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Abstract: Natural products (NPs) have diverse biological activity and significant medicinal value.
The structural diversity of NPs is the mainstay of drug discovery. Expanding the chemical space of
NPs is an urgent need. Inspired by the concept of fragment-assembled pseudo-natural products, we
developed a computational tool called NIMO, which is based on the transformer neural network
model. NIMO employs two tailor-made motif extraction methods to map a molecular graph into
a semantic motif sequence. All these generated motif sequences are used to train our molecular
generative models. Various NIMO models were trained under different task scenarios by recognizing
syntactic patterns and structure–property relationships. We further explored the performance of
NIMO in structure-guided, activity-oriented, and pocket-based molecule generation tasks. Our results
show that NIMO had excellent performance for molecule generation from scratch and structure
optimization from a scaffold.

Keywords: natural products; molecular generation; deep learning; fragmentation; transformer

1. Introduction

Natural products (NPs) are derived from evolutionary selection over millions of
years to bind to biological macromolecules and therefore possess important biological
activity and pharmaceutical value [1]. With the rapid development of pharmacology and
synthesis, more and more natural products are coming to our attention as an important
source of new bioactive compounds with novel molecular scaffolds [2]. According to a
comprehensive study, 6% of all small-molecule drugs approved between 1981 and 2014 are
unaltered NPs, 26% are NP derivatives, and 32% are NP mimetics and/or contain an NP
pharmacophore [3]. Judging by the average number of natural product-derived fragments
(NPFs) in approved drugs since 1939, pharmaceutical drug discovery programs continue
to benefit from the use of NPFs [4,5]. As far as we know, NPs have high diversity and
structural complexity, such as a high fraction of sp3 carbon atoms, stereogenic centers, and
diverse ring systems, which make them a largely unexplored chemical space and able to be
widely incorporated into the pipelines of drug design on a large scale [6].

Inspired by pre-validated NP repositories in nature, e.g., biology-oriented synthesis [7,8]
(BIOS) and pseudo-natural product (pseudo-NP) strategy [9,10] (Figure 1), many novel
biologically relevant compounds are designed and synthesized. For BIOS, a conserved core
scaffold is identified during the lead identification phase and often kept throughout the
rest of the compound collection design. Scaffold synthesis and decoration following BIOS
could yield new compounds. On the other hand, for pseudo-NPs, the biological relevance
of NPs merges with the rapid accessibility through fragmentation and reassembly, going
beyond existing NP scaffolds into unexplored chemical space to overcome the limitations
of BIOS [11,12]. Overall, dynamic combinatorial chemistry [13] plays an important role in
natural product research.
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Figure 1. The two bio-inspired ideas integrated into our developed NIMO. 

Computationally, many de novo molecular generative models are aimed at generat-
ing compound structures with desired physicochemical and bioactivity properties or even 
multi-objective optimization [14–16]. In terms of granularity, SMILES (simplified molecu-
lar-input line-entry system) strings are often adopted as a molecular representation due 
to their simplicity. For instance, MCMG [17] is a multi-constraint molecular generation 
approach based on a transformer [18] for de novo drug design. QCMG [19] is a quasi-
biogenic molecule generator with recurrent neural networks. However, SMILES-based 
models often undergo substantial changes during sequential extensions [20]. For example, 
two molecules with similar chemical structures may be encoded into significantly differ-
ent SMILES strings. The impact of this characteristic on the structures of polycyclic com-
plex natural products has not been adequately assessed. Some latecomers of graph gener-
ation schemes, such as JT-VAE [21], which generates graphs in a motif-by-motif manner 
rather than node-by-node, are employed to obviate chemically invalid intermediates. Such 
generators belong to the same fragment-based model as FBMG [22] with respect to the 
granularity of their applied molecular representation. In this context, there are still rela-
tively few generation models focused on natural products. Given that new chemical enti-
ties are typically derived from structural modification of active natural products obtained 
through screening techniques [23–25], there is a substantial demand for multi-objective 
structural optimization in natural product-derived models, such as the derivation of the 
scaffold, in addition to de novo generation [26]. In particular, fragment-based paradigms 
are thought to be suitable for this real scenario [27–29]. The scaffold-based models typi-
cally support scaffold as the initial seed of the generative procedure [30,31]. Last but not 
least, natural products often feature biologically relevant molecular scaffolds and 

Figure 1. The two bio-inspired ideas integrated into our developed NIMO.

Computationally, many de novo molecular generative models are aimed at generating
compound structures with desired physicochemical and bioactivity properties or even
multi-objective optimization [14–16]. In terms of granularity, SMILES (simplified molecular-
input line-entry system) strings are often adopted as a molecular representation due to their
simplicity. For instance, MCMG [17] is a multi-constraint molecular generation approach
based on a transformer [18] for de novo drug design. QCMG [19] is a quasi-biogenic
molecule generator with recurrent neural networks. However, SMILES-based models
often undergo substantial changes during sequential extensions [20]. For example, two
molecules with similar chemical structures may be encoded into significantly different
SMILES strings. The impact of this characteristic on the structures of polycyclic complex
natural products has not been adequately assessed. Some latecomers of graph generation
schemes, such as JT-VAE [21], which generates graphs in a motif-by-motif manner rather
than node-by-node, are employed to obviate chemically invalid intermediates. Such
generators belong to the same fragment-based model as FBMG [22] with respect to the
granularity of their applied molecular representation. In this context, there are still relatively
few generation models focused on natural products. Given that new chemical entities
are typically derived from structural modification of active natural products obtained
through screening techniques [23–25], there is a substantial demand for multi-objective
structural optimization in natural product-derived models, such as the derivation of the
scaffold, in addition to de novo generation [26]. In particular, fragment-based paradigms
are thought to be suitable for this real scenario [27–29]. The scaffold-based models typically
support scaffold as the initial seed of the generative procedure [30,31]. Last but not least,
natural products often feature biologically relevant molecular scaffolds and pharmacophore
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patterns [4,32]. However, the current molecular generators ignore this critical transfer of
relevant structural features to NP-inspired compound libraries.

To our knowledge, previous generative models appear to be confined in the face of
the following critical challenges towards natural products: (1) manipulability for complex
natural product structures including stereo information, (2) multi-objective structural opti-
mization, and (3) inheritance of biological relevance from natural products. Thus, flexible
generative models are needed to complement routine design strategies in real scenarios.
In this work, we develop a natural product-inspired molecular generative model (called
NIMO for short) based on transformer architecture, in which the rich semantic information
among motifs from the aforementioned BIOS and pseudo-NP strategies is learned, and
construct the NIMO-S and NIMO-M models, respectively, for generating natural product-
like molecular structures that comply with the expected criteria. Specifically, NIMO-M is
a generic model for molecular generation with multi-constraint and novel motifs, while
NIMO-S is a scaffold-based model for lead optimization that specifies a central scaffold.
Furthermore, we thoroughly investigated NIMO in the multi-objective molecular genera-
tion tasks and show that NIMO excels in several classical methods in three practical tasks,
covering structure-guided, activity-oriented, and pocket-based molecule generation.

2. Results and Discussion
2.1. Model Evaluation

We first trained and sampled 5000 molecules under evaluation setting 1 (see Section 4.3).
As shown in Figure 2, the reconstructed chemical spaces of NIMO-S and NIMO-M exhibited a
spatial contraction toward the desired properties (QED, logP, and SAS) in contrast to the native
chemical space of the NPs. It should be noted that the Mw (molecular weight) distribution
was optimized due to the correlation with QED. The statistics showed similar and slightly
concentrated molecular property distributions for HBD, HBA, and RB. To assess whether
the method can capture the intrinsic structure features of natural products, NP-likeness [33]
was introduced as a measure of similarity to the NP molecules, and it showed that both
models could generate molecules with more preferred features of NP-like compounds than
the synthetic molecules in ZINC [34].

We reported the benchmark studies of 5000 generated molecules under evaluation
setting 2 (see Section 4.4). Here, we used SMILES-based models (MCMG and QBMG)
and a fragment-based model (FBMG) as the baselines, and the conditional metrics and
MOSES [35] metrics were utilized as comprehensive evaluation benchmarks. Table 1
illustrates that all models except FBMG performed pretty well for the validity rate (above
90%). In particular, NIMO not only had significantly higher fragmentation efficiency than
FBMG but also yielded a smaller motif size and lower motif weight (Figure S1, Table S1).
Because FBMG had difficulties in proposing valid molecules, in addition to its inability to
handle stereochemical information and multi-constraint generation, it was not considered
in later analysis. On the other side, the validity of the molecules generated by NIMO-M
dropped down to 75.12% when the motif information was removed from the training
set. This verifies that additional motif information was conducive to model training, thus
guaranteeing model reliability and improving training efficiency. Details of the ablation
experiment are available in Figure S2. All models scored high on the uniqueness indicator.

In terms of novelty, NIMO-S offered the best performance, while NIMO-M underwent
the sharpest drop, to 61.0%. The relatively underperforming MCMG achieved 65.7%. Ac-
cording to MOSES metrics, NIMO-M and MCMG consistently performed well in terms of
FCD metrics, which were related to chemical and biological properties. Compared to the
SNN metrics, the structures generated by NIMO-S were the furthest from the manifold of
the training set. The Frag and Scaf metrics compared molecular similarities at the substruc-
ture level. Note that the metric calculation method applied the Bemis–Murcko scaffolds,
which partially overlapped with our motif extraction method, so it was comprehensible
for the enhancement of Frag metrics of NIMO-S. All models showed roughly the same
IntDiv of the generated molecules, indicating the diversity of the generated molecules.
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NIMO-M achieved the most impressive performance in terms of synthetic accessibility
(SAS), demonstrating the practical applicability of the model for molecule generation.

Overall, NIMO achieved a major breakthrough as a fragment-based model compared
to the FBMG and is in no way inferior to the state-of-the-art SMILES-based model. Indeed,
novelty remains a future endeavor in the field of molecular generation. Next, three practical
molecular generation tasks, including structure-oriented (terpenoids), bioactivity-oriented
(antimalarials), and target-driven (antibacterial) tasks, were performed to demonstrate the
applicability of our model.
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Figure 2. Property distributions of the molecules generated by NIMO. NP (red) refers to the train
set, while the ZINC (purple) dataset is identified as synthetic molecules. NIMO (blue) is from the
integration of molecules generated by NIMO-M (green) and NIMO-S (yellow). QED is “quantitative
estimate of drug likeness”; logP indicates “octanol/water partition coefficient”; SAS indicates “syn-
thetic accessibility score”; Mw indicates “molecular weight”; HBD indicates “hydrogen bond donor”;
HBA indicates “hydrogen bond acceptor”; RB indicates “rotatable bond”.

Table 1. The conditional and MOSES evaluation metrics for the generated molecules. The detailed
definitions are provided in Supplementary Materials.

Models NIMO-M NIMO-S MCMG QBMG FBMG

Conditional
metrics

Validity 94.5% 99.3% 95.0% 94.5% 42.9%
Uniqueness 99.7% 99.1% 98.4% 99.9% 98.5%

Novelty 61.0% 77.8% 65.7% 42.2% 99.9%

MOSES
metrics

FCD↓ a 3.71 11.2 4.52 19.2 6.11
SNN↓ 0.87 0.65 0.71 0.95 0.51
Frag↓ 0.85 0.77 0.95 0.99 0.48
Scaf↓ 0.67 0.83 0.65 0.66 0.57

IntDiv 88.3% 86.5% 87.8% 86.6% 73.9%
Novelty 71.4% 89.0% 79.5% 52.4% 99.9%

SAS↓ 0.78 0.91 1.22 0.87 0.94
a ↓ The lower, the better. FCD refers to “Fréchet ChemNet Distance”, which is a metric to predict biological
activities based on a deep neural network; SNN refers to “nearest neighbor similarity”; Frag/Scaf refers to
“fragment/scaffold similarity”; IntDiv refers to “internal diversity”. Bold text indicates the best result.
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2.2. Terpenoid Generation

In order to evaluate whether the model can generate molecules targeting specific
structure regions, we specifically designed the generation task of anchoring complex
polycyclic terpenoids, which is the biggest class of NPs. As shown in Table 2, four models
were trained based on the TeroKIT database. Herein, NIMO-S’ added ring separation
and ring recombination (edge fusion) functions to NIMO-S to compensate for the lack of
scaffold diversity. The additional step was helpful for reducing the size and weight of the
motifs, as shown in Figure S3. Subsequently, all generated molecules were judged in terms
of whether the structure belonged to terpenoids by NPClassifier [36]. As summarized in
Table 2, NIMO-S’ had the best performance (95.4%) for effectively constructing terpenoid
compounds, followed by NIMO-S, QBMG, and QCMG. This indicates that our NIMO
models can generate more norm-compliant molecules with the constraints of the established
structure rules.

Table 2. The performance for terpenoid generation. “Success” means the success rate of molecules
predicted as terpenoids by NPClassifier; “coverage” represents the proportion of the number of
unique RSs/FGs extracted from the generated set and existing in the training set to the total RSs/FGs
of the generated set; “recovery” represents the proportion of the number of unique RSs/FGs extracted
from the generated set and existing in the training set to the unique RSs/FGs of the generated set.

Metrics NIMO-S NIMO-S’ MCMG QBMG

Terpenoids Success 91.9% 95.4% 71.2% 89.7%
Ring systems

(RSs) a
Coverage 27.5% 29.8% 28.1% 8.3%
Recovery 99.4% 69.5% 62.4% 10.6%

Functional groups
(FGs) b

Coverage 5.9% 6.2% 4.3% 4.9%
Recovery 93.2% 89.7% 58.1% 47.1%

a,b RSs and FGs were automatically extracted based on RDKit in an unbiased way. Bold text indicates the best result.

The functional groups (FGs) and ring systems (RSs) were then identified for the
5000 generated molecules and the TeroKit dataset [37,38]. As shown in Table 2, NIMO-S
and NIMO-S’ exhibited good coverage of scaffolds present in the training set, according to
“coverage” and “recovery”. Obviously, our scaffold-based NIMO model can maximally
reproduce the substructural features of the original training set. In addition, a growing
body of evidence supports the effectiveness of retaining specific substructures (e.g., core
scaffolds) or general structural features (e.g., RSs and FGs) for inheriting the biological
relevance of natural products [39,40]. This is of greater importance for the structural
modification of proven scaffolds in drug screening. Therefore, we further developed a
scaffold-based scenario for a more elaborative evaluation.

Two motifs were chosen as core seeds and utilized for molecular generation (Figure 3).
It was found that NIMO-S could reproduce the same modifications at conserved sites of the
core scaffold. Moreover, due to the correct definition of the extension sites, it offered diverse
modifications for the scaffold with different functional groups. For example, the same
functional group modifications, such as methyl and hydroxyl groups, were present in the
generated molecules at some derivation sites (e.g., C-4) compared to the real molecules seen
from scaffold 1. More importantly, NIMO-S decorated various substructures at extension
sites to generate diverse derivatives, such as the long side chain at C-11 of scaffold 1 (blue)
and C-21/16 of scaffold 2 (green). More structural analysis of the generated molecules
is provided in Figure S4, and Figure S5 depicts that NIMO was also able to reconstruct a
similar chemical space of terpenoids.
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2.3. Antimalarial Activity-Oriented Molecular Generation

As NPs serve as the major source of lead compounds against malaria [41,42], the
motif-based NIMO model was used to discover potent new antimalarials. Large-scale
predictions of potential antimalarial compounds were made on MAIP [43]. Valid molecules
were sampled from models under evaluation setting 3 (see Section 4.5). As a result, the
histogram distribution of the predicted scores from MCMG roughly followed a normal
distribution, like the training data, whereas those from NIMO-M appeared unsmoothed and
discontinuous (see details in Figure S6). The antimalarial activity prediction of molecules
generated by NIMO-M and MCMG are summarized in the left four columns of Table 3.
NIMO-M excelled in two of the three enrichment factor metrics and outperformed MCMG,
with an overall activity rate of 55.9%, approximately 46% higher than the training dataset.

Table 3. Summary of anti-malarial activity-oriented molecular generation.

Train NIMO-M MCMG NIMO-M’

Samples 744,986 5000 5000 1000
EF [50%] a 20.07 46.82 44.99 68.22
EF [10%] 44.36 72.09 69.11 81.33
EF [1%] 80.4 81.97 89.17 92.21

Active % 10.0% 55.9% 52.1% 85.5%
a EF means enrichment factor provided by MAIP. EF [X] is the hit rate (the proportion of active compounds)
within a defined sorted fraction divided by the total hit rate.

The first quartile, indicating the novel molecules generated by two models, was
quantitatively close, as shown in Figure 4a. NIMO showed dense enrichment at high
similarity around the third quartile. Four high-frequency motifs in the top 10% of active
molecules generated by NIMO-M are listed in Figure 4b. Molecules containing high-
frequency motifs yielded a more dominant predicted score, as shown in Figure 4c. This
reflects that the NIMO models were capable of sampling active motifs, which made up
a large part of the total sampling volume. In particular, Figure 4d shows that Motif2
had more potential for exploring antimalarial activity. Thus, Motif2 was seeded into the
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trained NIMO-M for resampling, which was named NIMO-M’. As we expected, NIMO-M’
achieved a boost in the enrichment ability toward anti-malarial activity. As shown in the
rightmost column of Table 3, three enrichment factors were significantly increased, with the
overall activity ratio raised by approximately 75.5% over the training data. The result also
shows that the predicted activity was more susceptible to fragments than tokens tokenized
by SMILES. To facilitate data analysis, we also visualized the chemical spatial distribution
of the training set and generated molecules using TMAP [44], as shown in Figure S7. If we
regard the location of the NIMO-M’-generated molecules as the highly active region (orange
dots), then we can observe that the NIMO-M-generated molecules were clustered nearby,
resulting in a high molecular density. This illustrates that NIMO-M exhibited a structural
preference over the active region formed by the dominant motifs, which is advantageous
for realistic molecular generation practices.
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Figure 4. (a) Distribution of the average Tanimoto similarity between fingerprints of molecules
generated by models (NIMO-M, MCMG) and the nearest neighbor molecules from the training
set. (b) Four high-frequency motifs in the top 500 molecules generated by NIMO-M ranked by
anti-malarial activity score, along with the number and percentage of molecules categorized by the
motifs in brackets. (c) Violin plots of predicted scores for molecules generated by NIMO-M. The left
represents the 5000 molecules, and the right represents the top 500 molecules scored by predicted
scores. (d) Scatter plots of predicted scores of molecules categorized by the above four motifs.

2.4. Pocket-Based Molecular Generation

NIMO showed excellent enrichment ability in the above specific activity-oriented task.
Next, we spotlighted the fragment-derived methods and strategies for the effectiveness of
virtual library development [45,46]. We proposed a general approach to design antibacterial
discovery libraries. Briefly, we collected an antibacterial dataset against experiment-relevant
Gram-positive and Gram-negative bacteria, covering fifteen common bacterial species.
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Then, a phenotypic antimicrobial model based on a kNN classifier against the bacteria
panel was constructed by molecular fingerprinting analysis. Then, the classifier was used
to further predict targeted bacterial species for molecules generated by NIMO-M. Finally,
we obtained a target annotated intelligent library. See Figure S8 for detailed steps.

Here, the Lactobacillus-targeted compounds from the above antibacterial library were
selected for further analysis. The compounds falling under the targets (2HMG, 1BO7) were
docked into the associated protein pockets, as shown in Table 4. According to docking
results by MOE [47], among the 5000 molecules generated for 2HMG, 82 candidates were
predicted by molecular fingerprinting analysis, and the docking scores of 26 molecules were
lower than those of the native ligand (the lower score the better). For the top 1000 molecules,
10 of the 15 candidates had a dominant docking score. There was also a significant propor-
tion of compounds for 1B07. Moreover, compounds with RMSD values of less than 2 Å to
native ligands indicate that the original binding poses could be well recovered by NIMO.

Table 4. MOE docking result of compounds generated by NIMO-M.

PDB 2HMG (CHEMBL2902) 1BO7
(CHEMBL5328)

Compounds 1000 5000 1000 5000

Predicted candidates 15 82 93 294
Docking score < native 10 26 10 23

RMSD < 2 10 65 48 104

Figure 5 showed four high-quality binding poses of compounds against Lactobacillus
selected from the above virtual antibacterial library. There were favorable MOE dock-
ing poses after overlay with native ligands in three protein pockets. Besides a high 3D
shape similarity, they had a better docking score compared to the co-crystal ligand, in-
dicating a positive binding affinity with the pocket. Meanwhile, three indicators (QED,
SAS, SI) also showed that NIMO could deliver chemically reasonable compounds. On the
other hand, compounds 3 and 4 appeared to have the same topological structures of 2,4-
diaminopyrimidine rings (in a circle with dashed lines) with native ligands [48,49]. This
suggests that NIMO can both reproduce the key pharmacophore features of the active
ligand and capture more attractive fragments from the training set.
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2.5. Discussion

NIMO is a fragment-based generator capable of handling stereochemical information
from natural products. In the case of NIMO-M, the attachment points that tagged the
cleaved bonds retained chiral information in the initial fragments after fragment extraction.
Moreover, our model also accounted for constraint structural optimization and allowed
derivative compounds to be formed starting from a specified substructure, which was ex-
tremely useful in practice. In addition to the above innovations to address basic challenges,
the most notable differences were in the performance for NIMO in comparison to other
methods. (1) NIMO can generate more norm-compliant structural categories under the in-
tended structural disciplines. For example, our model generated terpenoid structures with
a success rates of 95.4% (NIMO-S’) and 91.9% (NIMO-S), which outperformed the baseline
models in the structure-based generation task (Table 2). (2) The molecules generated by
NIMO can inherit the biological relevance in a friendly way by maximizing the reproduc-
tion of substructures found in natural products. For example, our model reproduced ring
systems and functional groups that were pre-existing in the training dataset, surpassing
baseline models in terms of coverage and recovery metrics (Table 2). (3) NIMO can detect
potentially privileged motifs that contribute to activity and enrich more active molecules
as a result (Figure 4). Meanwhile, NIMO showed a strong structural preference for highly
active regions rather than a uniform distribution (Figure S7). (4) In terms of a granularly
fragment-based algorithm, the high efficiency of fragment extraction brings smaller motifs
and consequently increases the molecular diversity. This was confirmed in the comparison
result of motif extraction among fragment-based models (Figure S1, Table S1). For instance,
the mean weight of the motifs produced by our model was 218.5 g/mol (NIMO-M) and
238.2 g/mol (NIMO-S), significantly lower than that of the same fragment-based model,
FBMG, which stood at 407.2 g/mol. On the other side, the high reconstruction accuracy
(99.9%) warrants that only the correct motif sequences were fed into the model; thus, it
circumvented the puzzles of where to attach the new fragment and which chemical bond
to choose, as required by conventional fragment-based models. Nevertheless, the future
development of NIMO still comes up against a few open questions. NIMO can mimic
fragment rearrangement, ring separation, and ring combination (edge fusion), but some
other more complicated design strategies, such as opening/closing ring and bridged ring,
were not realized to generate pseudo-NPs in the current work [11,50,51].

3. Methods
3.1. Data Preparation

In this work, all available datasets were collected from public domains, including
COCONUT [52], TeroKIT [53,54], ChEMBL [55], and the study of Andreas Verras et al. [56],
as detailed in Section 4.1. The data were filtered according to molecule standardization
for consistency. The complete procedure consisted of desalination, charge neutralization,
removal of glycosylation, and checking of molecular validity. Also, duplicates were re-
moved. As a result, all natural products with stereochemistry were collected in the form of
canonical SMILES strings. The filter was followed by calculating each molecular entry with
molecular descriptors. They were used as constraints for the training model and as metrics
for the model evaluation.

3.2. Motif Sequence Generation

We utilized two tailor-made methods to generate motif sequences for NPs, applied to
the motif-based model (NIMO-M) and the scaffold-based model (NIMO-S), respectively.
First, we defined a motif Si as a subgraph of molecule G. Second, we decomposed molecule
G into fragments by breaking bonds specifically by the fragmentation rules. Many rules
were included, but not limited to the BRICS [57] and Murcko [58] fragmentation methods
(see Section 4.2). The generated fragments contained some dummy atoms with their
original bond IDs, allowing the original connection to be memorized. See Supplementary
for details of the fragmentation protocol. Next, the generated fragment sequence was
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canonicalized according to the dummy atom IDs of the initial fragments. The sequence
order was generated in such a way that the original molecule could be reconstructed
without using the dummy atom IDs. We denoted each canonicalized fragment with rich
semantic information as a motif Si, and the motif served as the basic unit for training the
model. The procedure for canonicalizing fragmented sequences is provided in Table S2,
and two cases of motif sequence generation are presented in Figures S9 and S10.

3.3. Molecular Reconstruction Verification

Molecular reconstruction verification was applied after the canonical motif sequences
were generated. The verification was used to filter out a small number of invalid sequences,
as illustrated in Figure S11. An example of molecular reconstruction is outlined in Figure S12.
A rigorous examination of all motif sequences ensured a molecular reconstruction accuracy of
99.9%, regardless of chirality differences. In contrast, the HierVAE-decoder [21] also utilized
motifs as building blocks for generation, though it only reached an accuracy of around 80%.
This indicates that the reserved dummy atoms in the motif allowed us to omit the process of
attachment prediction and reduce the loss. This significant boost gave us great confidence in
the reliability and interpretability of the fragment-based model.

3.4. Model Architecture

As shown in Figure 6, the core of NIMO used a conditional transformer architecture
to generate NP-derived molecules with desirable properties. First, each pre-processed
input sequence, including constraints, motif information, and motif sequence, was viewed
as a sentence and a vocabulary was constructed. “Motif info” represents the number of
attachment points automatically extracted from the motif sequence in advance. Second, the
sentence was fed into input embedding, followed by the addition of positional encoding.
Here, the standard sinusoidal positional encoding allowed the transformer to preserve the
relative position of words in a sentence. The core architecture consisted of multiple decoder
stacks. Each decoder layer had a multi-head self-attention sub-layer and a position-wise
feedforward network (FFN) sub-layer. The masked multi-head self-attention layer ensured
that the prediction of the current position relied only on the sequence embedding infor-
mation prior to that position. The self-attention layer applied scaled dot-product attention
functions and facilitated the model to capture information from different subspaces at
different positions. The formula of the attentional mechanism can be described according
to the following equation:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (1)

This formula required the introduction of the query (Q), a key (K), and a scaling factor
dk. Then, a softmax function was used to obtain the weights of the values (V). The FFN
adopted two layers of fully connected layers. Next, ReLU was an activation function
followed by a layer normalization procedure. Then, a residual connection was applied to
ease the gradient disappearance and allow for a deeper network. The decoder outputs
yielded a probability distribution over all latent semantic rules for each time step. The input
sequence was expressed as X = x1, . . ., xk. Since the model inputs contained desirable
properties (as a constraint condition c), the model was trained to minimize the following
negative log-likelihood:

L(x) = −∑k
i=1 log p (xi|x0 , . . . , xi−1, c) (2)

During model sampling, linear and softmax layers produced an output probability for
the next word according to a learnt conditional probability distribution:

xi ∼ p(x0, . . . , xi−1, c) (3)
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The sampling problem was defined as the search for the most probable hypothesis y*
according to a trained model and a set of constraints c. If V was the search space formed by
vocabulary combinations, y* was calculated by the following equation:

y∗ = argmax p(y|x, c) y ∈ V (4)

The decoder recursively generated the subsequent samples by adopting a beam search
algorithm [59]. The beam search kept the K locally highest probability candidates at each
time step t, where the hyperparameter K was referred to as the beam width. The recursion
was performed until all sampling sequences ended in the character “EOS” or the predefined
maximum time step T was reached. The maximum search space of this algorithm in one
generation process was related to the spatial complexity O(TKV). More details on the
sensitivity analysis of parameter K can be found in Figure S13. Herein, we modulated
the probability distribution in some scenarios by avoiding the occurrence of unreasonable
fragments and preventing the beam from going in a repetitive direction. Next, top N
hypotheses y* were selected from the searched set according to scoring accumulated
probabilities. Finally, a molecular reconstruction algorithm transformed the N sequences to
the final molecular structure, which was a reverse procedure of the molecular fragmentation
and canonicalization.
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Figure 6. The workflow of NIMO. Middle: The model-training preparation process includes mo-
tif sequence canonicalization and molecular reconstruction verification, which results in unique
canonical motif sequences. Then, each input sequence includes constraints, motif information, and a
motif sequence, which are used to train a conditional transformer architecture. During the model
sampling phase, the sampled motifs undergo molecular reconstruction to form the final complete
molecules. Left: The architecture of the conditional transformer neural network. Right: the examples
of molecular reconstruction and motif sequence generation (including two methods, corresponding
to NIMO-M and NIMO-S). “*” denotes a dummy atom within the motif.
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4. Experiment Configuration
4.1. Datasets
4.1.1. COCONUT

The natural product structures in the training dataset were downloaded from the
collection of open natural products (COCONUT, https://coconut.naturalproducts.net/
(accessed on 1 May 2023)) in absolute SMILES (includes stereochemical information) format,
which initially contained about 744,986 unique canonical SMILESs.

4.1.2. TeroKIT

The terpene dataset TeroKIT was obtained from our group’s previous study. About 173,914
annotated terpenoids were collected. More details can be accessed at (accessed on 1 May 2023).

4.1.3. Anti-Malarial Experimental Activity Data Set

The anti-malarial experimental activity dataset was MMV-St. Jude, which was ob-
tained from the study reported by Andreas Verraset al. It contains 2507 positive compounds.

4.1.4. Antibacterial Dataset

All antibacterial compounds against common Gram-positive and Gram-negative
bacteria were retrieved from the ChEMBL dataset (255,788).

4.2. Fragment Extraction

Given a compound library, we used two special fragmentation methods to transform
the molecular graph into a sequence of fragments, which were applied to NIMO-M and
NIMO-S. First, we defined a motif Si = (Vi, Ei) as a subgraph of molecule G, where Vi
is the set of atoms (vertices) and Ei is the set of bonds (edges). To extract motifs, we
decomposed molecule G into fragments by breaking bonds specified by the following rules.
In NIMO-M, (1) find all the single bonds (µ, ν) ∈ E, where u is in a ring, and ν is in an
off-ring or is in another ring. Bonds (µ, ν) are undirected. (2) Find all the bonds that meet
BRICS [57]. In NIMO-S, (1) find all the bonds between the Murcko scaffold and the side
chains. (2) Find a bond (u, v) in Murcko [58] scaffold that represents a shared edge in a
fused ring. Meanwhile, the bond (µ, v) divided the Murcko scaffold S1 future into two
subgraphs (S2, S3). The fragment extraction resulted in initial fragments containing dummy
atoms. Therefore, we obtained motifs such as “C1CC[*][*]C1” and “[*]1 = [*]C = CC1”,
where the atom types u and v were further replaced by dummy atom [*].

4.3. Evaluation Setting 1

The training data were from the COCONUT dataset. A total of 5000 molecules were
sampled from the multi-constraint models. Specifically speaking, three of these molecular
features were selected as constraints to train the models in our work. The QED, logP, and
SAS were expressed as scalars. Each molecule was labeled with different attributes based
on a customized threshold value, such as “good logP”. These labels were applied to train
the biased model as constraint codes. Model training and optimization of hyperparameters
are provided in Table S3. Finally, we plotted the distributions by the statistics and analysis
of partial descriptors.

4.4. Evaluation Setting 2

FBMG was a fragment-based generative model as well. QBMG was a natural product-
focused SMILES-based generative model. MCMG was one of the most advanced SMILES-based
generative models and was also used for contrast. It should be pointed out that MCMG in
this article specifically refers to MCMGM, where distilled molecules (DM) were taken as the
knowledge distillation method. NIMO was trained just like evaluation setting 1.

https://coconut.naturalproducts.net/
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4.5. Evaluation Setting 3

First, predictions of potential malaria-inhibiting compounds from the COCONUT
dataset were made on MAIP. The ultimate predicted output of MAIP is a model score. Here,
we defined 44.36 as a score threshold. This meant that 10% of natural products with a model
score > 44.36 were labeled as anti-malaria active data, while the remaining 90% were labeled
as inactive. Moreover, a portion of the anti-malarial experimental activity dataset (2507)
was coupled with labeled compounds to train the models. Finally, 5000 valid molecules
were sampled from models conditioned on a given activity constraint. Only MCMG was
allowed as the baseline model to perform activity-constraint molecular generation.

4.6. Baseline Models
4.6.1. MCMG

We downloaded the code from the official repository https://github.com/jkwang9
3/MCMG (accessed on 1 July 2023). The MCMG as a SMILES-based model was unable
to handle stereo information. There were 316,864 unique “flat” (with no stereochemistry)
NPs in the training set after the elimination of stereo information and de-duplication.
Additionally, MCMG was slightly modified to carry out its training process with the same
constraints as ours (QED, logP, SAS). Then, the model was trained according to the process
described in the original study.

4.6.2. QBMG

We downloaded the code from the official repository https://github.com/SYSU-
RCDD/QBMG (accessed on 1 July 2023). QBMG was able to handle stereo information as
a quasi-biogenic molecule generator. QBMG was trained without constraints in order to
avoid major human intervention.

4.6.3. FBMG

We downloaded the code from the official repository https://github.com/marcopodda/
fragment-based-dgm (accessed on 1 July 2023). FBMG was trained without constraints in
order to avoid major human intervention and maintain the original function. The model
cannot generate molecules with stereo information. Default parameters were used to train
the model.

4.7. NP-Likeness Score

The NP-likeness score was calculated using RDKit-based implementation of the
method described in the original article, which can be found in the repository https:
//github.com/rdkit/rdkit/tree/master/Contrib/NP_Score (accessed on 1 March 2023).

4.8. NPClassifier

The NPClassifier is a deep learning-based automated structural classification of NPs.
Herein, the final statistic in Table 2 depends on the terpenoids classified by the NPClassifier.
The detailed implementation can be found by visiting this file: https://pubs.acs.org/doi/suppl/
10.1021/acs.jnatprod.1c00399/suppl_file/np1c00399_si_003.pdf (accessed on 1 July 2023).

4.9. MAIP

The malaria inhibitor prediction (MAIP) is accessible through https://www.ebi.ac.
uk/chembl/maip/ (accessed on 1 July 2023). When using the web service to predict blood-
stage malaria inhibitors, MAIP returns a predicted model score. A higher score means
greater enrichment.

5. Conclusions

In this work, we proposed a new design strategy (named NIMO) for molecule genera-
tion to efficiently explore the vast chemical space of natural products. NIMO is helpful for
discovering bioactive NP-like compounds and structural modification of NPs. Two sets

https://github.com/jkwang93/MCMG
https://github.com/jkwang93/MCMG
https://github.com/SYSU-RCDD/QBMG
https://github.com/SYSU-RCDD/QBMG
https://github.com/marcopodda/fragment-based-dgm
https://github.com/marcopodda/fragment-based-dgm
https://github.com/rdkit/rdkit/tree/master/Contrib/NP_Score
https://github.com/rdkit/rdkit/tree/master/Contrib/NP_Score
https://pubs.acs.org/doi/suppl/10.1021/acs.jnatprod.1c00399/suppl_file/np1c00399_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jnatprod.1c00399/suppl_file/np1c00399_si_003.pdf
https://www.ebi.ac.uk/chembl/maip/
https://www.ebi.ac.uk/chembl/maip/
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of motif extraction methods were used to fragment molecule structures and derive motifs
in semantically meaningful sequences. A constrained transformer framework was devel-
oped to capture rich semantic information and implicit linking rules. As a result, NIMO
demonstrated superior performance across three typical applications (structure-guided,
activity-oriented, and pocket-based). Although there is still room for further improvements,
we believe that NIMO could provide a general computational framework for fragment-to-
lead design to accelerate the construction of high-quality pseudo-natural product libraries.
This approach can be applied to various scenarios, such as multi-objective structural op-
timization, scaffold-based lead optimization, and activity-oriented enrichment based on
dominant fragments, thereby facilitating drug discovery for natural products.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29081867/s1, ref. [60] is cited in the Supplementary Materials.
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