rate was 1 mL
per mint. With a temperature of 250 ◦C, the injector was operated in split mode. A sample
volume of 1 µL was injected with an initial oven temperature of 50 ◦C and held for 2 min,
followed by temperature increases of 150 ◦C at a rate of 8 ◦C/min and 300 ◦C at a rate of
15 ◦C for another 5 min [42].

4.6. In Vitro Antioxidant Activity by 2,2-Diphenyl-1-Picrylhydrazyl Assay

DPPH was used to determine the antioxidant activity of AeOB using the previously
established method by Ahmad et al. [43], with slight changes. Ascorbic acid was used as
the standard. The total assay volume was 100 µL. DPPH 0.1 mM solution in methanol was
prepared. In each well of a 96-well plate, 90 µL of DPPH solution, a tested sample of 10 µL
(5 mg/mL in methanol), and different concentrations of AeOB were included to calculate
the IC50 value. The reaction mixture was incubated for 30 min at 37 ◦C. The absorbance
was taken at 517 nm with an ELISA microplate reader (Biotek Synergy HT) in triplicate.
The following formula was used to calculate the % inhibition.

Inhibition% =

(
Abs of control − Abs of sample

Abs of control

)
× 100 (2)

4.7. In Vitro Anti-Inflammatory Activity
4.7.1. Lipoxygenase (LOX) Inhibitory Assay

With minor changes, a spectrophotometric assay for measuring LOX inhibition was
implemented [44]. Based on the production of a combination of Fe3+/xylenol orange with
absorbance at 560 nm, this assay assesses the inhibition of test samples’ lipoxygenase
activity with linoleic acid. In Tris-HCl buffer, the substrate linoleic acid (final concentration,
140 µM) was produced (50 mM; pH 7.4). Except for the aqueous extracts, which were made
directly as 2 mg/mL in the Tris-HCl buffer, other extract quantities were made in 100%
DMSO and diluted to 2 mg/mL in the buffer. At 25 ◦C for 5 min, 40 microliters of the
enzyme (LOX), diluted to a final concentration of 0.2 U/mL in ice-cold Tris-HCl buffer,
was combined with 20 microliters of various test sample quantities (µg/mL) or Quercetin
(a positive control). The mixtures were incubated at 25 ◦C for 20 min in the dark after
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linoleic acid (40 µL) was added. Adding 100 µL of freshly made FOX reagent [sulfuric acid
(30 mM), xylenol orange (100 µM), and iron (II) sulfate (100 µM) in methanol/water] ended
the test (9:1). The blank comprised the enzyme LOX and the buffer; a negative control was
formed from LOX solution, Tris-HCl buffer, substrate, and FOX reagent. Substrate was
added after the FOX reagent in the negative control. Absorbance was taken at 560 nm after
30 min of incubation at 25 ◦C. The lipoxygenase inhibitory potential was calculated with
the following formula:

Inhibition% =

(
Abs of control − Abs of sample

Abs of control

)
× 100

4.7.2. Human Red Blood Cell (HRBC) Membrane Stabilization Method

A blood sample from a healthy individual (informed consent was obtained from the
subject) was taken to conduct an in vitro anti-inflammatory investigation. By adopting
IFBDO (International Federation of Blood Donor Organizations) guidelines, the blood
sample was collected and approved by the ethics committee at the Islamia University of
Bahawalpur. The Declaration of Helsinki guidelines were also adopted for this study. After
centrifugation at 3000× g rpm for 5 min, normal saline was used to wash the blood samples.
The isotonic buffer solution was used to prepare a 10% v/v suspension (10 mM sodium
phosphate buffer, pH 7.4) [45]. To make a reaction mixture of 2 mL total volume, 1 mL
of red blood cell suspension (10%) was combined with 1 mL of the experimental samples
at various concentrations. The reaction mixture was cooled to room temperature after
incubation at 50 ◦C for 25 min. Centrifuging was performed again at 2500 rpm for 5 min;
absorbance was measured at 560 nm using a spectrophotometer. The standard drug was
diclofenac sodium. The control was a phosphate buffer solution.

The % inhibition was determined using the following equation:

% Inhibition = 100 × (AC − AS)/AC

where AC = control absorbance, and AS = test sample absorbance.

4.7.3. Egg Albumin Denaturation Method

An egg albumin denaturation assay was performed by adopting the procedure out-
lined by [45] with minor modifications. Regarding this, reaction mixtures were prepared
by adding 2 mL of different concentrations of test samples, 0.2 mL of egg albumin, and
2.8 mL of phosphate buffer (pH = 6.5). At 37 ◦C, reaction mixtures were incubated for
twenty minutes followed by heating at 70 ◦C for 5 min. Absorbance was taken at 660 nm
with a spectrophotometer after cooling the reaction mixture to room temperature. The
same quantity of egg albumin and phosphate buffer was used as the negative control with
2 mL of distilled water, diclofenac sodium was used as the standard, and % inhibition was
calculated with the following formula:

% Inhibition = 100 × (AC − AS)/AC

where AC = absorption of the control sample, and AS = absorption of the test sample.

4.7.4. Complete Freund’s Adjuvant-Induced Arthritis Model

The CFA model established by Tiwari R et al. was adopted for in vivo anti-arthritic
activity with slight modifications [24]. Albino Wistar rats of 150–250 g weight were divided
into 6 groups, and 6 rats were placed in each group.

Group-I (normal control): Distilled water (vehicle) was provided orally (10 mL/kg)
from day 8 to day 28.

Group-II (negative/arthritic control): In the left hind paw (sub-plantar surface),
0.1 mL of CFA was injected with the help of a 26-gauge needle.
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Group-III (positive control): After induction with CFA, indomethacin was orally
provided as a standard drug (10 mg/kg b.w) from day 8 to day 28.

Groups-IV-VI (AeOB groups): Different doses of AeOB (250, 500, and 750 mg/kg)
were administered orally from day 8 to day 28.

4.7.5. Paw Diameter

On the zeroth, eighth, twelfth, sixteenth, twentieth, twenty-fourth, and twenty-eighth
days of the experiment, measurements of paw diameter using a Vernier caliper were
performed.

4.7.6. Visual Arthritic Scoring System

The severity of the arthritis was evaluated using the visual arthritis rating system. The
arthritis score has a range of 0 to 4 using the following grading system:

No swelling = 0, mild swelling and erythema = 1, swelling and erythema = 2, severe
swelling and erythema = 3, and gross deformity and inability = 4.

4.7.7. Hot Plate/Thermal Hyperalgesia

The hot plate method was used to measure the thermal hyperalgesia and paw with-
drawal latency of the injected paw shortly before the injection of CFA on the first day
and afterward at several time intervals until the 28th day. The hot plate was retained at
a temperature of 55 ± 5 ◦C when paws were put on it. The pain threshold’s endpoint
was measured as the time it takes for the rat to lick its paws or leap in response to heat
stimulation. To prevent tissue injury, a 20 s cutoff time was used.

4.7.8. X-ray and Histopathology

The rats were anesthetized and sacrificed on day 28 of the experiment under ketamine
anesthesia at 10 mg/kg. The left hind paws were preserved in 20% formalin for further
X-rays of CFA-injected paws and histopathological analysis.

4.7.9. Body Weight Measurements

Before CFA injection on the first day of the experiment and then at various intervals
up to the 28th day, body weight was measured using a digital weighing scale. Body weight
was taken for arthritic assessments.

% changes in weight were calculated with the following formula:

% weight change =
Wt − W0

Wt
× 100 (3)

where Wt is animal weight at various time intervals, and W0 is body weight at 0 days.

4.7.10. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

The qRT-PCR procedure for IL-6 and TNF-α was performed according to the optimized
method. qRT-PCR was executed in a SLAN-96P Real-Time PCR System (Sansure Biotech
Inc., Ghangsha, China) with a 2X SYBR qPCR Mixture (Zokeyo, China) in a total reaction
volume of 15 µL that included 10 µL of SYBR Green mix, primers at 0.5 µM each, and 1 µL
of cDNA as the template. The relevant CTs of the samples were compared against disease
control and control samples containing housekeeping genes (GAPDH). The amplification
conditions were 95 ◦C temperature for 30 s and 40 cycles of 95 ◦C for 5 s and 60 ◦C for 20 s.
Primers used in the procedure are listed in Table 6.
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Table 6. List of primers used to estimate IL-6 and TNF-α through qRT-PCR.

Marker Sequence Forward/Reverse

TNF-α
5′-ATGGGCTCCCTCTCATCAGT-3′ Forward

5′-GCTTGGTGGTTTGCTACGAC-3′ Reverse

IL-6
5′-CCCACCAGGAACGAAAGTCA-3′ Forward

5′-ACTGGCTGGAAGTCTCTTGC-3′ Reverse

4.7.11. Biochemical and Hematological Estimation

All animal groups’ retro-orbital punctures were performed on the 28th day, and many
biochemical parameters, including urea, creatinine, alanine transaminase (ALT), alkaline
phosphatase (ALP), and aspartate aminotransferase (AST) were determined using Micro
Lab 300 with a DiaSYs kit. CBC and CRP were performed using a BIOBASE analyzer and
an ichroma analyzer, respectively.

4.8. Statistical Analysis

Values were recorded as mean ± SD, n = 6. By using IBM SPSS statistics 20, a one-way
analysis of variance (ANOVA) followed by an LSD post hoc test was applied to calculate the
level of significance. Results were compared with the control group. Statistically, p-values
≤ 0.05, 0.01, and 0.001 were taken as significant.

5. Conclusions

The findings of this study investigating the effects of AeOB in a CFA-induced arthritis
rat model show promising outcomes in alleviating inflammation associated with arthri-
tis. The present study shows a substantial diminution in inflammatory cytokines IL-6
and TNF-α levels, as evidenced by quantitative qRT-PCR analysis. IL-6 and TNF-alpha
are well-known markers of inflammation, and their reduction indicates a potential anti-
inflammatory effect of AeOB. Demonstrating the ability of AeOB to suppress inflammatory
cytokines and protect the liver highlights the potential of AeOB-based therapies in manag-
ing inflammatory conditions effectively. Further research and clinical trials are warranted to
discover the underlying mechanisms, as well as to assess the long-term efficacy of AeOB as
a potential treatment for arthritis and other inflammatory diseases. If successful, these find-
ings may pave the way for more targeted and efficient therapeutic approaches, improving
the quality of life for millions of individuals suffering from inflammatory conditions.
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