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Abstract: The water produced during the oxidative esterification reaction occupies the active sites and
reduces the activity of the catalyst. In order to reduce the influence of water on the reaction system, a
hydrophobic catalyst was prepared for the one-step oxidative esterification of methylacrolein (MAL)
and methanol. The catalyst was synthesized by loading the active component Au onto ZnO using
the deposition–precipitation method, followed by constructing the silicon shell on Au/ZnO using
tetraethoxysilane (TEOS) to introduce hydrophobic groups. Trimethylchlorosilane (TMCS) was used
as a hydrophobic modification reagent to prepare hydrophobic catalysts, which exhibited a water
droplet contact angle of 111.2◦. At a temperature of 80 ◦C, the hydrophobic catalyst achieved a high
MMA selectivity of over 95%. The samples were characterized using XRD, N2 adsorption, ICP, SEM,
TEM, UV-vis, FT-IR, XPS, and water droplet contact angle measurements. Kinetic analysis revealed
an activation energy of 22.44 kJ/mol for the hydrophobic catalyst.

Keywords: hydrophobic catalysts; methyl methacrylate; oxidative esterification; Au catalyst

1. Introduction

Methyl methacrylate (MMA) is a versatile chemical compound widely used in various
industries, including the manufacturing of plexiglass, plastics, resins, and coatings. The
industrial production of MMA is mainly through the acetone cyanohydrin method (ACH
process), the ethylene carbonylation method, and the isobutylene oxidation method [1,2].
However, the former two methods suffer from serious environmental and economic draw-
backs, such as the use of highly toxic hydrogen cyanide, the high cost of waste ammonium
bisulfate treatment, and the harsh conditions of the transportation and storage of ethy-
lene [3]. The two-step oxidation process of the isobutylene oxidation method includes the
oxidation of isobutylene to methacrolein (MAL) and the oxidative esterification of MAL
with methanol in an oxygen atmosphere [4,5]. Synthesis of MMA via one-step oxidation
and esterification of methacrolein with methanol is a green and sustainable way, which
has a high atom utilization rate, no pollution, and environmental friendliness, and has
attracted wide attention in recent years [6–12]. The construction and modification of gold
catalysts have shown excellent performance in CO oxidation reactions [13,14], oxidative
esterification reactions [15–21], and other fields. However, the alkaline sites of the support
in gold-based catalysts, the particle size of gold nanoparticles, and the interaction between
the support and gold nanoparticles all have a certain impact on the reaction performance.
The activity and stability of gold-based catalysts still need to be improved. By synthesizing
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gold nanoparticles with a core–shell structure, doping other metals, or adding additives,
the electronic structure of metals can be changed to promote the stability and catalytic
performance of gold catalysts [22].

The hydrophobic effect has proven effective in many catalytic fields. Catalytic activity,
product selectivity, and catalyst stability are strongly related to catalyst hydrophobicity [23].
The core–shell FeMn@Si catalyst with excellent hydrophobicity was prepared by Ding’s
team [24,25], and they used the catalysts for Fischer–Tropsch synthesis (FTS). The hydropho-
bic shell protected the active site from oxidation using the generated water, restrained the
side reactions related to water, and improved CO conversion and olefin yield during the
reaction. Xiao’s team [26,27] synthesized hydrophobic catalysts through the fixation of
AuPd alloy nanoparticles within aluminosilicate zeolite crystals, followed by modification
of the external surface of the zeolite with organosilanes. They used it for syngas conversion
and compared the hydrophobic degree of different hydrophobic groups and their influence
on the syngas conversion, with methanol selectivity reaching 92%. They discussed chemical
modification for hydrophobization of the catalysts, specifically mentioning hydrophobic
promoters that could improve syngas conversion, and suggested precisely regulating the
wettability of the catalysts. Wang’s team [28–33] studied the application of hydrophobic
catalysts in oxidative esterification reactions. They prepared a hydrophobic catalyst with a
hydrophobic SDB carrier loaded with mono/multimetal and used it for the first time in the
one-step oxidative esterification reaction. The SDB-supported catalyst could be reused for
long-term cycles without a decrease in activity. Compared with hydrophilic catalysts, hy-
drophobic catalysts are more active than catalysts supported on hydrophilic materials like
γ-Al2O3 and SiO2. It proves that the high activities exhibited by hydrophobic catalysts are
directly related to their hydrophobicity. It is necessary to study the hydrophobic catalysts
and explore the reaction mechanism for the oxidative esterification reactions.

In this work, we synthesized hydrophobic catalysts by constructing a core–shell struc-
ture and grafting hydrophobic organic groups, intending to improve their performance in
the oxidative esterification reaction. The resulting catalysts were thoroughly characterized
using various techniques, including XRD, BET, TEM, SEM, ICP, XPS, and Water-droplet
contact angles. The reaction mechanism and kinetics were investigated.

2. Results
2.1. XRD Analysis

The XRD patterns of the catalysts are shown in Figure 1. The intense peaks at 2θ = 31.7◦,
34.4◦, 36.2◦, 47.5◦, 56.6◦, 62.8◦, and 67.9◦ correspond to the (100), (002), (101), (102), (110), (103),
(112), and (201) planes of ZnO, respectively, with lattice parameters consistent with reported
data JCPDS file No. 36-1451. The absence of the Au (111) diffraction peak at 38.2◦ indicates
a higher dispersion and smaller particle size of Au NPs on ZnO. After the construction of
the silicon shell, the characteristic diffraction peaks of ZnO had no evident change, but the
characteristic diffraction peak of Au (111) appeared, indicating that the particle size of Au
became larger after the construction of the silicon shell. A bulge at 2θ < 30◦ may be the
diffraction peak of Si. After hydrophobic modification, the diffraction peaks of ZnO were
significantly changed; the characteristic diffraction peaks of ZnO were no longer obvious, and
the bulge with 2θ < 30◦ was changed.
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Figure 1. XRD patterns of the catalysts. 

2.2. SEM and TEM Images of the Catalysts 
Figure 2 displays SEM, TEM, and Au particle size distribution images of Au/ZnO, 

Au/ZnO@Si, and Au/ZnO@Si-c(2.0). The particle morphology of ZnO was observed. The 
SEM image of Au/ZnO@Si reveals a relatively smooth surface profile, indicating the uni-
form silicon shell coating of Au/ZnO (Figure 2e). Similarly, TEM images of Au/ZnO@Si-
c(2.0) confirm that Au/ZnO is encapsulated within an amorphous silicon shell (Figure 2f). 
As depicted in Figure 2g–i, the average diameter of Au NPs for Au/ZnO, Au/ZnO@Si, and 
Au/ZnO@Si-c(2.0) is 4.05 nm, 8.06 nm, and 8.33 nm, respectively. This suggests that the 
gold particles agglomerate and grow larger during the process of silicon shell encapsula-
tion and hydrophobic modification. Furthermore, Figure S2 demonstrates the uniform 
distribution of Au, Zn, O, Si, and other elements on the catalysts Au/ZnO@Si and 
Au/ZnO@Si-c(2.0), with silicon forming a sealed shell on the surface. 

 
Figure 2. SEM and TEM images of Au/ZnO (a,d,g), Au/ZnO@Si (b,e,h), and Au/ZnO@Si-c(2.0) (c,f,i). 

  

Figure 1. XRD patterns of the catalysts.

2.2. SEM and TEM Images of the Catalysts

Figure 2 displays SEM, TEM, and Au particle size distribution images of Au/ZnO,
Au/ZnO@Si, and Au/ZnO@Si-c(2.0). The particle morphology of ZnO was observed.
The SEM image of Au/ZnO@Si reveals a relatively smooth surface profile, indicating the
uniform silicon shell coating of Au/ZnO (Figure 2e). Similarly, TEM images of Au/ZnO@Si-
c(2.0) confirm that Au/ZnO is encapsulated within an amorphous silicon shell (Figure 2f).
As depicted in Figure 2g–i, the average diameter of Au NPs for Au/ZnO, Au/ZnO@Si,
and Au/ZnO@Si-c(2.0) is 4.05 nm, 8.06 nm, and 8.33 nm, respectively. This suggests
that the gold particles agglomerate and grow larger during the process of silicon shell
encapsulation and hydrophobic modification. Furthermore, Figure S2 demonstrates the
uniform distribution of Au, Zn, O, Si, and other elements on the catalysts Au/ZnO@Si and
Au/ZnO@Si-c(2.0), with silicon forming a sealed shell on the surface.
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Figure 2. SEM and TEM images of Au/ZnO (a,d,g), Au/ZnO@Si (b,e,h), and Au/ZnO@Si-c(2.0) (c,f,i).

2.3. N2 Physisorption

Figure 3 displays the N2 adsorption–desorption isotherms and pore size distribution
of the samples. All isotherms of the samples showed a hysteresis loop categorized as type
IV, indicating the presence of mesoporous materials. The encapsulation of SiO2 on Au/ZnO
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results in the appearance of more mesopores with pore sizes ranging from 2 to 50 nm,
indicating the presence of mesopores in the SiO2 shell.
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Table 1 provides the BET surface area and crystalline diameter of the samples. The BET
surface area of Au/ZnO was found to be 43.4 m2 g−1, while the surface areas of the encap-
sulated samples, Au/ZnO@Si, Au/ZnO@Si-c(0.5), and Au/ZnO@Si-c(2.0), were reduced
to 20.1 m2 g−1, 17.8 m2 g−1, and 7.6 m2 g−1, respectively, due to the SiO2 encapsulation.

Table 1. BET surface area and crystalline diameter of samples.

Samples BET Surface Area (m2 g−1) a Pore Size(nm) a Au Loading (wt%) b

Au/ZnO 43.4 21.6 0.12
Au/ZnO@Si 20.1 14.5 0.10

Au/ZnO@Si-c(0.5) 17.8 20.4 0.04
Au/ZnO@Si-c(2.0) 7.6 16.9 0.04

a The BET surface area and pore size were obtained from nitrogen adsorption and desorption isotherms; b Calcu-
lated using ICP data.

The actual gold loadings measured via ICP-MS were 0.12, 0.1, 0.04, and 0.04 wt%
for Au/ZnO, Au/ZnO@Si, Au/ZnO@Si-c(0.5), and Au/ZnO@Si-c(2.0). The treatment of
silicon shell encapsulation and hydrophobic modification can lead to the loss of Au.

2.4. The CO2-TPD of Catalysts

The base properties of the catalysts are shown in Figure 4. The CO2 analytical peak
around 300 ◦C–500 ◦C in the CO2-TPD curve is considered the strong basic site, while the
CO2 analytical peak around 100 ◦C–150 ◦C corresponds to the weak basic site. The Au/ZnO
catalyst exhibited only a desorption peak around 430 ◦C ascribed to the strong basic sites.
The consumption of CO2 during the chemical adsorption is shown in Table 2. The CO2
desorption of the high-temperature peak of Au/ZnO was 0.9 CO2 mmol per 1 g catalyst.
The strong base originates from the basic –OH on the surface of ZnO. The Au/ZnO@Si,
Au/ZnO@Si-c(0.5), and Au/ZnO@Si-c(2.0) catalysts presented the weak and medium basic
sites around 110 ◦C–140 ◦C. After encapsulating the silicon shell, the strong base region of
ZnO shifts towards the lower temperature, indicating that the bonding and effect of zinc
oxide on carbon dioxide weakened. The CO2 desorption of the high-temperature peak of
Au/ZnO@Si increased to 2.25 CO2 mmol per 1 g catalyst, which may be due to the –OH
effect of Si–OH. Furthermore, after hydrophobic modification, the CO2 desorption of the
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high-temperature peak decreased, which may be due to the combination of organic groups
and Si–OH, and the decrease of –OH. This indicates that the methyl group is successfully
grafted on the surface of the silicon shell.
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Table 2. Desorption of CO2 of the catalysts.

Catalysts
Desorption of CO2 (mmol·g−1) a

Low-Temperature Peak b High-Temperature Peak c

Au/ZnO - 0.9
Au/ZnO@Si 0.83 2.25

Au/ZnO@Si-c(0.5) 0.41 1.0
Au/ZnO@Si-c(2.0) 0.45 0.49

a The amount of CO2 adsorption was calculated via integral calculation. b Temperature: 50 ◦C–250 ◦C. c Tempera-
ture: 250 ◦C–550 ◦C.

2.5. UV–Vis Characterization of Catalysts

Figure 5 illustrates the UV–vis spectra of Au/ZnO, Au/ZnO@Si, Au/ZnO@Si-c(0.5),
and Au/ZnO@Si-c(2.0). In Figure 5, the adsorption edge of ZnO is observed at approxi-
mately 380 nm. Upon the construction of the silicon shell, the adsorption of ZnO decreases.
Furthermore, the addition of hydrophobic reagents further reduces the adsorption of ZnO.
Figure 5 shows the UV–visible spectrum, highlighting the absorption peak of Au. Af-
ter constructing the silicon shell, the absorption peak of Au undergoes a blue shift, and
the absorption amount is significantly reduced. This blue shift may be attributed to the
introduction of the silicon hydroxyl group during the construction of the silicon shell.
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2.6. XPS Analysis

XPS analysis was conducted on the catalyst, as depicted in Figure 6. The XPS spec-
trum’s binding can be calibrated with C1s (284.8 eV). Despite the signal overlap between
the Au 4f peak and the Zn 3p peak, we convolve the Au 4f peak [34–37]. XPS spectra reveal
that all catalysts exhibit similar Au 4f curves and can be differentiated into Au 4f7/2 and Au
4f5/2 spin states. The peak positions of different samples, the proportions of Au elements
with different chemical valences, and the proportions of Au with different valences in XPS
analysis are presented in Table 3. After hydrophobic modification, the peak position of
the Au 4f in the Au/ZnO@Si-c(0.5) sample shifts to the higher field, ∆E = 0.9 eV. This phe-
nomenon may be attributed to the chemical binding of the modifier to the sample, which
enhances the electron cloud density on the Au and O surfaces [36]. However, metallic Au
and reactive oxygen species can effectively promote the oxidative esterification of aldehyde
and methanol [38,39].
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Table 3. XPS analysis of Au 4f for catalysts.

Catalysts
Au0 Au3+

BE (eV) Fraction (%) BE (eV) Fraction (%)

Au/ZnO 83.21 55.50 85.54 44.50
Au/ZnO@Si 83.11 6.77 86.65 93.23

Au/ZnO@Si-c(0.5) 84.10. 49.90 86.70 50.10
Au/ZnO@Si-c(2.0) 83.00 36.47 88.22 63.53

The peak fitting results corresponding to O 1s are presented in Table S1. Three
deconvolution peaks of oxygen were observed, presumed to be surface lattice oxygen (OI),
adsorbed oxygen (OII), and hydroxyl oxygen (OIII) [40,41]. Components at B.E. = 530.1 eV,
B.E. = 532.1 eV, B.E. = 532.3 eV, and B.E. = 531.8 eV are attributed to OI, while components
at B.E. = 531.3 eV, B.E. = 533.0 eV, B.E. = 533.2 eV, and B.E. = 533.3 eV are attributed to OII.
The components at B.E. = 532.3 eV, B.E. = 533.8 eV, B.E. = 533.4 eV, and B.E. = 534.3 eV
belong to OIII. The percentage of adsorbed oxygen and lattice oxygen on the surface of the
hydrophobic catalyst increased significantly, with the total percentage of adsorbed oxygen
and lattice oxygen exceeding 90%. The oxygen on the surfaces of the Au/ZnO@Si-c(0.5)
and Au/ZnO@Si-c(2.0) catalysts exhibit symmetric characteristic peaks at 532.3 eV and
532.8 eV, respectively. Before and after hydrophobic modification, the peak positions shift
to higher field intensities, with ∆E values of 0.20 eV and 0.70 eV, respectively, indicating a
loss of electrons from the surface oxygen element.
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2.7. FT-IR of the Catalysts

The FT-IR spectra of Au/ZnO, Au/ZnO@Si, Au/ZnO@Si-c(0.5), and Au/ZnO@Si-
c(2.0) are presented in Figure 7. The bands observed at 3424 and 1634 cm−1 correspond
to the vibration of –OH bonds, while the bands at 471, 800, and 1084 cm−1 correspond to
the vibration of Si–O–Si bonds in the SiO2 shell. Additionally, an absorption band appears
at 950 cm−1, corresponding to the stretching vibration of Si–OH. The presence of isolated
silanol groups was confirmed using the OH stretch at 3740 cm−1 on Au/ZnO@Si, suggest-
ing the possibility of introducing hydrophobic –CH3 groups through silanization reactions.
The bands observed at 2923 cm−1 and 1401 cm−1 can be attributed to the stretching and
bending vibrations of –CH3, respectively, confirming the successful modification of organic
groups onto the catalyst through post-silylation.
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2.8. Water-Droplet Contact Angles of the Catalysts

Figure 8 presents the water-droplet contact angles of various catalysts, highlighting
the impact of hydrophobic modification on surface properties. The Au/ZnO@Si catalyst
exhibits a contact angle of 27.9◦, suggesting a hydrophilic surface (Figure 8b). However,
after hydrophobic modification through TMCS, the contact angle increases to 111.2◦ over
the Au/ZnO@Si-c(0.5) surface, indicating a complete transformation of the Au/ZnO@Si
surface from hydrophilic to hydrophobic. Furthermore, different hydrophobic abilities
of Au/ZnO@Si-c catalysts were achieved by varying the TMCS coverage. As shown in
Figure 8c,d, increasing the TMCS exposure enhances the water contact angle from 27.9◦ for
Au/ZnO@Si to 111.2◦ for Au/ZnO@Si-c(0.5) (0.5 mL per gram of catalyst), but to 90.1◦ for
Au/ZnO@Si-c(2.0), indicating that a higher amount of TMCS does not further enhance the
hydrophobicity.
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2.9. Catalytic Performance

The samples were employed for a couple of MAL and methanol using oxygen as an
oxidant, with the performance shown in Figure 9. The Au/ZnO presented a high conversion
of MAL at 45%, and the selectivity for MMA was 96% after 2 h of the reaction. The good
catalytic effect of the Au/ZnO catalyst is due to the small particle size of Au and the uniform
distribution of the support. Although the basic sites of the Au/ZnO@Si catalyst increased
after the addition of silicon shells, the addition of silicon shell resulted in the enlargement of
Au particles and the decrease of the active site of gold, resulting in the decrease of catalyst
activity. After hydrophobic modification, the conversion of Au/ZnO@Si-c(0.5) decreased
while the selectivity increased, and the conversion of Au/ZnO@Si-c(2.0) increased, but the
selectivity was only 12%. As shown in Table S2, it is calculated that the TON value of the
catalyst is the highest, which is 1394. These results suggest that careful optimization of the
hydrophobicity of the catalyst is necessary for achieving high conversion and selectivity in
this reaction. The mechanism of oxidative esterification on catalysts can be described as
follows: methanol is adsorbed on the surface of Au nanoparticles, and the alkaline sites of
the supporter or alkaline additives promote the breaking of O–H bonds and the removal
of β-H, thereby promoting the formation of methoxy groups. The methoxy nucleophilic
attack on MAL leads to the formation of intermediate hemiacetal, which removes β-H and
forms MMA. On the surface of Au nanoparticles, the β-H that was removed in the previous
step is oxidized via oxygen, ultimately forming H2O [20]. The hydrophobic groups present
in the hydrophobic catalyst play a crucial role in removing the water formed during the
reaction from the pores. This prevents the formation of a water film at the active site and
promotes the progress of the oxidative esterification reaction in the forward direction.
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By employing hydrophobic catalysts, the water generated during the reaction is
efficiently removed, allowing the oxidative esterification process to proceed smoothly and
enhancing the overall reaction efficiency.

Figure S3 illustrates the effect of varying amounts of TEOS on the catalytic performance
of the samples for the oxidative esterification of MAL with methanol. As shown, the
addition of 2.5 mL of TEOS to the catalyst preparation led to a decrease in conversion but an
increase in selectivity. The conversion of subsequent hydrophobic catalysts and hydrophilic
silicon shell catalysts slightly improved despite the decrease in TEOS concentration. These
results suggest that the balance between conversion and selectivity in this reaction is
highly dependent on the amount of TEOS used in catalyst preparation, as well as the
hydrophobicity of the final catalyst.

2.10. Kinetics

Kinetics were developed based on the kinetics model established by our group [18]. In
the blank experiment conducted without the catalyst, the reaction conditions were as follows:
80 ◦C, 0.5 MPa O2, and nMeOH/nMAL = 20. After 120 min of reaction, the conversion of MAL
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was 25%, but no methyl methacrylate was generated. This suggests that without a catalyst,
the active species responsible for the conversion of MAL to MMA is absent. However, when
a hydrophobic carrier was prepared by directly constructing a silicon shell and performing
hydrophobic treatment on the ZnO support, and this catalyst was used in the reaction, the
result was still the absence of MMA as a product. This indicates that the active component
responsible for the catalytic conversion of MAL to MMA is Au in the catalyst.

The linear relationship of ln CMAL–ln r was investigated to obtain reaction orders at dif-
ferent temperatures, which finally determined the reaction order of oxidative esterification
as 1.985. The kinetic equation of the reaction was

r = k(C MAL)
1.985. (1)

Based on previously determined kinetic models, kinetic studies of oxidative esterifi-
cation reaction with the catalyst were carried out. Fitting curves for MAL concentration
at different reaction temperatures can be seen in Figure 10a. The activation energy of the
reaction was studied using the Arrhenius formula. As shown in Figure 10b, the value of
activation energy Ea was determined as 22.44 kJ mol−1.
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3. Discussion

The Au/ZnO@Si-c catalyst was obtained through hydrophobic modification of the
Au/ZnO@Si catalyst using trimethylchlorosilane (TMCS) reagent. The water droplet
contact angle of the Au/ZnO@Si catalyst is less than 90◦, indicating that it is a hydrophilic
catalyst, while the water droplet contact angle of the Au/ZnO@Si-c catalyst is greater than
90◦, indicating that a hydrophobic catalyst has been successfully prepared. Compared
with the Au/ZnO@Si catalyst, the Au/ZnO@Si-c catalyst exhibits a smaller specific surface
area and larger pore size, which may be attributed to the formation of stacked pores
during hydrophobic modification. After hydrophobic modification, the gold loading of
the Au/ZnO@Si-c catalyst decreased, which may be due to the extended ultrasound time
during the catalyst’s hydrophobic modification process, resulting in the loss of some Au.
The reduced desorption observed in CO2-TPD for the Au/ZnO@Si-c catalyst suggests
a decrease in the number of alkaline groups after modification, indicating successful
grafting of hydrophobic groups onto the catalyst’s surface. The catalyst prepared using
the deposition–precipitation method exhibits an Au particle size of 4.33 nm. However, the
Au particle size of the Au/ZnO@Si and Au/ZnO@Si-c catalyst increased. It indicated that
the construction of the silicon shell and the hydrophobic modification treatment would
affect the aggregation of gold nanoparticles directly loaded on the support. The deposition–
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precipitation method for preparing the gold catalyst does not provide effective control
over the subsequent operations’ impact on the size of Au particles. In our future work, we
aim to investigate alternative preparation methods that can effectively control the size of
Au particles, thereby reducing the influence of core–shell construction and hydrophobic
treatment on the Au particle size.

4. Materials and Methods
4.1. Materials

Chlorauric acid (HAuCl4·4H2O), nano Zinc oxide (ZnO, 99.8%, 50 ± 10 nm), Tetraethoxysi-
lane (TEOS, AR), ammonia (25~28%, AR), ethanol (AR), n-hexane (AR) and Chlorotrimethyl-
silane (TMCS, AR) were obtained from Shanghai Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China).

4.2. Methods
4.2.1. Synthesis of Hydrophobic Support of ZnO

Using the urea deposition–precipitation method, 0.5 mL of HAuCl4·4H2O solution
(0.1 mol/L) was added to 50 mL of deionized water, and 3.5 g urea was added to the
HAuCl4·4H2O aqueous solution. The resulting solution was heated to 80 ◦C, and 1 g ZnO
was added for 3 h. Then, it was filtered, and the solid samples were washed repeatedly
with deionized water until no residual chloride ions were present in the solution. The
precipitation was continued to filter, and the resulting sample was subsequently dried in
air at 80 ◦C for 12 h. Finally, it was burned for 2 h in an airflow at 250 ◦C to obtain the
corresponding catalyst.

4.2.2. Synthesis of Au/ZnO@Si

The core–shell Au/ZnO@Si was prepared using the modified Stöber method. Typically,
1.0 g of the prepared Au/ZnO was dispersed in 300 mL of ethanol (AR) via ultrasonication.
Then, 2.5 mL of tetraethoxysilane (TEOS, AR) was added. After stirring under 450 rpm
for 4 h, 5 mL of ammonia (25–28%, AR) and 20 mL of water were added. The mixture was
stirred for another 4 h. Subsequently, the product was washed with ethanol and dried at
100 ◦C for 11 h.

The effect of different amounts of TEOS addition was investigated. For convenience,
the catalyst prepared by adding 2.5 mL of TEOS was abbreviated as Au/ZnO@Si. The
catalyst prepared by adding 1.25 mL of TEOS is abbreviated as Au/ZnO@Si(1/2), and the
catalyst prepared by adding 0.625 mL of TEOS is abbreviated as Au/ZnO@Si(1/4).

4.2.3. Synthesis of Hydrophobic Catalysts

To obtain hydrophobic encapsulation, further organic modification was carried out.
The previously prepared Au/ZnO@Si catalyst was preheated in a vacuum oven at 150 ◦C
for 11 h. Then, n-hexane and chlorotrimethylsilane (TMCS) were added, with y mL of
TMCS per gram of Au/ZnO@Si (where y represents the amounts of TMCS used, which
were 0.5 and 2.0 mL per gram). The resulting mixture was ultrasonically treated at room
temperature for 3 h. The product was then washed with n-hexane and dried in a vacuum
oven at 80 ◦C for 11 h.

For convenience, the hydrophobic catalysts prepared with different amounts of TMCS
were recorded separately as Au/ZnO@Si-c(0.5) and Au/ZnO@Si-c(2.0).

4.3. Characterization

The phase structure of the catalysts was characterized on a Bruker AXS D8 Advance
X-ray diffractometer, which diffracted Cu-Kα rays (λ = 1.5406 Å) and scanned the range
of 10◦–85◦ at a speed of 4◦/min. The adsorption and desorption analysis of N2 was
completed on the ASAP 2460 surface area analyzer. Before the test, the samples were
pretreated at 200 ◦C for 4 h in a vacuum. The BET equation and BJH method were used
to analyze the specific surface and pore size distribution, respectively. TEM images and
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element mapping measurements were performed under a TECNAI G2 F20 high-resolution
transmission electron microscope with a working voltage of 200 kV. More than 100 Au
nanoparticles were evaluated to determine each sample’s Au particle size distribution.
SEM was performed on the FEI Scanning Electron Microscope Apreo (Dutch PHILIPS
XL-30 model). CO2-TPD was completed on the AutoChem II chemical adsorption analyzer
(McMuratic Instruments Co., LTD, Shanghai, China). The materials were decontaminated
with helium at 200 ◦C, and a mixture of hydrogen (10%) and argon (90%) was used for
temperature-programmed reduction. In the TPD process, a mixture of carbon dioxide (10%)
and helium (90%) was used to make the catalysts adsorb CO2, and high-purity helium
was used for desorption. The heating rate was set to 10 ◦C/min, and the signal from
50 ◦C to 550 ◦C was recorded. UV–Vis analysis was performed on the UV-2600 instrument
by SHIMADZU (Kyoto, Japan). The slit width was set to 5.0, and the test method was
reflectance. XPS was analyzed on the PHI5700 spectrometer using monochromatic Al Kα

as the X-ray source. In the data processing process, C1s = 284.8 eV was used to calibrate
the charge of the samples. The static contact angles of water drops on the surfaces were
measured with an automatic contact angle meter combined with flash camera equipment
(Shanghai Sunzren Instrument Co., Ltd., Shanghai, China) at room temperature. The
measured contact angles were an average of five measurements.

4.4. Catalytic Activity Test

The oxidative esterification reactions were performed in a 50 mL stainless steel au-
toclave. The mole ratio of methanol and MAL was 20 during preparation. The mixed
solution (15 mL) was filled into the steel autoclave with 0.5 g of Au catalyst and 0.02 g
of K2CO3. After charging O2 to a pressure of 0.5 MPa, the blending solution was heated
to 80 ◦C, and then the reaction was started with stirring at 300 rpm. After 2 h of reaction
time, the reaction was halted by stopping stirring and introducing oxygen. The reactor was
quickly cooled down to room temperature. The products were separated using an organic
microfilter and then analyzed using an Agilent gas chromatograph comprising an FID
detector and a capillary column (PEG-20M, 30 m × 0.25 mm × 0.5 µm) using n-heptane as
an internal standard for quantification. Conversion and selectivity were calculated using
the following equations:

XMAL(mol) =
mol of MAL reacted
mol of MAL initially

× 100 (2)

SMMA(mol) =
mol of MMA generated
mol of MAL converted

× 100 (3)

5. Conclusions

The present work demonstrates the successful encapsulation of Au/ZnO catalysts
with hydrophilic or hydrophobic silicon shells and the impact of such modifications on
their catalytic performance for the oxidative esterification of MAL with methanol. The
addition of a silicon shell resulted in a decrease in gold active sites and conversion, as well
as an increase in selectivity. Hydrophobic modification further improved selectivity but
reduced conversion. Finally, the effect of TEOS concentration on catalytic performance was
also investigated, revealing a balance between conversion and selectivity that is highly
dependent on TEOS concentration and catalyst hydrophobicity. The catalytic performance
of hydrophobic catalysts needs to be improved, and further research will be carried out in
the future.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules29081854/s1. Figure S1: EDS diagram of Au/ZnO@Si
catalyst; Figure S2: EDS diagram of Au/ZnO@Si-c(2.0) catalyst; Figure S3: Catalytic performance
of catalysts: (a): the catalytic performance of catalysts prepared with different amounts of TEOS for
the reaction; (b): the catalytic performance of hydrophobic catalysts prepared with the same amount
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of hydrophobic reagent TMCS under different amounts of TEOS; Table S1: XPS analysis of O1s for
catalysts; Table S2: Catalyst performance.
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