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Abstract: Chrysoeriol is an active ingredient derived from the Chinese medicinal herb (CMH)
“Lonicerae japonicae flos” in the dried flower bud or bloomed flower of Lonicera japonica Thunberg.
Dermatoses are the most common diseases in humans, including eczema, acne, psoriasis, moles,
and fungal infections, which are temporary or permanent and may be painless or painful. Topical
corticosteroids are widely used in Western medicine, but there are some side effects when it is
continuously and regularly utilized in a large dosage. Chrysoeriol is a natural active ingredient,
nontoxic, and without any adverse reactions in the treatment of dermatological conditions. Methods:
Nine electronic databases were searched, including WanFang Data, PubMed, Science Direct, Scopus,
Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI),
without regard to language constraints. The pharmacological activities of chrysoeriol from Lonicerae
japonicae flos to fight against skin diseases were explained and evaluated through the literature
review of either in vitro or in vivo studies. Results: Chrysoeriol decreased the mRNA levels of
proinflammatory cytokines IL-6, IL-1β, and TNF-α. These were transcriptionally regulated by NF-κB
and STAT3 to combat skin inflammation. It also showed promising actions in treating many skin
ailments including wound healing, depigmentation, photoprotection, and antiaging. Conclusion:
The cutaneous route is the best delivery approach to chrysoeriol across the skin barrier. However,
toxicity, dosage, and safety assessments of chrysoeriol in a formulation or nanochrysoeriol on the
human epidermis for application in skin diseases must be further investigated.

Keywords: Lonicerae japonicae flos; chrysoeriol; skin diseases; pharmacokinetic and pharmacodynamic
activities; pharmacological function; cutaneous route

1. Introduction

Lonicerae japonicae flos (called Jinyinhua in Chinese), is the flower or flower bud of
Lonicera hypoglauca Miquel, Lonicera confusa De Candolle, or Lonicera macrantha (D.Don)
Spreng, which belongs to the same family of Jinyinhua. This is recorded as the same herb
in multiple versions of the Chinese Pharmacopoeia (ChP) [1].

Lonicerae japonicae flos is also termed “Rendong” in ancient books of traditional Chinese
medicine (TCM). The Collective Notes to Canon of Materia Medica (around 480 to 498 AD)
states the following: “It grows everywhere and is classified into liane, and does not fade over
winter” [2]. This contains at least 212 biologically active ingredients, including 27 flavonoids,
83 iridoids, 17 triterpenoids, 41 organic acids (Table 1), and 45 other compounds [1,3], which
have different pharmacological activities. Thus, it was widely used as a traditional Chinese
medicine for several thousand years in China.
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Table 1. List of flavonoids, iridoids, triterpenoids, and organic acids from Lonicerae japonicae flos [3].

Flavonoids

(1) quercetin, (2) rutin, (3) luteolin-7-O-β-D-glucopyranoside, (4) kaempferol-3-O-β-D-glucopyranoside, (5)
apigenin-7-O-α-L-rhamnopyranoside, (6) chrysoeriol-7-O-β-D-glucopyranosyl, (7) luteolin-3′-L-rhamnoside,
(8) luteolin, (9) flavoyadorinin-B, (10) rhoifolin, (11) quercetin-3-O-β-D-glucopyranoside, (12) 3′-methoxy
luteolin, (13) 5,3′-dimethoxy luteolin, (14) luteolin-5-O-β-D-glucopyranoside, (15) apigenin, (16) isorhamnetin-
3-O-β-D-glucopyranoside, (17) hyperoside, (18) quercetin-7-O-β-D-glucopyranoside, (19) kaempferol-3-O-β-D-
rutinoside, (20) isorhamnetin-3-O-β-D-rutinoside, (21) 5-hydroxyl-3′,4′,7-trimethoxy flavone, (22) 5-hydroxyl-
6,7,8,4′-tetramethoxy flavone, (23) corymbosin, (24) 5-hydroxyl-7,4′-dimethoxy flavone, (25) lonicerin, (26)
5,7,3′,4′,5′-pentamethoxy flavone, and (27) 5,4′-dihydroxy-3′,5′-dimethoxy-7-β-D-glucoxy-flavone

Iridoids

Consist of iridoid glucosides, secoiridoid glycosides, and N-contained iridoid glycosides.iridoid glu-
cosides: (1) loganin, (2) 8-epiloganin, (3) loganic acid, (4) 8-epiloganic acid, and (5) ketologanin.
secoiridoid glycosides: (6) secologanin, (7) secologanoside, (8) secoxyloganin, (9) secologanin dimethyl
acetal, (10) secologanoside-7-methyl ester, (11) secologanic acid, (12) sweroside, (13) 7-O-ethylsweroside,
vogeloside, (14) 7-epi-vogeloside, secoxyloganin-7-butyl ester, (15) kingiside, (16) 8-epikingiside, (17)
7α-morroniside, (18) 7β-morroniside, (19) dehydromorroniside, (20) 7-hydroxy-methyl-vogeloside, (21)
(Z)-aldosecologanin, (22) (E)-aldosecologanin, (23) loniaceticiridoside, (24) lonimalondialiridoside, (25)
6′-O-acetylvogeloside, (26) 6′-O-acetylsecoxyloganin, (27) loniceracetalide A, (28) loniceracetalide B,
(29) adinoside A, (30) stryspinoside, (31) secologanoside A, (32) dimethyl secologanoside, (33–36)
loniphenyruviridoside A~D, (37) centauroside, (38) loniceranan A, (39) loniceranan B, (40) loniceranan
C, (41) ethyl secologanoside, (42) demethylsecologanol, (43) harpagide, (44) harpagoside, (45) 6′ ′-O-β-
glucopyranosylharpagoside, (46) (7β)-7-O-methyl morroniside, (47) lonicerjaponin A, and (48) lonicerjaponin B.
N-contained iridoid glycosides: (49) serinosecologanin, (50) threoninosecologanin, (51) lonijaponinicotino-
sides A, (52) lonijaponinicotinosides B, (53) lonijapospiroside A, (54) L-phenylalaninosecologanin B, (55)
L-phenylalaninosecologanin C, (56) dehydroprolinoylloganin A, (57–59) lonijaposides A-C, (60–70) lonijapo-
sides D-N, and (71–83) lonijaposides O-W.

Triterpenoids

(1) limonin, (2) ursolic acid, (3) oleanolic acid triterpenoid saponins, (4) hederagenin triterpenoid saponins,
(5) oleanolic acid, 3-O-β-D-glucopyranosyl-(12)-α-L-arabinopyranosyl oleanolic acid-28-O-β-D-glucopyranosyl-
(16)-β-D-glucopyranoside, (6) oleanolic acid 28-O-α-L-rhamnopyranosyl-(12)-[β-D-xylopyranosyl(16)]-β-D-
glucopyranosyl ester, (7) loniceroside E, hederagenin 3-O-α-L-arabinopyranoside, (8) loniceroside D, (9)
loniceroside A, (10) loniceroside B, (11) loniceroside C, (12) 3-O-β-D-glucopyranosyl(14)-β-D-glucopyranosyl(13)-α-L-
rhamnopyranosyl(12)-α-L-arabinopyranosyl-hederagenin-28-O-β-D-glucopyranosyl(16)-β-D-glucopyranosyl ester,
(13) hederagenin-3-O-α-L-rhamnopyranosyl(12)-α-L-arabinopyranoside, (14) 3-O-α-L-rhamnopyranosyl(12)-
α-L-arabinopyranosyl-hederagenin-28-O-β-D-xylopyranosyl(16)-β-D-glucopyranosyl ester, (15) 3-O-α-L-
rhamnopyranosyl(12)-α-L-arabinopyranosyl-hederagenin-28-O-β-D-glucopyranosyl(16)-β-D-glucopyranosyl ester,
(16) 3-O-α-L-rhamnopyranosyl(12)-α-L-arabinopyranosyl-hederagenin-28-O-β-D-rhamnopyranosyl(12)-[β-D-
xylopyranosyl(16)]-β-D-glucopyranosyl ester, and (17) 3-O-β-D-glucopyranosyl(13)-α-L-rhamnopyranosyl(12)-α-L-
arabinopyranosyl-hederagenin-28-O-β-D-glucopyranosyl(16)-β-D-glucopyranosyl ester.

Organic acids

(1) myristic acid, (2) palmitic acid, (3) 2(E)-3-ethoxy acrylic acid, (4) ethyl laurate, (5) protocatechuic acid, (6)
abscisic acid, (7) 3-(3, 4-dihydroxyphenyl) propionic acid, (8) caffeic acid, (9) ferulic acid, (10) caffeic acid
methyl ester, (11) methyl 4-O-β-D-glucopyranosyl caffeate, (12) caffeic acid ethyl ester, (13) cinnamic acid, (14)
4-hydroxycinnamic acid, (15) methyl 4-hydroxycinnamate, (16) 1-O-caffeoylquinic acid, (17) 3-O-caffeoylquinic
acid, (18) 4-O-caffeoylquinic acid, (19) 5-O-caffeoylquinic acid, (20) 3-O-caffeoylquinic acid methyl ester, (21) 3-
O-caffeoylquinic acid ethyl ester, (22) 3-O-caffeoylquinic acid butyl ester, (23) 4-O-caffeoylquinic acid methyl es-
ter, (24) 5-O-caffeoylquinic acid butyl ester, (25) 5-O-caffeoylquinic acid methyl ester, (26) 3,5-O-dicaffeoylquinic
acid, (27) 3,4-O-dicaffeoylquinic acid, (28) 4,5-O-dicaffeoylquinic acid, (29) 3,5-O-dicaffeoylquinic acid methyl
ester, (30) 3,5-O-dicaffeoylquinic acid butyl ester, (31) 3,5-O-dicaffeoylquinic acid ethyl ester, (32) 3,4-O-
dicaffeoylquinic acid methyl ester, (33) 3,4-O-dicaffeoylquinic acid ethyl ester, (34) 4,5-O-dicaffeoylquinic acid
methyl ester, (35) 3,4,5-O-tricaffeoylquinic acid, (36) vanillic acid, (37) 4-O-β-D-(6-O-benzoylglucopyranoside),
(38) (−)-4-O-(4-O-β-D-glucopyranosylcaffeoyl) quinic acid, (39) (−)-3-O-(4-O-β-D-glucopyranosylcaffeoyl)
quinic acid, (40) (−)-5-O-(4-O-β-D-glucopyranosylcaffeoyl) quinic acid, and (41) dichlorogelignate.

Dermatology is the medical specialty that deals with the study and treatment of
different skin disorders, such as acne, psoriasis, eczema, moles, and fungal infections,
which are temporary or permanent and may be painless or painful [4].

Acne is a disease of the pilosebaceous; it changes the keratinization pattern in the
hair follicle leading to blockage of sebum secretion, which locks sebaceous glands and
colonization [5]. Topical agents are the mainstay for the treatment of mild acne. Oral



Molecules 2024, 29, 1972 3 of 18

antibiotics for moderate acne and severe acne are treated with isotretinoin, which can lead
to permanent remission [6].

Psoriasis is one of the most common dermatological conditions. It is a chronic in-
flammation of the skin, which is characterized by the formation of a rash with scaly, itchy
patches over the body surface. Basically, this is related to the immune system wherein
epidermal hyperplasia occurs with infiltration of immune cells [7]. Topical steroids, orally
administered prednisolone, triamcinolone, and triamcinolone, were demonstrated to help
reduce the epidermal keratinocytes in dermatoses for preventing psoriasis [8].

Eczema is an important example of chronic cutaneous inflammatory disease that
affects more than 10% and 7.5% of adults in Western countries and China, respectively [9].
Generally, Western medicines use topical corticosteroids, glucocorticoids, antibacterial
drugs, histamine1-receptor antagonists, immunomodulators, and other drugs to treat
eczema [10]. However, the above Western medicines have side effects with drug resistance,
leading to stunted growth, elevated blood sugar levels, and osteoporosis medical condi-
tions [11]. Thus, these Western medicines are not the best choice for the treatment of skin
diseases. In addition, they are required to be taken long term and administration cannot
stop, otherwise, the skin disease can relapse.

TCM is an alternative method of therapy for the prevention and treatment of dermato-
logic diseases. It is comparatively mild and has fewer adverse reactions, which is suitable
for long-term usage [12]. TCM can treat the underlying causes of skin disease and state
the reasons as well as classify them into different situations including diet, stress, allergies,
genetics, toxins, etc. Treatment should be symptomatic. Probably, it is based on the TCM
theory for “pattern identification and treatment”. Data, symptoms, and signs are collected
in the four clinics of sight, smell, inquiry, and diagnosis [13].

Chinese medicinal herb (CMH) is commonly used as a combination to combat eczema
because its pathogenesis is too complex for single-drug treatment. Lonicerae japonicae flos
is a single herb that is always used in formulations to treat eczema. It contains at least
17.0% of all prescriptions from the herbal remedy [14]. Gu-Ben-Hua-Shi formula is an
example. This formulation has seven herbs, including Saposhnikoviae Radix, Coicis Semen,
Curcumae Rhizoma, Atractylodis Macrocephalae Rhizoma, Rehmanniae Radix, Sophorae Flos,
Atractylodis Rhizoma, etc., except Lonicerae japonicae flos [15]. Therefore, Lonicerae japonicae
flos is a type of meridian medicine, which can guide the active medicine in the prescription
to reach the disease site or meridians, exerting the effectiveness of the medicine. Hence,
the active ingredients from Lonicerae japonicae flos are worthy of attention and investigation.
Chrysoseriol is one of the most important active ingredients in Lonicerae japonicae flos.
Recently, Aboulaghras et al. considered the health benefits and pharmacological aspects of
chrysoeriol, which has shown its promising potential to treat or prevent skin diseases, such
as hypopigmentation disorder [16].

The present review article is mainly focused on skin diseases and aims to describe
the sources, macroscopic features, and identification of Lonicerae japonicae flos, and its
TCM theory. It also describes the extraction techniques of chrysoeriol from Lonicerae
japonicae flos and explains its structure, which is related to pharmacological functions,
pharmacokinetic and pharmacodynamic effects, and cutaneous delivery system in the
treatment of skin diseases.

2. Lonicerae japonicae flos
2.1. Sources

Lonicerae japonicae flos is primarily produced in Shandong, Shaanxi, Henan, and Hebei
Provinces in China. Currently, Pingyi County, Linyi City, and Shandong Province are the
largest production areas [17].

2.2. Macroscopic Features

Lonicerae japonicae flos (Figure 1) is rod-shaped; thick at the top and thin at the bottom.
It is slightly curved from 2 to 3 cm long. The upper diameter of Lonicerae japonicae flos is
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about 3 mm and it has a lower diameter of about 1.5 mm. It is a yellow–white or green–
white color on a surface (the color gradually becomes darker after storage). This is densely
covered with pubescence. Occasionally, its leaf-like bracts are seen. The calyx is green with
five lobes at the apex, while the lobes are hairy and about 2 mm long. An open corolla is
tube-shaped with a two-lipped apex which has five stamens and is attached to the tube
wall. It is yellow with one pistil and the ovary is hairless [18].
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2.3. Identification of Lonicerae japonicae flos

This is a light yellowish brown or yellowish green color in powder. The outer surface
of Lonicerae japonicae flos is covered with glandular hairs, which can be obconical, round, or
slightly oblate, and made up of 4 to 33 cells with 2 to 4 layers in a diameter of 30 to 108 µm.
Nonglandular trichomes are made up of one to five cells with a length of up to 700 µm.
There are two types of nonglandular trichomes: (i) thick-walled nonglandular trichomes,
single cells, up to 900 µm long, with fine wart-like or vesicular protrusions on the surface,
some with threads; (ii) thin-walled nonglandular trichomes, single-celled, long, curved or
wrinkled, with fine wart-like protrusions on the surface. The diameter of calcium oxalate
clusters is 6 to 45 µm. Pollen grains are round or triangular with fine short spines and fine
granular carvings on the surface, and three-hole grooves [18].

3. Traditional Chinese Medicine Theory

Lonicerae japonicae flos is sweet in taste and cold in nature, which is attributed to
lung, heart, and stomach meridians. Its functions are clearing heat, resolving toxins, and
eliminating external ailments. The clinical indication of Lonicerae japonicae flos is used for
heat diseases, body heat, rashes, spots, sore heat toxins, and throat swelling pain, including
carbuncles and pyocutaneous disease, pharyngitis, erysipelas, heat toxins, blood dysentery,
and exogenous heat [17].

The TCM theory focuses on “The Yellow Emperor’s Classic of Internal Medicine” [19].
“Yin” and “Yang” and the “Five trespasses Elements” are the main TCM theories. It de-
scribes the physiological functions, pathological changes, and the relationship between
an organ and the fundamental substances, consisting of “qi”, “blood”, and “body fluid” [20].
TCM balances the qi–blood–yin–yang in the body to maintain and keep humans healthy [21].
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Lonicerae japonicae flos is a TCM, which possesses a variety of pharmacological func-
tions, including anti-inflammatory, antibacterial, antifungal, and antioxidant properties.
These are related to heat–clearing and detoxifying [22]. Based on the TCM theory, “wind”,
“coldness”, “summer heat”, “dampness”, “dryness”, and “fire evils” are results of dis-
rupted qi. It causes a deficiency of vital or internal energy and blood, leading to “Yin” and
“Yang” imbalances. Thus, the pathogenic factors of eczema are “wind”, “dampness”, and
“heat” [23].

Lonicerae japonicae flos is used to clear “damp heat” from the exterior. This aims to
eliminate the accumulated damp and heat toxins within the body to restore normal bodily
functions through pharmacological functions, such as anti-inflammatory and antioxidant
properties (Table 2). They are associated with the extracted major flavonoids from Lonicerae
japonicae flos, especially the chrysoeriol. This flavonoid is a secondary metabolite [24],
which operates as a signal molecule, ultraviolet filter, and reactive oxygen species (ROS)
scavenger [25].

Recently, Kim et al. reported the phenolic compounds in Lonicera japonicae flos and
Chenpi distillation extract with antioxidant and anti-inflammation properties. These com-
pounds exhibited a high binding affinity to DPPH and inhibited the anti-inflammation
cytokines (COX-2 and iNOS), MAPK (JNK, ERK, and P38), and NF-kB pathways on skin
disease [26].

Table 2. Pharmacological functions of Lonicerae japonicae flos for anti-inflammatory and antioxi-
dant properties.

Chinese Medicinal
Herb (CMH) Metabolite (s) Pharmacological

Function (s) Model/Dosage Consequence Reference

Lonicerae japonicae flos.

Flavonoids, phenolic
compounds

(polyphenolic).

Anti-
inflammatory.

RAW264.7 cells;
2.5, 5 and 10

µg/mL
(water extract).

Reduce the expression of
proinflammatory

mediators and
inflammatory cytokines,
such as cyclooxygenase

inhibitors-2 and inducible
nitric oxide synthase,

through the suppression
of the Janus kinase/signal
transducers and activators

of transcription-3-
dependent Nuclear factor

kappa-light-chain-
enhancer of activated B
cells pathway and the

induction of Heme
oxygenase-1 expression in

Pseudorabies
virus-infected

RAW264.7 cells.

[27]

Chlorogenic acid. Anti-
inflammatory.

Human
neutrophils;
3, 10, and 30

µg/mL
(ethanol extract).

Attenuates inflammatory
reactions in the activated

neutrophils, including
superoxide anion

generation, release of
elastase, CD11b

expression, chemotactic
migration, cell adhesion,

and neutrophil
extracellular

trap formation.

[28]
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Table 2. Cont.

Chinese Medicinal
Herb (CMH) Metabolite (s) Pharmacological

Function (s) Model/Dosage Consequence Reference

Lonicerae japonicae flos.

Flavonoid
(Loniceralanside A).

Anti-
inflammatory.

Rat; 3.05µM
(ethanol extract).

Inhibits the release of
β-glucuronidase induced

by platelet-activating
factor in rat polymor-

phonuclear leukocytes.

[29]

Flavonoids, iridoids,
triterpenoids,
organic acids.

Anti-
inflammatory,
antioxidant.

C57BL/6 mice;
12.5, 25, and
50 mg/mL

(water extract).

Relieve pressure-overload-
induced heart failure

following transverse aortic
constriction, through

increased heart
antioxidant

defense systems.

[30]

Flavonoids, iridoids,
triterpenoids,
organic acids.

Anti-
inflammatory.

BV-2 microglial
cells;

0.5, 5, 2.5, 5, and 10
µg/mL

(water extract).

Prevent
lipopolysaccharide-

induced activation of
Nuclear factor kappa-

light-chain-enhancer of
activated B cells
localization, and

consequently reduce
lipopolysaccharide-

induced
DNA–protein-binding

activity of Nuclear factor
kappa-light-chain-

enhancer of activated B
cells, leading to

downregulation of proin-
flammatory mediators.

[31]

Chlorogenic acid. Anti-
inflammatory.

Male Wistar rats;
231 µg/mL

(water extract).

Suppresses the induction
of nitric oxide production

and nitric oxide synthase
expression, which may

have therapeutic potential
for inflammatory diseases,

including liver injury.

[32]

Flavonoids, phenolic
compounds

(polyphenolic).

Anti-
inflammatory,
antioxidant.

HaCaT cells;
0.1, 0.25, 0.5, 0.75,

1, 1.25, 2, 2.5, 5, 7.5,
and 10 µg/mL

(methanol extract).

Polyphenolic compounds
with antioxidant and

anti-inflammatory effects
since their molecular
structural binding or

affinity are suggested for
various

inflammation pathways.

[33]

Flavonoids, iridoids,
triterpenoids,
organic acids.

Anti-
inflammatory,
antioxidant.

HaCaT cells;
0.1, 0.25 or 0.5

mg/mL
(ethanol extract).

Exhibit protective effects
on HaCaT cells against

H2O2-induced oxidative
stress through reactive
oxygen species release,

and inhibit skin damage
against oxidative stress.

[34]
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4. Extraction Techniques

The extraction techniques of chrysoeriol from Lonicerae japonicae flos mainly include
solvent (water or ethanol) or maceration, reflux, and soxhlet, as well as ultrasonic-assisted
extraction. They have some parameters summarized in Table 3, which include solvent type,
time duration, advantages, and disadvantages.

4.1. Solvent (Liquid–Liquid) Extraction

Solvent (water or ethanol) penetrates into the solid matrix (Lonicerae japonicae flos),
then solute dissolves in the solvents based on the “like dissolves like” principle. The
solute is diffused out of the solid matrix, and the extracted solutes are collected finally [35].
Since chrysoeriol is a polar flavonoid, the solvent is usually ethanol or an ethanol–water
mixture [36].

4.2. Maceration

Seventy percent methanol is also an efficient solvent for extracting chrysoeriol by
maceration, but the Lonicerae japonicae flos must be used either fresh or dry [37]. This is
carried out by soaking the Lonicerae japonicae flos with methanol or ethanol in a stoppered
glass container. It is allowed to stand at room temperature for at least 3 days and shaken
frequently [38].

4.3. Reflux and Soxhlet

Reflux is a high-temperature continuous extraction procedure using the soxhlet ap-
paratus. Lonicerae japonicae flos are placed in a porous “thimble” paper, and the extraction
solvent (e.g., methanol or ethanol) is heated in the bottom flask. The solvent vaporized
into the sample thimble, and condensed in the condenser, then dripped back to the bot-
tom flask [39]. It is a continuous reflux process to achieve the preconcentration of the
extracted solutes.

4.4. Ultrasonic-Assisted Extraction (UAE)

This is a method using ultrasonic wave energy for the extraction. It accelerates the
dissolution and diffusion of the cell ingredients, as well as propagation in the molecules of
the medium. The high-purity product can be produced through continuous extraction [40].

Table 3. Common extraction techniques of chrysoeriol from Lonicerae japonicae flos.

Active Ingredient Solvent/Temperature/
Time Duration Advantages/Disadvantages References

Solvent
(liquid–liquid) extraction. Chrysoeriol.

Water or ethanol–water,
40 to 80 ◦C,

15 to 35 min.

Low equipment cost, wide
extraction range, and

simple operation.
Time-consuming,

compatibility issues, and
potential contamination or

cross-talk.

[41]

Maceration. Chrysoeriol.

Methanol/ethanol,
room temperature,

several days or a few
weeks at least.

Simple process, and no
heat involved, suitability

for thermal sensitive
flavonoid.

Low extraction yield, use
of large volumes of

solvents, long processing
time, and further
purification steps

are required.

[42]
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Table 3. Cont.

Active Ingredient Solvent/Temperature/
Time Duration Advantages/Disadvantages References

Reflux and Soxhlet. Chrysoeriol.

Ethanol,
boiling point of a

solvent,
2 to 48 h.

High extraction efficiency.
Long extraction time and

consumption of large
amounts of used solvents.

[43]

Ultrasonic-assisted
extraction (UAE). Chrysoeriol.

Ethanol,
ultrasonic cleaning

bath at 40 kHz, 40 to
60 ◦C,

10 to 60 min.

High efficiency and
reduced extraction time.

Energy and solvent
consumption, present low

extraction yields.

[44]

4.5. Example for Multistep Extraction of Chrysoeriol from Lonicerae japonicae flos

Liu et al. reported that chrysoeriol was extracted from Lonicerae japonicae flos by the
steps of alkali extraction and water precipitation, organic solvent extraction, membrane
concentration, and macroporous resin adsorption. The extraction and separation time of
this method is comparatively short, which has a high extraction rate (90%) and purity
(98.6%); also, the preparation is simple and easy to operate. The steps are as follows [45]:

(i) Pulverize Lonicerae japonicae flos, and use the ultrasonic extraction for 0.5–3 h, then filter
and concentrate to neutral with acid for adjusting pH. Suspension liquid is produced
through precipitation by adding distilled water;

(ii) Add ethyl acetate for extraction, and combine the extraction liquid after the suspension
liquid is added to chloroform extraction;

(iii) The extracted liquid then undergoes microfiltration, ultrafiltration, and nanofiltration
successively in the multifunctional membrane separating device;

(iv) Wash the extractant with deionized water until colorless, discard the water portion,
and use the 30% aqueous ethanolic solution gradient elution again, from 10% and
incremented to 90%, then collect elutriant;

(v) Evaporate the ethanol, concentrate, and dry with 50% methanol. The extractant is
cooled and stands overnight for crystallization to afford the chrysoeriol crude product;

(vi) Repeat the extraction steps by using ethyl acetate, methanol, acetone, and chloroform
or recrystallization again to obtain the pure product of chrysoeriol.

5. Chrysoeriol
5.1. Source

Chrysoeriol is a CMH and dietary flavonoid that exists in Lonicerae japonicae flos
and other different foods, such as wild celeries (Apium graveolens L.), tartary buckwheats
(Fagopyrum tataricum Gaertn.), hard wheat (Triticum durum), oats (Avena sativa), and common
thymes (Thymus vulgaris). Chrysoeriol may also be considered a flavonoid lipid molecule
for the prevention of fat oxidation and the protection of vitamins and enzymes [46].

5.2. Structure

Chrysoseriol (4′,5,7-trihydroxy-3′-methoxyflavone, C16H12O6) is a major flavone and
secondary metabolite from Lonicerae japonicae flos. It is light yellow to yellow in color. This
is the 3′-O-methyl derivative of luteolin, belonging to the 3′-O-methylated flavonoids. It
consists of a trihydroxyflavone and a monomethoxyflavone. The function is similar to a
luteolin. They are flavonoids with methoxy groups attached to the C3′ atom of the luteolin
(Figure 2) [47,48].
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The O-methylation is driven by a catalyst, O-methyltransferases (OMTs). This is
an important modification of flavonoids for improving the transport efficiency across
membranes and metabolic stability in mammalian cells. Wu X et al. identified that the
generation of chrysoeriol from luteolin can be catalyzed by a rice-derived 3′-OMT, which
has a high regio-specificity and activity toward flavonoids in vitro, such as Escherichia
coli [49].

5.3. Structure–Activity Relationship
5.3.1. Antioxidant

The antioxidant activity of chrysoeriol depends upon the arrangement of functional
groups about the configuration, substitution, and total number of hydroxyl groups. It
involves (i) radical scavenging and (ii) metal ion chelation ability [50,51].

(i) The “A” ring is the most suitable for scavenging ROS because it releases hydrogen
or donates an electron from the hydroxyl group to form a stable flavonoid radical (Fig-
ure 3a(i)) [52], but the “B” ring has the 3’-OMT, which is a steric hindrance. (ii) Trace metal
(M+) such as metal-chelating (Figure 3a(ii)) and metal-stabilizing properties occur in the “A”
ring, since there may be a “hydrogen bond” formation between the hydroxyl and ketone
groups. This is similar to the quercetin in terms of iron-chelating and iron-stabilizing [53].

5.3.2. Anti-Inflammatory

Hydroxyl groups are indispensable for the anti-inflammatory function of chrysoeriol.
The hydroxyl group at the C5 and C4′ positions enhances its function while the hydroxyl
group at C7 and methoxyl group at the C3′ positions attenuate their activity (Figure 3b) [54].

5.3.3. Anticancer

The anticancer activity of chrysoeriol is based on the C6-C3-C6 skeleton, and it con-
tains the hydroxyl group at C5 in its structure (Figure 3c), which has a lower cytotoxic
activity [55].

5.3.4. Antidiabetic

Cutaneous complications occur from antidiabetic therapy, which might be caused
by insulin therapy, lipoatrophy, erythema, local infections, subcutaneous nodules, and
allergies [56].

The absence of the C-2-C-3 double bond and ketonic group at C-4 reduced the xan-
thine inhibitory activities of oxidase, α-glucosidase, and Dipeptidyl peptidase IV (DPP-4)
inhibitory activities. Meanwhile, the hydroxyl group at the position of C-4′ also enhances
the DPP-4 inhibitory activities (Figure 3d). The DPP-4 inhibitors are one of the newest
therapeutic agents against type 2 diabetes mellitus [57,58].

This is a serine exopeptidase hormone, which degrades two major gut incretin hor-
mones to stimulate insulin release. The glucagon-like peptide-1 (GLP-1) and glucose-
dependent insulinotropic polypeptide (GIP) lead to a very short half-life (approximately 2
min) of the hormones for regulating plasma insulin levels in the human body [59,60].
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5.3.5. Antiarthritis

The 4′-OH hydrogroup enhances α-glucosidase inhibition activity (Figure 3e) [61] to
acarbose. It decreases the rheumatoid arthritis risk in diabetic patients. Arthritis and the
expression of proinflammatory cytokines, including TNF-α, IL-6, and IL-17, were decreased
in the paw tissues [62].

5.3.6. Antimicrobial

Chrysoeriol has a great inhibition effect on the Gram-positive bacteria except S. aureus
CCARM 0027 (MSSA), Enterococcus faecalis 19433, and Enterococcus faecalis 19434, as well
as against Proteus hauseria NBRC 3851 [63]. The antimicrobial function depends on the
hydroxyl group in C4′, C5, and C7 since the hydroxylation boosts the activity. A hydroxyl
group at C5 can form an intramolecular hydrogen bond with the carbonyl group at po-
sition C4, resulting in more electron delocalization inside the molecule. However, the
methoxylation at C3′ may decrease an antibacterial action, because it cannot establish the
intramolecular hydrogen bond (Figure 3f) [64].

5.3.7. Antithrombotic

Antithrombotic alterations have been reported in atopy and fibrin clot function in
atopic patients. The plasma fibrin clot properties associated with reduced efficiency of
fibrinolysis can be detected in atopic dermatitis patients, which might represent a novel
mechanism that modulates a hemostatic balance in atopy [65].

Hydroxyl groups on C5 and C7 are beneficial for the antithrombin effect. C=O on C4
and C=C on C2-C3 are essential for thrombin inhibition, but the single hydroxyl group at
the C5 site should weaken the antithrombin properties (Figure 3g) [66].

5.3.8. Antihyperlipidemic

Chrysoeriol can regulate the imbalance of lipid metabolism by inhibiting lipid peroxi-
dation and endogenous lipid biosynthesis and promoting lipid redistribution and exoge-
nous lipid metabolism, significantly reducing triglyceride, total cholesterol, and low-density
lipoprotein levels [67]. The antihyperlipidemic properties of chrysoeriol are related to the
number of hydroxyl groups at C5, C7, and C4′ in the C6-C3-C6′ skeleton (Figure 3h). These
significantly regulate the lipid metabolism through free radical scavenging activity [68].

5.3.9. Antinociceptive

Antinociceptive activity has a relationship with the opioid receptors in the nervous
system. It is used as a complementary treatment for inflammatory disorders of the skin [69].

The presence of dihydroxy groups at C5 and C7 positions can significantly contribute
to the antinociceptive activities of chrysoeriol because of the formation of free radical
scavenging. It decreases the topical activity since the methoxy group is at the C3 position
(Figure 3i) [70].

5.4. Pharmacological Functions

Chrysoeriol is established to have a variety of pharmacological functions, including
antioxidant [48], anti-inflammatory [71], anticancer [72], antidiabetic [73], antiarthritis [74],
antimicrobial [75], antithrombotic [76], antihyperlipidemic [77], and antinociceptive [78]
(Table 4), as well as interferes in certain disease-related progression pathways [71].
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Table 4. The pharmacological effect of chrysoeriol on different diseases.

Pharmacological Function (s) Model/Dosage Consequence Reference

Antioxidant.
Human aortic smooth

muscle cells;
5 and 10 µM.

The downstream signal
transduction pathways of

platelet-derived growth factor
receptor beta, including

extracellular signal-regulated
protein kinases 1 and 2, p38, and
Protein kinase B phosphorylation

for preventing and treating
vascular diseases.

[48]

Anti-inflammatory.

RAW264.7 cell, and TPA
(12-O-tetradecanoylphorbol-13-

acetate)-induced ear
edema mouse;
0, 10, 20 µM.

Chrysoeriol ameliorated
TPA-induced ear edema in mice

and inhibition of JAK2/STAT3 and
IκB/p65 NF-κB pathways.

[71]

Anticancer. A549 cells and xenografted mice;
7.5, 15, and 30 µM.

The expression of
LC3-phosphatidylethanolamine

conjugate and Beclin-1 are
significantly upregulated, and also
induce sub-G1/G0 cell cycle arrest,
as well as inhibit the migration and

invasion of the A549 cells.

[72]

Antidiabetic. Diabetic rats;
20 mg/kg.

The level of glucose reduced with
the decreased in the enzyme HbA1

in diabetic rats.
[73]

Antiarthritis.

Rheumatoid
arthritis-fibroblast-like

synoviocytes;
5, 10, 20, 40, and 80 µM.

Suppress hyperproliferation of, and
evoke apoptosis in,

Interleukin-6/receptor-stimulated
rheumatoid arthritis-fibroblast-like
synoviocytes by its ability to cleave

caspase-3 and caspase-9.

[74]

Antimicrobial.
Fusarium graminearum and

Pythium graminicola;
0.1, 0.5, 1 µM.

High inhibition rate and limiting
the growth of pathogens of
Fusarium graminearum and

Pythium graminicola.

[75]

Antithrombotic. SW872 Human liposarcoma cell;
25, 50, 100, and 200 µM.

Inhibition of pancreatic lipase,
cholesterol esterase, adipocytes

lipid uptake, and antithrombotic
activity, which act as a potential

source for future antiatherosclerotic
drug discovery.

[76]

Antioxidant,
antihyperlipidemic.

Wistar rats;
800 mg/kg.

Reduce triglyceride, low-density
lipoprotein, cholesterol, and total
cholesterol, as well as increase the

high-density lipoprotein cholesterol
level for improving
lipid metabolism.

[77]

Antinociceptive. Male BALB/c mice;
200 mg/kg or 400 mg/kg.

Based on the molecular docking
simulations, chrysoeriol interacts

with the α2-adrenergic receptor to
exert its analgesic.

[78]

5.5. Pharmacokinetic and Pharmacodynamic Effects

Pharmacokinetics plays a vital role in understanding the drug’s effectiveness, time
frame of reactions, and eventual expulsion from the body. It consists of four important
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stages: absorption, distribution, metabolism, and excretion (ADME) [79]. Chrysoeriol is
structurally diverse and among the most ubiquitous TCM groups. The pharmacokinetics of
chrysoeriol are associated with pharmacological and toxicological profiles. These profiles
are useful to evaluate the potential risks and benefits for human health [80] because
chrysoeriol has a variety of pharmacological functions for some diseases (as discussed
above in Section 5.4). Chen et al. studied the pharmacokinetic effect of chrysoeriol after
oral administration of Flos Chrysanthemi extract (FCE) in rats. The HPLC system was
successfully validated and applied to the oral administration of FCE to rats with or without
cathodol-O-methyltransferase inhibitor, entacapone. The concentration of chrysoeriol in the
plasma was significantly reduced [81]. Li et al. identified that chrysoeriol has good stability
and pharmacokinetic behavior properties in molecular dynamic simulation of xanthine
oxidase (XO) through the formation of hydrogen bonding and hydrophobic interactions,
as well as absorption, distribution, metabolism, and excretion (ADME) prediction. This
is expected to induce hyperuricemia and increase the level of superoxide free radicals in
blood for the treatment of gout [82].

Pharmacodynamics is the study of drugs for interacting with biological structures
or targets at the molecular level to induce a change in how the target molecule functions
concerning subsequent intermolecular interactions [83]. These interactions result in com-
petition for receptor binding sites or alter photoreceptor response [84], for example, the
structure–activity relationship of chrysoeriol at a particular concentration to occupy the
receptor (as discussed above in Section 5.3).

6. Cutaneous Delivery System

Flavonoids have been demonstrated as a suitable agent in the treatment of skin
disorders. Domaszewska-Szostek et al. discovered flavonoids that can slow down or
prevent aging-associated deterioration of skin appearance and its function. This is related
to the target cellular pathways for regulating cellular senescence and senescence-associated
secretory phenotype [85]. However, most flavonoids are lipophilic in nature, and poor
water solubility invariably leads to limited oral bioavailability [86].

Chrysoeriol is a very hydrophobic molecule, practically insoluble in water, and rela-
tively neutral. It is lipophilic; thus, the cutaneous route is the best delivery approach, which
depends on the solubility and permeability of chrysoeriol across the skin barrier [87]. Lai
et al. indicated that chrysoeriol efficiently bound in the active site cavity, and was able to
inhibit the activity of c-Met and Vascular endothelial growth factor receptor 2 (VEGFR2)
and may serve as the leading compound for novel drug development, especially in the
tumorigenesis of various types of cancer [88]. In fact, VEGFR2 is a primary responder to
vascular endothelial growth factor signal and thereby regulates endothelial migration and
proliferation; hence, chrysoeriol can also be expressed in endothelial cells of developing
capillaries, thoracic duct, great vessels, hepatic sinusoids, epidermis, and mesothelial for
the treatment of skin disease [89].

Wu et al. demonstrated that chrysoeriol ameliorates TPA-induced ear edema in
mice through JAK2/STAT3 and IκB/p65 NF-κB pathways. As chrysoeriol decreased the
production of NO and prostaglandin E2, which inhibited the phosphorylation of inhibitor
of κB (Ser32), p65 (Ser536), and Janus kinase 2 (Tyr1007/1008). It also decreased nuclear
localization of p50, p65, and STAT3, and downregulated mRNA levels of proinflammatory
cytokines IL-6, IL-1β, and TNF-α, which are transcriptionally regulated by NF-κB and
STAT3 in the RAW264.7 cells model [71].

Recently, Oh et al. identified the significance of the C4′-OH group and C3′ methoxyla-
tion for melanogenesis in the structure of chrysoeriol (Figure 4). It promotes melanogenesis
in B16F10 cells by upregulating the expression of melanogenic enzymes through the MAPK,
phosphatidylinositol 3-kinase (PI3K)/AKT, PKA, and Wnt/β-catenin signaling pathways.
This can prevent hypopigmentation disorders [90].
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ChP Chinese Pharmacopoeia
DPP-4 Dipeptidyl peptidase IV
ERK1/2 Extracellular signal-regulated protein kinases 1 and 2
FCE Flos chrysanthemi extract
GLP-1 Glucagon-like peptide-1
GIP Glucose-dependent insulinotropic polypeptide
HO-1 Heme oxygenase-1
IL-6 Interleukin-6
IL-7 Interleukin-7
IκB IκB kinase
JAK2 Janus kinase 2
JAK/STAT/3 Janus kinase/signal transducers and activators of transcription-3
LC3II LC3-phosphatidylethanolamine conjugate
LPS Lipopolysaccharide
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
65 kDa p65
PI3K Phosphatidylinositol 3-kinase
PAF Platelet-activating factor
PDGFRß Platelet-derived growth factor receptor beta
PMN Polymorphonuclear leukocyte
PKA Protein kinase A
AKT Protein kinase B
PRV Pseudorabies virus
ROS Reactive oxygen species
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STAT3 Signal transducers and activators of transcription 3
TPA Tissue plasminogen activator
TCM Traditional Chinese medicine
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