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Abstract: Ultrasonic treatment has been widely used in the mineral flotation process due to its
advantages in terms of operational simplicity, no secondary pollutant formation, and safety. Currently,
many studies have reported the effect of ultrasonic treatment on mineral flotation and shown excellent
flotation performance. In this review, the ultrasonic mechanisms are classified into three types: the
transient cavitation effect, stable cavitation effect, and acoustic radiation force effect. The effect of
the main ultrasonic parameters, including ultrasonic power and ultrasonic frequency, on mineral
flotation are discussed. This review highlights the uses of the application of ultrasonic treatment in
minerals (such as the cleaning effect, ultrasonic corrosion, and desulfuration), flotation agents (such
as dispersion and emulsification and change in properties and microstructure of pharmaceutical
solution), and slurry (such formation of microbubbles and coalescence). Additionally, this review
discusses the challenges and prospects of using ultrasonic approaches for mineral flotation. The
findings demonstrate that the application of the ultrasonic effect yields diverse impacts on flotation,
thereby enabling the regulation of flotation behavior through various treatment methods to enhance
flotation indices and achieve the desired objectives.

Keywords: ultrasonic; mineral flotation; flotation agents; slurry

1. Introduction

Mineral resources are important material bases for economic and social develop-
ment [1]. With the gradual progress of global industrialization, especially in developing
countries, the global demand for mineral resources is expected to continue to grow rapidly
in the coming decades. At present, the situation of supply and demand of mineral resources
in China is challenging [2]. In the short term, the situation where per capita resources are
lower than the world level is difficult to change. The percentage of consumption of mineral
resources in China in 2018 is displayed in Figure 1 [1,3]. In this figure, the consumption of 30
of the 36 minerals is shown to be over the world average; among them, 22 minerals account
for more than 40% of the total global consumption, and the latter 6 minerals receive an
average consumption of 18.8% [3]. Given today’s depletion of high-quality ores and rich re-
sources, the importance of economic and environmentally friendly beneficiation treatment
for low-grade and complex iron ore has become increasingly prominent [4–6]. Thus, the
mineral processing industry requires efficient treatment processes and advanced technical
support in order to effectively and selectively separate valuable minerals from gangues.
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Figure 1. Proportions of mineral resources consumed in China in 2018 [1,3]. 

In the 19th century, flotation was the most innovative and efficient mining technique, 
used to process over two billion tons of mineral resources per year [7,8]. Flotation is a process 
that uses bubbles to separate particles, which is commonly used in mineral processing [9,10], 
wastewater treatment [11], paper deinking [12], oil sand processing [13], grease recycling [14], 
microbial separation [15], and plastic recycling [16]. Flotation is based on the differences in the 
surface hydrophobicities of different materials [17–19]. The interaction process of particles and 
bubbles is viewed as consisting of three sub-processes, namely, collision, attachment, and de-
tachment [20,21], as shown in Figure 2. Together, these three factors determine the collection 
probability of particles trapped by bubbles. In order for hydrophobic particles to be success-
fully captured by bubbles, particles and bubbles must first be close enough, that is, particles 
and bubbles must collide effectively, which is usually determined by the hydrodynamics of 
the flow field where particles and bubbles are located [21]. Secondly, the hydration film be-
tween the hydrophobic particles and the bubbles becomes thin and breaks, and a three-phase 
contact periphery begins to form and reaches a stable state, that is, the particles adhere to the 
surface of the bubbles and form particle–bubble aggregates [22]. Finally, when the external 
force exerted on the particles is greater than the force between the particles and the bubbles, 
the particles will break away from the surfaces of the bubbles. When the external force is less 
than the force between the particles and the bubbles, the particles will be successfully recov-
ered by flotation [23]. It is worth noting that the particle–bubble adhesion process is relatively 
complex. As the particles approach the bubbles, a hydration layer forms between the water 
dipoles and between the water molecules and the particle surfaces. Due to the extrusion of 
bubbles, the hydration layer becomes thinner. An energy barrier forms as the hydration layer 
thins, and only when the energy barrier is crossed will the hydration layer break. In order to 
induce collision contact between particles and bubbles, an external environment is needed to 
perform the task of rapidly breaking the hydration layer. Subsequently, particles and bubbles 
begin to come together spontaneously, and as the contact surface gradually increases, particles 
adhere stably to the surfaces of the bubbles [24]. When the bubbles begin to come close to the 
surfaces of different hydrophobic particles, the energy changes, as shown in Figure 3 [3]. The 
size range of the mineral in the flotation process must be about 20–150 µm to achieve a satis-
factory flotation effect. Generally, the optimal flotation size range is affected by factors such as 
flotation unit type [25], bubble size [26], particle size [27,28], froth stability/thickness [26], rea-
gent [29], turbulence intensity [30,31], etc. In this technique, components such as particles, oil 
droplets, contaminants, etc., are separated from the mixture based on their hydrophilic or hy-
drophobic surface properties [32–34]. In order to improve the flotation performance of these 
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In the 19th century, flotation was the most innovative and efficient mining technique,
used to process over two billion tons of mineral resources per year [7,8]. Flotation is
a process that uses bubbles to separate particles, which is commonly used in mineral
processing [9,10], wastewater treatment [11], paper deinking [12], oil sand processing [13],
grease recycling [14], microbial separation [15], and plastic recycling [16]. Flotation is
based on the differences in the surface hydrophobicities of different materials [17–19]. The
interaction process of particles and bubbles is viewed as consisting of three sub-processes,
namely, collision, attachment, and detachment [20,21], as shown in Figure 2. Together,
these three factors determine the collection probability of particles trapped by bubbles.
In order for hydrophobic particles to be successfully captured by bubbles, particles and
bubbles must first be close enough, that is, particles and bubbles must collide effectively,
which is usually determined by the hydrodynamics of the flow field where particles and
bubbles are located [21]. Secondly, the hydration film between the hydrophobic particles
and the bubbles becomes thin and breaks, and a three-phase contact periphery begins to
form and reaches a stable state, that is, the particles adhere to the surface of the bubbles
and form particle–bubble aggregates [22]. Finally, when the external force exerted on the
particles is greater than the force between the particles and the bubbles, the particles will
break away from the surfaces of the bubbles. When the external force is less than the
force between the particles and the bubbles, the particles will be successfully recovered
by flotation [23]. It is worth noting that the particle–bubble adhesion process is relatively
complex. As the particles approach the bubbles, a hydration layer forms between the water
dipoles and between the water molecules and the particle surfaces. Due to the extrusion of
bubbles, the hydration layer becomes thinner. An energy barrier forms as the hydration
layer thins, and only when the energy barrier is crossed will the hydration layer break. In
order to induce collision contact between particles and bubbles, an external environment is
needed to perform the task of rapidly breaking the hydration layer. Subsequently, particles
and bubbles begin to come together spontaneously, and as the contact surface gradually
increases, particles adhere stably to the surfaces of the bubbles [24]. When the bubbles
begin to come close to the surfaces of different hydrophobic particles, the energy changes,
as shown in Figure 3 [3]. The size range of the mineral in the flotation process must be
about 20–150 µm to achieve a satisfactory flotation effect. Generally, the optimal flotation
size range is affected by factors such as flotation unit type [25], bubble size [26], particle
size [27,28], froth stability/thickness [26], reagent [29], turbulence intensity [30,31], etc. In
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this technique, components such as particles, oil droplets, contaminants, etc., are separated
from the mixture based on their hydrophilic or hydrophobic surface properties [32–34]. In
order to improve the flotation performance of these difficult-to-treat coals, various types of
chemical [35–38], physical [39–41], and physico-chemical [42–45] beneficiation techniques
are commonly employed. Factors such as the fine mineral size, water entrainment, slime
coating, and surface oxidation may affect the efficiency of these processes, leading to
flotation results that commonly do not meet industrial requirements [46–48]. To overcome
these problems, ultrasonic technology has been studied for many years for its potential to
improve flotation efficiency [49–51]. However, our basic understanding of how ultrasonic
treatment affects flotation is still limited.
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In general, ultrasonic treatment involves the use of acoustic energy to treat solutions,
suspensions, and solid materials in liquids. When the frequency is higher than 20 kHz, it is
considered an ultrasonic wave. An exciting feature is that ultrasonic treatment is a green
process, and it can be used for medicine, environmental governance, pharmaceutics, food
processing, and surface cleaning [52–54]. In terms of mineral flotation, ultrasonic treatment
under appropriate conditions can improve flotation efficiency [55–57]. A large number of
studies have shown that under the action of strong cavitation and fluidization, the incorpo-
ration of ultrasonic treatment can significantly improve the process efficiency with a shorter
treatment time, lower energy consumption, and lower reagent consumption [58–61]. Most
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of the mechanical effects of ultrasonic treatment contribute to emulsification, cleaning, dis-
persion, and fragmentation [62]. The adsorption of the flotation collector and the floatability
of minerals can be changed through the cleaning and cracking effect of ultrasonic treatment
on a mineral surface [63,64]. The chemical effect of ultrasonic cavitation is in favor of the
desulfurization of high-sulfur coal. In addition, the influence of ultrasonic cavitation on
bubbles or foam layers cannot be ignored. So, it is necessary to systematically summarize
the application of ultrasonic treatment in all aspects of mineral flotation.

The primary objective of this review is to provide an overview of the effects of ultra-
sonic treatment on mineral flotation. Accordingly, the present review covers the following:
(1) a brief introduction to the ultrasonic mechanism; (2) a discussion on the effects of
the main ultrasonic parameters (ultrasonic power and ultrasonic frequency) on mineral
flotation; (3) a systematic summary of the effects of the application of ultrasonic treatment
on mineral flotation; and (4) the research direction and future research prospects.

2. Ultrasonic Mechanism

The application of ultrasonic treatment in coal processing has been a hot research field
for decades. The principle of ultrasonic technology applied to flotation is mainly based
on the cavitation effect and acoustic radiation effect of liquid in ultrasonic treatment. In
the process of acoustic cavitation, ultrasonic activation destroys the attractive forces of
molecules in the solution, so the aqueous medium undergoes alternating cycles of thinning
and compression under the influence of ultrasonic vibration, as shown in Figure 4 [65].
When the energy of the sound field reaches the cavitation threshold, the cavitation bubbles
will close and collapse [66]. Ultrasonic cavitation can cause basic effects such as a thermal
effect, mechanical effect, and chemical effect.
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2.1. Ultrasonic Cavitation Effect

Ultrasonic cavitation includes a transient cavitation effect and stable cavitation ef-
fect [67]. Different cavitation states depend on the sound pressure and sound frequency.
The two kinds of cavitation phenomena can exist simultaneously in a medium. Under
certain conditions, steady-state cavitation can be transformed into transient cavitation.
Transient space-time and steady-state cavitation can work together on mineral flotation.
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2.1.1. Transient Cavitation Effect

It is generally believed that transient cavitation can only occur under the action of
large sound intensity and can only exist for one or up to several sonic cycles. When the
sound pressure amplitude is greater than the static pressure in the liquid, the initial radius
of the bubble is smaller than the resonance radius [68], due to the arrival of the negative-
pressure phase of sound pressure, and when the positive-pressure phase of sound pressure
arrives, the bubble first continues to increase to the maximum half-diameter. Then, it
rapidly shrinks until it collapses and closes. This closed bubble movement is often called
“instantaneous space-time” [69]. This process generally requires a large sound intensity
(greater than 10 W/cm2) and a short life cycle of cavitation bubbles. In the process of sound
field oscillation and growth, the bubble will continuously accumulate energy. When the
bubble is completely closed (collapsed), the accumulated energy inside the bubble will be
released in the form of a shock wave radiating outward, thus producing an effect on the
surrounding materials.

The high temperature (~5000 ◦C) and high pressure (~1000 atm) associated with
transient cavitation can provide a physical basis for explaining the generation of free
radicals, supercritical water, and sonoluminescence phenomena [70–72] (Figure 5). The free
radicals can combine with each other and then produce a series of reactions [73]. This effect,
known as the chemical effect of ultrasonic treatment, has been widely used in chemical
synthesis [74], the food industry [75], wastewater treatment [76], etc. The high pressure
is explained as the direct cause of increasing molecular collision and increasing chemical
reaction activity.
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Figure 5. Acoustic cavitation in water.

Transient cavitation collapses violently produce many effects. It is generally believed
that the characteristics of transient cavitation are as follows: first, there is an obvious
threshold value to generate transient cavitation. Because the cavitation effect of transient
cavitation is generally much stronger than that of a steady state, in many cases, transient
cavitation is the main consideration. Therefore, the transient cavitation threshold plays an
extremely important role in the measurement of the cavitation effect. Second, the difference
between transient cavitation and stable cavitation is that the former collapses and generates
local high temperature and pressure, also known as a hotspot. From the energy point of
view, the bubble absorbs the energy of the sound wave during the resonance process, and
when the bubble collapses, the energy is concentrated in a very small area, so although the
energy density is low in a large range, the energy density can be extremely high in a small
local area [77]. The transient cavitation effect on a large bubble can be seen in Figure 6.
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Figure 6. Transient cavitation effect on a large bubble ((a) 0 µs; (b) 20 µs; (c) 120 µs; (d) 600 µs) and a
kerosene droplet ((e) 0 µs; (f), 20 µs; (g) 120 µs; (h) 1 ms) [65].

The huge energy released by the bubble in the transient cavitation process will have
a strong impact and stripping effect on incompatibilities of the mineral surface, so that
the impurities fall off in the aqueous solution, and the mineral will be exposed to a fresh
surface, which is conducive to mineral flotation. In addition, transient cavitation also has a
dissolution effect on mineral surface components, exposing them to active sites, which is
also conducive to flotation, as shown in Figure 7.
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2.1.2. Stable Cavitation Effect

When the sound pressure is much smaller than the static pressure in the liquid,
under the action of weak sound field, the stable small-amplitude pulsation phenomenon
produced by the bubbles is usually called “stable cavitation”. The stable cavitation bubbles
will continue to oscillate without collapsing [79]. The stable cavitation effect is the effect of
the formation of tiny bubbles by nuclei [66]. The existence of tiny bubbles is conducive to
improving the collision efficiency with fine particles [80,81].

Stable cavitation can dissolve the contaminants on the surface of the object. The stable
cavitation bubbles form between the surface of the object and the contaminated layer, and
they oscillate to dissolve the pollutants in the foam. Therefore, stable cavitation can be
used to remove soluble impurities from the mineral surface and disperse and emulsify
flotation agents (Figure 8). Stable cavitation also generates a large number of stable tiny
bubbles, which oscillate frequently. In this process, the surface activator has enough time to
adsorb on the bubble/solution interface and dissolve more gases to form bubbles, giving
full play to its effect [82]. Microbubbles enhance particle aggregation through bridging,
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thus increasing the collision adhesion probability between particle aggregates and flotation
bubbles and improving mineral floatability [81,83].
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2.2. Acoustic Radiation Force Effect

The acoustic radiation force effect is related to the movement of bubbles or particles.
In addition to the movement related to the cavitation effect, bubbles will also aggregate in
a certain external environment and form a bubble group in a certain shape [84], perhaps
the “cluster of grape clusters” [85], “cluster of cone bubbles” [86], or “Lichtenberg dia-
gram” [87]. Thus, the flotation bubbles obtain a large carrying capacity with which to collect
minerals (Figure 9). Under the action of the acoustic radiation force effect, these bubbles
containing fine-grained minerals can aggregate those minerals through polymerization,
thus improving the effective adhesion rate between minerals and bubbles [66].
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3. Effect of Main Ultrasonic Parameters on Mineral Flotation
3.1. Ultrasonic Power

Ultrasonic power describes the energy input in a certain ultrasonic system. Filippov
et al. [50] assessed the ultrasonic flotation of coarse-grained material using four ultrasonic
intensities at a frequency of 20 kHz, with integrated amplitude control of 10–100%. This
study concluded that an increase in intensity of ultrasonic treatment resulted in a sharp
reduction of 40% (from 82% to 42%) in the recovery of potassium chloride (Figure 10a). At
the same time, the flotation of halite also decreased from 5.71% to 1.99%. This was due to a
decrease in the stability of the bubble–particle aggregates [50]. Gungoren et al. [88] also
found that the micro-flotation recoveries tended to decrease at higher ultrasonic powers.
It can thus be concluded that high power ultrasonic treatment had unfavorable effects on
flotation [89,90]. However, in literature, there are several studies showing that the mineral
flotation recovery rises and then falls with an increase in ultrasonic power. For instance,
Gungoren et al. [89] reported that the micro-flotation recovery increased to 63.64% and
65.57% with the use of ultrasonic treatment at 30 W and 90 W; then, it decreased to 37.50%
at 150 W ultrasonic power (Figure 10b). Cao et al. [91] showed that the oxidized pyrite
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recovery increased gradually with the increase in ultrasonic power, and reached a maximum
(89.32%) at 70 W. In this ultrasonic power range, the flotation performance of pyrite was
improved due to the removal of oxidation products from its surface via the cleaning effect of
an ultrasonic wave. However, the recovery was relatively lower at 90 W/100 W compared
to that at 70 W. The reasons were the following: Firstly, the surfaces of these pyrite particles
were oxidized in the ultrasonic field of 90 W/100 W due to the longer time involved [91].
Secondly, the stronger the ultrasonic intensity at 90 W/100 W, the greater the turbulence,
which was not conducive to the adhesion of bubbles and particles [92]. In addition, surface
defects on the surface of pyrite were introduced by stronger ultrasonic power, leading to a
reduction in the pyrite surface hydrophobicity [91]. However, others take the opposite view.
Altun et al. [93] reported that the combustible recovery of Himmetoğlu oil shale decreased
and then increased with an increase in ultrasonic power. Beyond that, the kinds of minerals,
operating parameters, and ultrasonic treatment methods (such as ultrasonic pretreatment
(UPT) flotation and ultrasonic simultaneous treatment (UST) flotation) had different effects
on mineral flotation performance with the same ultrasonic power (Figure 11) [94–96].
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3.2. Ultrasonic Frequency

Ultrasonic frequency is defined as the number of periodic oscillations per second,
usually expressed in Hertz (Hz). Commonly, the critical size of a cavitation bubble is deter-
mined via ultrasonic frequency [97]. Various ultrasonic frequencies lead to different mineral
flotation results. Chen et al. [98] reported that the ultimate recoveries were 21.12, 32.02,
and 53.36% at ultrasonic frequencies of 50 kHz, 200 kHz, and 600 kHz, respectively. There
was an increase in ultimate recovery with an increasing ultrasonic frequency (Figure 12a).
Similar results were reported by Li et al. [99]. However, a reported effect of the ultrasonic
frequency on bauxite flotation was inconsistent [98]. Ouyang et al. [100] studied the use
of ultrasonic treatment for the desulfurization effect in bauxite flotation and found that
the desulfurization effect of bauxite pulp treated with a frequency of 20 kHz was better
than that of 60.6 kHz. In addition, Wang et al. [101] found that the floatability of fine
coal slimes increased with an increase in the ultrasonic frequency from 0 kHz to up to an
optimum value of 100 kHz, beyond which the floatability decreased at a higher ultrasonic
frequency (Figure 12b). Lu et al. [102] also drew a similar conclusion after testing out
oxidized pyrrhotite flotation using ultrasonic treatment with an ultrasonic frequency in the
range of 20–60 kHz.
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4. Effect of Ultrasonic Treatment on Mineral Flotation

Ultrasonic effects on flotation can be summarized as ultrasonic effects on minerals,
flotation agents, and pulp, which are based on the ultrasonic cavitation effect and acoustic
radiation force effect.

4.1. Effect of Ultrasonic Treatment on Minerals

The effect of ultrasonic treatment on minerals mainly results from the mechanical
agitation generated by the cavitation effect of ultrasonic treatment, which is mainly carried
out in the pretreatment of minerals. The huge energy released by the instantaneous
collapse of cavitation bubbles in the ultrasonic field can clean, dissolve, and desulfurize the
mineral surface.

4.1.1. Cleaning Effect

Mineral surface impurities can be removed by ore washing, that is, slime, slime
coatings, and oxide films covering a mineral surface can be removed under the action of
hydraulic and mechanical forces [103,104]. The cavitation of an ultrasonic wave in water
can be used to clean the mineral surface, as shown in Figure 13. The shock wave emitted
by bubble transient cavitation produces a pressure thousands of times that of atmospheric
pressure around the mineral and repeatedly impacts the impurity layer on the mineral
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surface, thus destroying the adsorption between the impurity layer and the mineral surface
and causing the impurity layer itself to break away from the mineral surface. The stable
cavitation of bubbles can also scrub the surface, and tiny bubbles “drill” into mineral cracks
to vibrate them and cause impurities to fall away [105].
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There has been much research on mineral surface cleaning through ultrasonic treat-
ment. Ozkan et al. [107] carried out coal flotation in ultrasonically assisted flotation cells
and found that the use of ultrasonic treatment to clean the surface of coal particles may be
beneficial due to the thorough contact between the collector and the coal particles, thus
greatly reducing the consumption of reagents and improving the recovery of coal flotation.
Therefore, more positive results may be obtained with ultrasonic energy inputted into a
flotation system than with conventional coal flotation. Gungoren et al. [88] investigated the
improvement possibilities for the floatability of galena in the presence of ultrasonic applica-
tion. It was found that the improvement of the recovery rate of micro-flotation is related to
the enhancement of galena hydrophobicity by ultrasonic treatment. The results showed
that the maximum recovery rate of micro-flotation reached 77.5% with 30 W of ultrasonic
power. The enhancement of galena hydrophobicity by low-power ultrasonic treatment
can be attributed to the increase in fresh galena surface, thus improving the adsorption
efficiency of the collector. Gungoren et al. [89] found that the quartz-amine flotation re-
covery increased from 45.45% to 63.64% with 30 W ultrasonic application. Cao et al. [91]
studied the influence of an ultrasonic wave on the surface properties of oxidized pyrite,
and found that the ultrasonic wave had cleaning and oxidation effects on the surface,
which could remove impurities attached to the surface. Hassani et al. [108] used ultrasonic
irradiation as a pretreatment method to reverse the flotation of phosphates, and they found
that the efficiency of phosphate flotation when using ultrasonic irradiation was higher
compared to that of conventional flotation. This is because cavitation bubbles cleaned
the surfaces of particles. When cleaner, the final grade and recovery of P2O5 reached
21.31% and 77.18%, respectively. Barma et al. [109] found that ultrasonic pretreatment
can reduce the content of hydrophilic oxygenated functionalities on the surface of coal
and improve the hydrophobicity of coal, thus significantly improving its floatability. A
maximum yield and combustible matter recovery of 65.92% and 87.55%, respectively, were
obtained under combined ultrasound–ethanol pretreatment in the flotation concentrate.
A schematic illustration showing the ultrasound–ethanol pretreatment effect during the
oxidized coal flotation process is displayed in Figure 14. Shi and Shi found the same
results [110]. They reported that the aromatics (CH, –CH), phenols, alcohols, ethers, and
ester C-O group on the coal surface increased, while some oxygen-containing groups disap-
peared after ultrasonic treatment, resulting in enhanced hydrophobicity on the coal surface.
Thus, the recovery rate of fuel and the flotation perfection index after ultrasonic treatment
are significantly improved. However, Peng et al. [111] reported that functional groups
on lignite’s surface, including C-C/C-H, C-O, C=O, and COOH, underwent no apparent
change after ultrasonic treatment, as presented in Figure 15. Videla et al. [56] treated copper
sulfide tailings ultrasonically and found that the ultrasonic cavitation effect could clean the
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surfaces of mineral particles and reduce the adsorption of slime coating, thus promoting
the action of agents. An improvement in copper recovery of up to 3.5% was obtained.
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4.1.2. Ultrasonic Corrosion

The surface dissolution of minerals affects the surface properties of minerals mainly
by changing the quantity, state, and position of elements on the surfaces of minerals, which
can be realized through physical or chemical methods [112]. The surface dissolution of
minerals can cause a change in crystal chemistry, surface chemistry, and solution chemistry,
thus affecting the flotation behavior of minerals. Surface dissolution as a pretreatment
method to change the surface properties of minerals is helpful to improve the flotation
behavior of those minerals. For example, when spodumene is pretreated with NaOH,
dissolution occurs on the mineral surface, the relative contents of lithium and aluminum
on the mineral surface increase, and the flotation recovery of spodumene increases [113]. In
addition, Zheng et al. [114] found through research that NaOH soaking treatment can cause
spodumene surface corrosion, and mechanical agitation can further promote the surface
corrosion of spodumene and improve its floatability to a greater extent. As an energy form
of ultrasonic treatment, mechanical agitation caused by the ultrasonic cavitation effect can
achieve an effect that ordinary low-frequency agitation cannot, strengthen the selective
dissolution effect of the mineral surface, and create favorable conditions for flotation.

Certain researchers [95,115–117] used ultrasonic treatment as a surface modification
method, to explore its influence on mineral flotation. Chu et al. [118] found that Si species
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on the surfaces of coarse particles are easily dissolved into the solution, thus increasing the
relative contents of Al and Li species on the surfaces in the presence of ultrasonic treatment,
and then the selectivity of surface dissolution was slightly reduced. This was conducive to
the adsorption of the collector on the surface. For spodumene particles smaller than 0.0385
mm, ultrasonic treatment will lead to a more serious reduction in solubility selectivity.
Fortunately, the large amount of dissolution makes up for the loss caused by the decrease
in selectivity. The concentration of the main elements after pretreatment is shown in
Figure 16a–c. Wu et al. [96] reported that Fe2+ ions on the surface of ilmenite were oxidized
to Fe3+, which increased the adsorption of NaOL on the surface of ilmenite, while Ca2+ and
Mg2+ were exposed and dissolved in solution, which inhibited the adsorption of NaOL on
the surface of ilmenite after ultrasonication. Therefore, separation between ilmenite and
titanaugite can be realized more effectively. Figure 17 displays an adsorption model for
ilmenite and titanaugite before and after ultrasonic treatment. Shu et al. [95] investigated
the flotation and possible adsorption mechanisms of the ilmenite surface before and after
ultrasonic pretreatment. It was found that ultrasonic treatment promoted the oxidation
of Fe2+ to Fe3+ and the solubilization of Ca2+ and Mg2+ at pH 4~5. Under weak alkaline
conditions, ultrasonic treatment can also lead Ca2+ and Mg2+ to readsorb onto the surface
of ilmenite as the main active sites. Therefore, the promotion effect of sonication on ilmenite
seems remarkable, according to flotation results, due to the change whereby metal ions
become active sites on the ilmenite surface. Huang et al. [119] investigated the influence of
ultrasonic pretreatment on scheelite surface dissolution. They found that accelerating the
dissolution of WO4

2− and Ca2+ increased the Ca/W ratio and exposed the reactive site of
Ca2+ on the mineral surface, which was conducive to interaction between sodium oleate
and scheelite, thus improving the flotation recovery and flotation rate.
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4.1.3. Desulfuration

Ultrasonic desulfurization of minerals is mainly for coal. Coal will produce SO2 pollu-
tion in the process of combustion, so the removal of sulfur contents from coal has become
an urgent task. Ultrasonic desulfurization is based on chemical effects caused by ultrasonic
cavitation, that is, extreme effects such as s high temperature, high pressure, discharge,
impact, and jet generated in liquid by ultrasonic cavitation are used to accelerate chemical
reactions or realize reactions that are difficult to carry out under normal conditions [69].
Ultrasonic cavitation in an aqueous medium can induce the generation of free radicals (H+

and OH−), H2O2, and H2 (as shown in Equations (1)–(4)):

H2O2 → OH−+OH− (1)

H+ + OH− → H2O (2)

H+ + O−
2 → HO2 (3)

HO2 + HO2 → H2O2 + O2 (4)

Under different pH conditions, these strong oxidants can oxidize with sulfur com-
ponents on the surface of coal (see Equations (5)–(7)) and finally produce soluble sulfate
in water.

H2S + H2O2 → S + 2H2O Acidic pH (5)

HS− + 4H2O2 → SO2−
4 + 4H2O + H+ Neutrallty pH (6)

S2− + 4H2O2 → SO2−
4 + 4H2O Alkaline pH (7)

Vasseghian et al. [120] studied the removal of ash and pyritic sulfur from bitumen
using flotation with a low-frequency ultrasonic wave. Under the optimum conditions, the
removal rates of pyrite sulfur (68.03% of total sulfur) and ash were 87.72% and 83.29%,
respectively. Accordingly, the removal rates of ash and sulfur from pyrite by using column
flotation in the ultrasonic mode were 11.9% and 10.3% higher than those without the
ultrasonic mode, respectively. Significantly, however, the effect of ultrasonic treatment on
the removal efficiency did not continue for more than 3 min. Zhang et al. [121] investigated
the enhancement of desulfurizing flotation using the sonoelectrochemical method. The
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sulfur reduction reached up to 69.4%. The newly developed acoustic electrochemical
enhanced flotation method realizes the combination of high sulfur reduction, high yield,
and high ash content. Ultrasonic irradiation promotes electron transfer efficiency and
increases the clean coal yield. Kang et al. [122] investigated the feasibility of improving
desulfurization and de-ashing through ultrasonic treatment in the flotation process. They
found that the output of clean coal after ultrasonic treatment increased by 19.53% while
the sulfur and ash contents of cleaned coal decreased by 0.64% and 1.27%, respectively.
The flotation perfect index was increased by 22.51%, the desulfurization perfect index by
25.36%, and the desulfurization rate by 2.49%. Therefore, it seems that ultrasonic treatment
can improve the sulfur and ash removal in coal flotation. Kang et al. [123] studied the use of
ultrasonic conditioning for the enhancement of the degree of desulfurization and flotation
perfection by changing the pulp nature. Zhang et al. [124] used a sonoelectrochemical
approach for the improvement of desulfurizing flotation of high-sulfur coal. A proportion
of the total sulfur was removed using this method due to an increase in liquid–solid
interface areas between coal particles and the solvent, thus improving mass transfer and
then helping to remove sulfur. In addition, ultrasonic cavitation [125,126] destroys the
weak bond of organic sulfide in coal particles and generates sulfide free radicals [127].
These free radicals combine with an organic solvent and then dissolve into a solution.

4.2. Effect of Ultrasonic Treatment on Flotation Agents

The mechanical agitation, mutual diffusion, and homogenization caused by ultrasonic
cavitation will affect the flotation reagents. The dissolution, diffusion, and emulsification
effects of flotation reagents can be enhanced by using these ultrasonic effects. Meanwhile,
the properties of the solution and the aggregation state of the reagents will be changed.

4.2.1. Dispersion and Emulsification

The mechanical effect, thermal effect, and cavitation phenomenon produced by an
ultrasonic wave in pulp increase the pressure and temperature in the pulp. A local strong
disturbance effect leads pharmaceutical molecules to dissociate rapidly under the strong
pressure, while the ultrasonic acoustic flow effect has a stirring effect at the macro level,
which increases the speed of circulation of the pharmaceutical and its dispersion rate [128].
In this way, ultrasonic treatment can promote the dispersion and emulsification processes
of the reagent as a whole.

Ultrasonic treatment of flotation reagents can reduce the dosage of reagents, reduce
their action time, simplify the flotation process, improve the flotation index, and bring
certain economic benefits, so there are a lot of studies on the emulsification and dispersion
of flotation reagents through ultrasonic treatment. Chen et al. [127] studied the influence
of ultrasonic treatment on the dispersion of the oil collector in coking coal flotation slurry.
They found that diesel oil disperses more evenly and stably in water after ultrasonic
treatment. This is due to the strong mechanical forces on the oil–water interface, such
as shock waves and micro-jets generated by ultrasonic cavitation, which break the oil
droplets into fine oil droplets and promote their emulsification. Compared with mechanical
agitation (7 µm), the average diameter of oil droplets in the presence of ultrasonic treatment
largely decreased (3 µm). In addition, the energy produced by ultrasonic waves acted
uniformly on the oil–water interface to maintain the stability of a diesel oil dispersion
in water. Collector consumption may reduce as a result of ultrasonic treatment [129].
Burov et al. [130] investigated the effect of foam-forming compositions of flotation reagents,
such as hydro-chloric amine solution, hydrochloric amine solution, and hydrochloric amine
solution, on the properties of two-phase foams under ultrasonic treatment. They found that
ultrasonic treatment enhanced the stability of the foam layer (in the case of the hydrochloric
amine solution). Amine floccules were more efficiently distributed over the entire emulsion
due to ultrasonic dispersion. Huang et al. [131] studied the effect of ultrasonic treatment
on the solution properties and microstructure of benzohydroxamic acid (BHA) in order
to separate scheelite from calcite effectively. The results showed that ultrasonic treatment
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can disperse the agglomeration structure of BHA and form smaller or single molecular
structures, which reduces the steric hindrance effect between BHA molecules and minerals.
All of these promoted the formation of Pb-BHA complexes between activated Pb2+ ions and
BHA on the scheelite surface, increasing the adsorption heat of the interaction between BHA
and scheelite to increase the adsorption rate of BHA on the scheelite surface. Ozkan [132]
reported that the consumption of reagents drastically decreased with ultrasonic treatment
due to the full contact between the collector and the coal particles. Chen et al. [133]
investigated the mechanism of action of ultrasonic treatment on flotation reagents, such
as xanthate aerofloat, calcium hydroxide, and oleic acid. They found that ultrasonic
treatment accelerated the dissolution and diffusion of flotation reagents and it had a
dispersive emulsification effect on slightly soluble agents. Chen et al. [133] studied the
mechanism of action of ultrasonic waves on common flotation reagents by dyeing them. In
this way, the dispersion rate was observed by pigment diffusion, and the emulsification
effect was determined by the change in gray level. The results showed that ultrasonic
treatment can be used in various pieces of flotation equipment to accelerate dispersion and
emulsification. Flotation decarburization of fly ash assisted by an ultrasonic wave was
studied by Li et al. [134]. The flotation efficiency, burn loss rate, and recovery rate of the
concentrate were improved by adding the ultrasonic dispersing and emulsifying collector
kerosene in a flotation test. He [135] conducted a combined modification test where they
investigated the chemical modification and ultrasonic emulsification of a foaming agent.
When using the solubility, surface tension, and flotation effect as indexes, the results showed
that ultrasonic emulsification could improve the efficiency of the foaming agent and the
bubble performance.

4.2.2. Change in Properties and Microstructure of Pharmaceutical Solution

The collapse of cavitation bubbles will be accompanied by extreme effects such as high
temperature, high pressure, discharge, and shock waves, resulting in various physical and
chemical reactions of flotation reagents in solution. These reactions change the structure
of some reagent molecules, for instance, inducing the formation of polar ions or polar
states and destroying the balance of action between molecules, so that hydration weakens
and the force is reduced. The original gas dissolved in the liquid escapes because of the
supersaturation state, which leads to changes in the properties and microstructure of the
flotation reagent solution such as conductivity, surface tension, pH, and so on.

Surface Tension

Burov et al. [130] studied the effect of foam-forming compositions of flotation reagents
when using ultrasonic treatment on the properties of two-phase foams and found that the
surface tension of foam-forming components was reduced after ultrasonic treatment, which
was related to the cavitation dispersion of amine floccules, which were more effectively
distributed on the surface of the emulsion. Ultrasonic treatment with a power of 420 W
reduced the surface tension by 10%. Huang et al. [119] investigated the effects of ultrasonic
pretreatment on scheelite surface dissolution, as well as the properties and microstructure
of sodium oleate solution. With an increase in ultrasonic duration, the high temperature
and high pressure during the ultrasonic process destroyed the intermolecular hydration
layer, weakened the hydration effect, and caused the surface tension of sodium oleate
solution to decrease rapidly and stabilize at 100 min (ultrasonic duration) (Figure 18). The
same team [131] also studied the effect of ultrasonic treatment on the collector BHA and
found similar results. Kang et al. [123] reported a decrease in the interfacial tension after
ultrasonic conditioning, whereby ultrasonic treatment changed the internal structure of
water and possibly broke some of its hydrogen bonds.
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Conductivity

Huang et al. [119] reported that the conductivity of sodium oleate solution (NaOL)
was improved via the cavitation effect of ultrasonic treatment. The conductivity of NaOL
increased with the ultrasonic duration and power, ultimately reaching the equilibrium with
an ultrasonic duration of 100 min and ultrasonic power of 630 W. The number of oleate
ions and sodium ions in the solution increased due to the destruction of the dissociation
equilibrium of NaOL by the cavitation effect of ultrasonic treatment. The conductivity
of NaOL increased with an increasing concentration, and it increased more slowly above
400 mg·L−1, because dissociation of NaOL molecules was promoted at low concentrations
and hindered at high concentrations. Their research group also studied the effect of
ultrasonic treatment on the solution properties and microstructure of BHA in order to
achieve effective separation of scheelite and calcite [131]. They obtained similar results.
There was an increase in the conductivity of BHA with the increase in ultrasonic time and
ultrasonic power. The reason for this was that ultrasonic cavitation destroys the hydrogen
bond break in R-CO-NHOH, promotes its dissociation, increases the number of free ions
in the solution, and increases the conductivity of the solution. Hassanzadeh et al. [136]
found that liquid conductivity slightly changed at a short ultrasonication time (t < 1.5 min),
and then it dramatically increased from 2.2 µs/m (1.5 min) to 4.9 µs/m (30 min). The
conductivity of the electrolyte increased with an increase in ion concentration in connection
with a change in pH and the creation of highly reactive radicals (·OH and ·H). In addition,
ultrasonic cavitation accelerated the surface oxide dissolution of the mineral. Thus, the
solution conductivity increased. Li et al. [99] reported that the electrical conductivity of
deionized water, calcium silicate solution, and calcium oleate solution increased with an
ultrasonic time extension, but the electrical conductivity increase in calcium oleate solution
was obviously higher than that in deionized water. Meanwhile, the increase in the electrical
conductivity of calcium oleate solution was close to that of the deionized water, indicating
that the ultrasonic process can promote calcium silicate dissolution but has little effect
on the solubility of calcium oleate. Lu et al. [102] found that the conductivity of pulp
reached 60.0 µs/cm after ultrasonic treatment for 12 min. The ion concentration in the
pulp increased due to the strong solubilizing effect of the ultrasonic wave on the surface
components of pyrrhotite.

pH

Kang et al. [123] found that ultrasonic conditioning resulted in an increase in the
pH value of pulp. In the ultrasonic cavitation process, nascent oxygen, ·OH, and ·H free
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radicals have very high activity. OH free radicals have powerful oxidization capabilities,
and Fe2+ is oxidized to Fe3+. The oxidation equation can be seen Equation (8).

Fe2+ + OH = Fe3+ + OH− (8)

The ·OH radicals gain an electron and become OH− ions, increasing the OH− ion
concentration and pH value of the pulp. The effect of ultrasonic treatment on the pH of
pulp was investigated by Chen et al. [137]. The results revealed that the pH value of pulp
increased with an increase in ultrasonic treatment time. Water can be decomposed into
H+ and OH− under ultrasonic irradiation, and H+ preferentially adsorbs on the mineral
surface or promotes the reverse reaction of the generation of H2O2 and H+, as shown in
Equations (9) and (10).

Fe2+ + OH = Fe3+ + OH− (9)

H2O2 + H+ → H2O + OH− (10)

After the ultrasonic treatment of pulp, interaction between oxygen and the pyrite sur-
face is promoted, so that the oxygen content in pulp tends to decrease and the concentration
of OH− ions increases [137]. In addition, the introduction of ultrasonic cavitation leads the
pH value of the pulp to decrease. Hassanzadeh et al. studied the effect of ultrasonication
on the floatability of minerals [136]. The results indicated that the average pH value was
down from 7.8 to 6.4 after ultrasonic treatment for 30 min. Similar results have been re-
ported by Giriûnienë and Garðka, with a decrease in the pH of DI water when using an
ultrasonication device at 34 kHz due to an increase in the hydrogen ions’ concentration in
the water with increasing time, then arriving at the equilibrium value [138]. Li et al. [99]
investigated the influence of ultrasonic treatment on the floatability of calcite in a sodium
silicate/sodium oleate system. They found that the pH value of pulp decreased with the
increase in ultrasonic power and ultrasonic time. The reason was that an ultrasonic wave
will produce H2O2 when acting on water, and the concentration of H+ in the solution will
increase, leading to a decrease in pH. In agreement with the results reported previously,
it was confirmed that the pH of pulp decreased with the increase in ultrasonic treatment
time [102,139].

4.3. Effect of Ultrasonic Treatment on Slurry

The effect of ultrasonic treatment on pulp mainly refers to the use of bubbles in pulp,
including the formation and coalescence of microbubbles. The pulp will be inflated and
stirred continuously when entering the flotation machine, and it produces a large number
of bubbles that suspend the ore particles. The behavior of bubbles in the pulp is the
key to affecting the flotation index. The formation and movement of bubbles in pulp
can be improved by adjusting the ultrasonic frequency and power rate, so as to improve
flotation behavior.

4.3.1. Formation of Microbubbles

Bubble size has an important effect on mineral flotation, and fine bubbles are usually
required [91,140]. The ultrasonic cavitation effect can cause the formation of tiny bubbles
in the pulp (Figure 19) [91,111,141,142]. The formation of the small bubbles during ul-
trasonic treatment may be caused by two factors: (1) stable cavitation bubbles generated
from the nuclei, and (2) conventional large bubbles bursting into small bubbles due to
fragmentation [66].

Cao et al. [91] investigated the effects of ultrasonication power on the flotation of an
oxidized pyrite. The results showed that ultrasonication was conducive to pyrite flotation
due to the formation of fine bubbles in the flotation cell. The mean sizes of bubbles were
2.55 mm, 2.01 mm, and 1.75 mm in water without ultrasonic treatment or treated with
20 W or 100 W of ultrasonic power, respectively. Chen et al. [98] studied the effect of the
ultrasonic standing wave (USW) field with various frequencies on the fine coal flotation.
Three sub-processes, the formation of microbubbles, the dispersion of conventional flotation
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bubbles, and the movement of particles during the attractive mineralization process, were
analyzed by using a high-speed camera and focused beam reflection measurement (FBRM)
(Figure 20). The results showed that the flotation metallurgical response was the largest at
the highest USW frequency (600 kHz). Significantly, the flotation results of the low USW
frequency (50 kHz) were even lower than those of conventional flotation tests. This was
because of the effect of the frequency on carrier bubble formation and secondary acoustic
force in the USW-assisted flotation process.
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4.3.2. Coalescence

Ultrasonic treatment is helpful in bubble coalescence, leading to coal coalescence. In re-
cent years, the aggregation of particles, oils, or bubbles has been extensively studied [143–145].
Coalescence refers to the use of ultrasonic treatment to lead bubbles attached to fine miner-
als to aggregate, which increases flotation recovery. The bubble aggregates are like a tight
“net” collecting the particles (Figure 21) [94]. The flotation recovery of fine coal particles
is always difficult because of the low collision efficiency between bubbles and fine coal
particles [146]. One way to improve the flotation recovery of fine coal is to agglomerate
fine coal before flotation [146].
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Cilek et al. [57] investigated the effects of ultrasonic treatment on froth and pulp
phases in the flotation of barite and chalcopyrite samples, respectively. They found that the
introduction of ultrasonic treatment accelerates bubbles’ coalescence, which may reduce
the recovery of the foam phase in the ultrasonic flotation of barite and chalcopyrite. This
is because the addition of ultrasonic treatment to the foam mainly affects the solid–liquid
interface where cavitation occurs, thus speeding up the expulsion of particles in the water
between the bubbles. This reduces the density and bubble viscosity between the pulp. Both
of these phenomena lead to an increase in the bubble coalescence, leading to a decrease
in the foam phase recovery. They also studied the influence of ultrasonic treatment on
the flotation rate of a complex sulfide ore [147]. From the experimental results, it could
be seen that there was a significant difference between the bubble size distributions of
the flotation tests in the presence of and absence of ultrasonic treatment. A wider bubble
size distribution was produced by adding ultrasonic treatment. Even if many bubbles
coalesced, there were still a significant number of small bubbles. It was found that ultrasonic
flotation was more effective with the shallow froths due to an increase in the bubble
coalescence. Figure 22 illustrates the principle of bubble aggregation in an ultrasonic
field [148]. Mao et al. [148] employed ultrasonic pretreatment (UPT) and simultaneous
treatment (UST) with different ultrasonic powers to float coal. They found that the flotation
of coal was improved when using ultrasonic treatment through the combined effect of
cavitation and acoustic radiation force. The change in bubbles when using ultrasonic
treatment was a reason for the enhancement in recovery. The aggregation and shapes of
large bubbles were affected by ultrasonic treatment through the oscillation behavior and
acoustic radiation force, respectively. Images of the bubble aggregation after 3 s of ultrasonic
treatment at 0 W, 20 W, 110 W, and 200 W are presented in Figure 23. Wang et al. [149]
investigated flotation bubble size distribution rules in the presence of ultrasonic treatment
with various ultrasonic frequencies. The results showed that ultrasonic irradiation at
a certain frequency can change the particle size of flotation bubbles and promote the
agglomeration of bubbles. The average particle size of bubble flocs increased by 80~120 µm
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with 430 kHz of ultrasonic frequency. The second Bjerknes force between bubbles played
an important role in the bubble aggregation. The effect of aeration velocity on bubble size
and bubble aggregation was not significant. The aggregation of fine coal could be achieved
via the manipulation of bubbles [146]. Chen et al. [146] studied the aggregation behavior
of coal particles when adding an ultrasonic standing wave. Flotation tests of a 1 g/L
coal particle (74~125 µm, 5% ash content) suspension were carried out under a 200 kHz
ultrasonic standing wave. Figure 24 shows the coal aggregation recorded by a CCD camera
and a microscope. When the size of the cavitation bubbles was larger than the resonance
radius, the bubble-laden coal particles moved toward the ultrasonic standing wave through
acoustic radiation force, resulting in the rapid aggregation of fine coal particles. Then, the
flotation rate markedly improved. The flotation recovery increased from 57% to 68% at a
2 min flotation time.
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5. Conclusions and Outlook

This paper has presented an overview of the ultrasonic-assisted flotation process
for minerals. The positive effects of ultrasonic-assisted flotation of minerals are usually
attributed to the transient cavitation effect, stable cavitation effect, and acoustic radiation
force effect. The effects of the main ultrasonic parameters (ultrasonic power and ultrasonic
frequency) on mineral flotation have been discussed. Most importantly, the applications
of ultrasonic treatment in mineral flotation have been reviewed. The use of ultrasound
technology is promising for the improvement of flotation performance. However, the
application of ultrasonic treatment in mineral flotation is still in the research stage. So,
future directions for research into ultrasonic treatment are proposed.

(1) The different effects of ultrasonic treatment on flotation are realized by precisely con-
trolling the parameter conditions. Different parameter conditions may have different
or even opposite effects on the flotation system, such as the dispersion or aggregation
of mineral or bubbles. The processing of minerals under different conditions requires
different effects of ultrasonic treatment. For example, in fine flotation, it is hoped that
particles will be more easily adhered to the flotation bubble through agglomeration, so
the conditions required in ultrasonic treatment to lead mineral particles to coalescence
should be controlled well. Furthermore, it is hoped that bubbles’ agglomeration will
be decreased and the collision probability between mineral particles and bubbles will
be increased, so, here, the conditions for the formation of microbubbles by ultrasonic
treatment should be controlled. However, at present, there is still a gap in the research
into the effect of ultrasonic treatment on mineral flotation performance, which we
propose should be a focus of future research.

(2) Until now, the applied research on ultrasonic treatment in mineral flotation has mostly
been carried out on a laboratory scale, which may provide a theoretical basis for the
future industrial applications of ultrasonic treatment. However, when ultrasound
is applied on a commercial scale, this will involve very large scale-up ratios and a
high degree of uncertainty. In order to effectively utilize this technology and start
ultrasonic-based coal beneficiation treatment in practical operations, large-scale pilot
studies are very important, which will help to determine amplification parameters
and develop suitable ultrasonic-based equipment or reactors. In addition, the high
energy loss and safety problems of ultrasonic treatment should be considered and
resolved before industrial applications.

(3) Consideration is required of how industrial ultrasonic equipment typically operates
at high powers, leading to intense corrosion caused by cavitation. This corrosion
cannot be sustained by pipelines and building materials over an extended period,
resulting in escalating costs. Furthermore, the operation of industrial ultrasonic
equipment generates substantial noise and strong sound waves, which are detrimental
to employee well-being and production safety.

(4) Appropriate pretreatment can eliminate the oxide layer on particle surfaces, enhance
agent adsorption onto hydrophobic surfaces, and achieve surface hydrophobic modi-
fication of fine oxidized coal. The selection of pretreatment methods should consider
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factors such as the coal slime oxidation degree, feasibility at scale, and power con-
sumption. Additionally, if ultrasonic or other pretreatment methods are combined
organically, the flotation performance of fine oxidized coal can be further improved.

(5) Most studies have focused on coal grinding in specific regions, limiting the universal-
ity of the process. To enhance its applicability, it is recommended that coal grinding
should be investigated across different regions. By examining the variations in coal
grinding behavior during ultrasonic flotation, the universality of the process can be
further improved.
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