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Abstract: Microwave-assisted organic synthesis (MAOS) has emerged as a transformative technique
in organic chemistry, significantly enhancing the speed, efficiency, and selectivity of chemical reactions.
In our research, we have employed microwave irradiation to expedite the synthesis of quinazolinones,
using water as an eco-friendly solvent and thereby adhering to the principles of green chemistry.
Notably, the purification of the product was achieved without the need for column chromatography,
thus streamlining the process. A key innovation in our approach is using aldehyde bisulfite adducts
(Bertagnini’s salts) as solid surrogates of aldehydes. Bertagnini’s salts offer several advantages over
free aldehydes, including enhanced stability, easier purification, and improved reactivity. Green
metrics and Eco-Scale score calculations confirmed the sustainability of this approach, indicating a
reduction in waste generation and enhanced sustainability outcomes. This methodology facilitates
the synthesis of a diverse array of compounds, offering substantial contributions to the field, with
potential for widespread applications in pharmaceutical research and beyond.
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1. Introduction

The construction of N-heterocyclic scaffolds [1–4] is pivotal in pharmaceutical research
and drug development due to their diverse pharmacological effects and versatile struc-
tures. In this framework, quinazolinone derivatives exhibit various biological effects [5],
including antihypertensive [6], antibacterial [7,8], anticancer [9,10], and anti-inflammatory
properties [11]. Additionally, these scaffolds are valuable tools in biochemical and biologi-
cal studies [12,13], helping to elucidate disease mechanisms and identify potential drug
targets [14]. This diverse range of properties positions them as promising candidates for
therapeutic intervention, as illustrated in Figure 1. Bouchardatine exhibits anti-proliferative
effects on various colorectal cancer cell lines (CRCs) [15]. In contrast, Luotonin has antifun-
gal properties [16], and Fenquizone is used as an antidiuretic to treat hypertension [17].
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Figure 1. Examples of bioactive quinazolinone scaffolds. 
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The synthesis of quinazolinone scaffolds [18] plays a vital role in designing and
refining new drug molecules. Developing efficient methodologies for synthesizing quina-
zolinone derivatives enables the creation of structurally diverse analogs and facilitates
structure–activity relationship (SAR) studies, which are crucial for enhancing drug efficacy
and selectivity.

Numerous synthetic procedures for quinazolinone synthesis rely on metal catalysis [19,20],
stoichiometric oxidants [21,22], or visible light photocatalysis [23,24], highlighting the
extensive exploration and innovative advancements within the field. These methodologies
often involve using costly reagents and hazardous solvents, resulting in cumbersome
purification processes.

A mild and environmentally sustainable approach is necessary to overcome tradi-
tional challenges in quinazolinone synthesis. Utilizing green solvents is crucial for ensuring
environmental responsibility while maintaining an enhanced level of efficiency. As the
demand for sustainability grows in the chemical industry, green chemistry has emerged as
a pivotal framework for chemists. It steers the design of processes and products towards
minimizing or eradicating the use and generation of hazardous substances, aligning with
the broader goal of promoting sustainable human development [25]. Consequently, the
move towards using green solvents in chemical synthesis has become critically important,
reflecting a necessary response to growing environmental concerns [26]. Water has become
a leading choice in pursuing sustainability thanks to its abundant availability and eco-
friendly properties [27,28]. When used as a solvent, water offers significant advantages in
organic chemistry [29]. It enhances levels of reactivity and selectivity, streamlines workup
procedures, facilitates catalyst recycling, and enables unique kinds of reactivity and selec-
tivity under mild conditions [30]. Employing water as a sustainable solvent, combined with
microwave-assisted methodologies for synthesizing quinazolinone scaffolds, epitomizes
the principles of green chemistry. This strategy provides an environmentally mindful
approach to their production.

In the constantly evolving field of organic synthesis, microwave irradiation has
emerged as a catalytic force driving innovation and efficiency [31–35]. Leveraging the
capabilities of electromagnetic waves within the microwave spectrum, chemists have dis-
covered a potent methodology to expedite chemical reactions, thereby broadening the
horizons of synthetic opportunities [36,37]. This technology’s significance lies in its ability
to accelerate reaction times and improve yields, enhance levels of selectivity, and synthe-
size complex molecules with unprecedented ease [38,39]. Adopting microwave-assisted
techniques for synthesizing nitrogen- and oxygen-containing frameworks has become a
cornerstone strategy in organic chemistry [40–45], offering unparalleled advantages in
reaction efficiency [46] and sustainability [47]. Microwave irradiation facilitates the rapid
and uniform heating of reaction mixtures, leading to accelerated reaction rates and higher
yields than conventional heating methods [48]. Within this technological framework, the ap-
plication of the microwave-assisted synthesis of quinazolinone derivatives represents a leap
forward in green chemistry and pharmaceutical development. This technique significantly
diminishes the consumption of energy and resources, providing a more efficient pathway
to synthesize these compounds with a reduced incidence of undesirable side reactions. By
enabling rapid and controlled heating, microwave irradiation ensures that reaction condi-
tions are optimal, thus leading to higher yields, greater levels of purity, and a reduction in
the synthesis time compared to traditional methods. The streamlined production process
facilitated by microwave-assisted synthesis enhances the efficiency of chemical reactions
and broadens the scope of accessible chemical libraries. This expansion is particularly
valuable in drug discovery efforts, in which the diversity and quality of chemical libraries
can dramatically influence the identification and optimization of lead compounds.

Substitutions at the 2-position of quinazoline-4 (3H)-ones are crucial as they signifi-
cantly influence the pharmacological effectiveness of the resulting compounds [49]. This
substituent originates from the aldehyde group involved in ring closure. However, the
use of aldehydes often leads to the formation of side products, especially under elevated
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temperatures and in aqueous solvents. Bertagnini’s salts [50,51], historically employed
for purifying aldehydes [52], can now serve as substitutes for this moiety to circumvent
potential side reactions, such as redox or (self-)condensation processes. In addition to their
technical benefits [53], adopting aldehyde bisulfite adducts supports safer laboratory prac-
tices by eliminating the need to handle volatile and potentially hazardous free aldehydes.
This approach reduces the risk of exposure to harmful volatile organic compounds (VOCs)
and minimizes the potential for accidents associated with these reactive compounds. By
incorporating aldehyde bisulfite adducts into synthetic procedures, researchers can create a
safer working environment, enhancing the overall well-being and safety of laboratory per-
sonnel. This safer alternative highlights the importance of health and safety considerations
when selecting reagents and procedures in chemical research and development.

Additionally, Bertagnini’s salts are distinguished by their substantial dipole moment,
enabling highly efficient interactions with microwave radiation. This feature is particularly
advantageous in MAOS, in which their ability to absorb microwave energy can lead to more
rapid and energy-efficient reactions. The efficiency of Bertagnini’s salts in these processes
enhances the reaction rates and contributes to a more streamlined and environmentally
friendly purification process. By reducing the need for traditional, often energy-intensive
purification steps, the use of Bertagnini’s salts aligns with the principles of green chemistry,
emphasizing waste reduction and energy-efficient methodologies [54,55].

Our group recently investigated aza-heterocycle synthesis under mechanochemical
conditions, employing Bertagnini’s salts as the sole reagent (Figure 2a) [56]. Our ongoing
research on bisulfite adducts successfully demonstrated the microwave-assisted synthesis
of quinazolinone scaffolds starting from anthranilamide and Bertagnini’s salts, with water
as a sustainable solvent. This method simplifies the purification process and leads to an
efficient yield of the desired product, as depicted in Figure 2b. This approach facilitates a
cleaner synthesis process and underscores our commitment to developing sustainable and
eco-friendly chemical methodologies.
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2. Results and Discussion
2.1. Optimization

To optimize the reaction conditions, we selected anthranilamide (1a) and sodium
hydroxy(phenyl)methanesulfonate (2a) as the standard substrates, as shown in Table 1. The
preliminary experiment, which was carried out in water for 8 h, resulted in the synthesis
of the products 3aa and 3aa′, demonstrating the potential of these conditions for effective
compound formation. An NMR analysis revealed that the products (3aa:3aa′) were synthe-
sized in a ratio of 15:85. Elevating the reaction temperature led to a marked enhancement in
the conversion of 3aa, as evidenced in entries 2, 3, and 4 (Table 1). Notably, at a temperature
of 100 ◦C for 10 h (entry 5, Table 1), the conversion of 3aa was fully achieved, resulting in
an isolated yield of 91%. In contrast, the reaction at ambient temperature (25 ◦C) did not
yield the anticipated product. Without a solvent, the products 3aa and 3aa′ were produced
in a ratio of 80:12 (entry 7, Table 1).

Table 1. Optimization of the reaction conditions a.
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were determined by NMR analysis. c Isolated yield after filtration.

Impressively, employing DMSO as the solvent was as effective as using water, resulting
in the exclusive formation of the targeted product 3aa with an isolated yield of 86% (entry 8,
Table 1). However, employing toluene as a solvent did not favor the formation of the desired
product (3aa), highlighting the influence of solvent choice and reaction conditions on the
outcome of the synthesis (entry 9, Table 1). Finally, the optimized reaction conditions were
achieved by conducting the reaction with 0.5 mmol of anthranilamide (1a) and 0.5 mmol of
sodium hydroxy(phenyl)methanesulfonate (2a) in 2 mL of water at 100 ◦C in a microwave
reactor for 10 h.

When conducting the reaction in water, we noted that the final product precipitated
from the aqueous medium upon completion. This phenomenon enables the straightfor-
ward recovery of the quinazolinone product 3aa through simple filtration, obviating the
need for chromatographic purification or acid–base extraction procedures. Consequently,
this approach significantly diminishes the generation of additional waste, adhering to
the principles of green chemistry by promoting a more sustainable and environmentally
friendly synthetic process. This method not only streamlines the synthesis of quinazoli-
nones but also highlights the potential of water as a solvent to enhance the efficiency and
eco-friendliness of chemical reactions. Furthermore, the analysis of its green metrics and
EcoScale score indicates that our process yields lower levels of waste and demonstrates a
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higher level of sustainability than those of reported methodologies (see the Supplementary
Materials File for more details).

2.2. Synthesis of Quinazolinones

Having refined and simplified our reaction protocol, we broadened its application to in-
clude the synthesis of various quinazolinone derivatives. This involved using unsubstituted
anthranilamide 1a alongside various substituted aldehyde bisulfite adducts, as described
in Scheme 1. This expansion showcases our approach’s versatility and effectiveness and
opens new avenues for synthesizing a broad spectrum of quinazolinone derivatives.
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Introducing a methoxy group to the bisulfite adducts enabled the efficient synthesis
of 3ab and 3ac, achieving 78% and 69% yields, respectively. Bisulfite adducts featuring
methyl groups also showed good levels of compatibility, yielding 3ad and 3ae with 65%
and 74% yields, respectively. Halogen-substituted bisulfite adducts showed an excellent
level of reactivity, leading to the production of 3af through 3ai with satisfactory yields.
Remarkably, using bisulfite adducts with a biphenyl group facilitated the synthesis of 3aj,
resulting in an 81% yield. Incorporating thiophene into bisulfite adducts also resulted in
the efficient production of 3ak with a 67% yield. Furthermore, using bisulfite adducts of
aliphatic aldehyde resulted in high yields of 3al and 3am.

To evaluate the feasibility of the methodology, we expanded it to fluoro- and chloro-
substituted anthranilamides, reacting them in the presence of various substituted aldehyde
bisulfite adducts, as shown in Scheme 2. To begin with, we tested the substitution effect
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on the aldehyde bisulfite adducts using 2-amino-5-fluorobenzamide (1b) under standard
reaction conditions. We found that sodium hydroxy(phenyl)methanesulfonate (2a) reacted
with 2-amino-5-fluorobenzamide (1b) and produced the expected product (3ba) with a
yield of 89%. Moreover, when methoxy and methyl groups were incorporated into the
aldehyde bisulfite adducts, they effectively facilitated the conversion to the desired product
(3bb–3be) with a satisfactory yield. The chloro-substituted aldehyde bisulfite adduct
was efficiently transformed into the desired product 3bg, with a yield of 67%. Again,
sodium [1,1′-biphenyl]-4-yl(hydroxy)methanesulfonate (2j) resulted in the corresponding
product (3bj) with a 58% yield. Further, we utilized chloro-substituted anthranilamides
as coupling partners alongside a range of substituted aldehyde bisulfite adducts, yielding
products (3ca–3ci) with satisfactory yields. Under standard reaction conditions, the reaction
between 2-amino-5-chlorobenzamide (1c) and sodium hydroxy(phenyl)methanesulfonate
(2a) yielded the desired product (3ca) with a 69% yield. Further, the methoxy and methyl
groups containing bisulfite adducts were smoothly converted to the corresponding products
(3cb–3ce) with a good yield. Also, halogen- (such as fluoro- and chloro-) substituted bisulfite
adducts afforded the products (3cf–3ci) under the optimized reaction conditions. In this
context, the synthesized compounds 3be, 3bg, 3bj, and 3ce have not been previously
reported in the literature.
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Furthermore, we investigated the reactivity of bisulfite adducts derived from cyclic
ketones under the optimized conditions outlined in Scheme 3. Combining these bisulfite
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adducts with anthranilamide results in the formation of dihydroquinazolinones, a preferred
structural motif in drug development [57]. Anthranilamide effectively underwent reactions
with bisulfite adducts of five-, six-, and seven-membered ketones, yielding cyclized dihydro
products 3an–3ap with satisfactory yields. Furthermore, the 2-amino-5-chlorobenzamide
smoothly reacted with bisulfite adducts of a six-membered ketone, resulting in the cyclized
product 3co with an 86% yield.
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Scheme 3. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones using bisulfite adducts of ketones. Unless
otherwise stated, all the reactions were performed in water as a solvent. a The reaction was performed
in DMSO.

Drawing upon the findings presented in the literature [58], within a control experiment
executed under an argon atmosphere [59], it becomes clear that oxygen plays a crucial
role in the reaction mechanism that leads to the formation of the quinazolinone product.
The 48% yield of the dihydroproduct (A) under argon conditions confirms its role as an
intermediate within the reaction sequence, as illustrated in Scheme 4a.
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Scheme 4 illustrates the proposed reaction mechanism, in which Bertagnini’s salts
initially react with anthranilamide to form an imine intermediate. This is followed by in-
tramolecular cyclization and aerobic oxidation, culminating in the formation of the 2-phenyl
quinazolin(3H)-one product (3aa). The transformation of 2-phenyl-2,3-dihydroquinazolin-
4(1H)-one into the 2-phenylquinazolin-4(3H)-one product (3aa) mirrors the auto-oxidation
processes previously observed in benzaldehyde and benzyl alcohol [60], highlighting a
critical aspect of the reaction’s oxygen-dependent pathway.

3. Materials and Methods
3.1. Materials

Commercially available reagents were purchased from Acros, Aldrich, Strem Chemi-
cals, Alfa-Aesar, and TCI Europe and were used as received. All reactions were monitored
by thin-layer chromatography (TLC) performed on glass-backed silica gel plates (60 F254,
0.2 mm) (Merck), and compounds were visualized under UV light (254 nm). All reactions
were performed using microwave instrument (Model: DISCOVER SP; SERIAL NO: DC8609;
MODEL NO: 909155). The eluents were technical grade. 1H and 13C NMR spectra were
recorded on a Varian 600 MHz and Bruker Avance III HD 600 MHz NMR spectrometer
and were calibrated using trimethylsilane (TMS). Proton chemical shifts are expressed in
parts per million (ppm, δ scale) and are referred to as the residual hydrogen in the solvent
(CHCl3, 7.260 ppm or DMSO, 2.50 ppm). Data are represented as follows: chemical shift,
multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and/or multiple
resonances, bs = broad singlet, and combination of thereof), coupling constant (J) in Hertz
(Hz), and integration. Carbon chemical shifts are expressed in parts per million (ppm, δ
scale) and refer to the carbon resonances of the NMR solvent (CDCl3, δ 77.16 ppm or δ

DMSO-d6, δ 39.52 ppm). Deuterated NMR solvents were obtained from Aldrich. Infrared
(IR) spectra were recorded using the Jasco FTIR-4X (MODEL: PKS-D1) instrument, and
data are reported in wavenumber (cm−1). Positive ESI-MS spectra were recorded on a high-
resolution LTQ Orbitrap Elite™ mass spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA). The solutions were infused into the ESI source at a 5.00 µL/min flow rate.
Spectra were recorded with a resolution of 120,000 (FWHM). Instrument conditions were
as follows: spray voltage of 3500 V, capillary temperature of 275 ◦C, 12 (arbitrary units)
sheath gas, 3 (arbitrary units) auxiliary gas, 0 (arbitrary units) sweep gas, and probe heater
temperature of 50 ◦C. Yields refer to pure isolated materials after filtration only (no column
chromatography).

3.2. Procedure A. General Procedure for the Synthesis of 2-Phenylquinazolin-4(3H)-One

Anthranilamide (0.5 mmol) and sodium hydroxy(phenyl)methanesulfonate (2a)
(0.5 mmol) were placed in a 10 mL microwave vial equipped with a stir bar. After adding
2 mL of water, the vial was correctly capped, and then the reaction mixture underwent
microwave irradiation at 100 ◦C and was stirred for 10 h. The resulting solid crude product
was filtered and washed with water to yield 2-phenyl quinazoline-4 (3H)-one (3aa). In
certain instances, the crude reaction mixture was quenched by pouring it into ice water to
enhance product yield.

3.3. Characterization Data of the Synthesized Compounds

2-Phenylquinazolin-4(3H)-one (3aa) [21]: The title compound was synthesized according to
general procedure A; White solid; Yield: 91% (101 mg); 1H NMR (600 MHz, DMSO-d6) δ
12.53 (s, 1H), 8.20–8.13 (m, 3H), 7.82 (t, J = 7.2 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), and 7.60–7.48
(m, 4H); 13C NMR (151 MHz, DMSO-d6) δ 162.3, 152.3, 148.8, 134.6, 132.7, 131.4, 128.6,
127.8, 127.5, 126.6, 125.9, and 121.0.

2-(4-Methoxyphenyl)quinazolin-4(3H)-one (3ab) [61]: The title compound was synthesized
according to general procedure A; White solid; Yield: 78% (98.5 mg); 1H NMR (600 MHz,
DMSO-d6) δ 12.39 (s, 1H), 8.19 (d, J = 5.4 Hz, 2H), 8.13 (s, 1H), 7.80 (s, 1H), 7.70 (s, 1H), 7.47
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(s, 1H), 7.08 (s, 2H), and 3.84 (s, 3H); 13C NMR (151 MHz, DMSO-d6) δ 162.3, 161.9, 151.8,
148.9, 134.5, 129.4, 127.3, 126.1, 125.8, 124.8, 120.7, 113.9, and 55.4.

2-(2-Methoxyphenyl)quinazolin-4(3H)-one (3ac) [62]: The title compound was synthesized
according to general procedure A; White solid; Yield: 69% (87 mg); 1H NMR (600 MHz,
DMSO-d6) δ 12.08 (s, 1H), 8.15 (dd, J = 7.8, 1.2 Hz, 1H), 7.85–7.79 (m, 1H), 7.71 (dd, J = 12.0,
4.8 Hz, 2H), 7.56–7.51 (m, 2H), 7.19 (d, J = 8.4 Hz, 1H), 7.10 (t, J = 7.2 Hz, 1H), and 3.86 (s,
3H); 13C NMR (151 MHz, DMSO-d6) δ 161.3, 157.2, 152.4, 148.9, 134.4, 132.2, 130.5, 127.3,
126.6, 125.8, 122.6, 120.9, 120.5, 111.9, and 55.8.

2-(o-Tolyl)quinazolin-4(3H)-one (3ad) [63]: The title compound was synthesized according to
general procedure A; White solid; Yield: 65% (77 mg); 1H NMR (600 MHz, DMSO-d6) δ
12.43 (s, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.83 (t, J = 7.2 Hz, 1H), 7.69 (d, J = 7.8 Hz, 1H), 7.54 (d,
J = 7.2 Hz, 1H), 7.53–7.49 (m, 1H), 7.43 (t, J = 7.2 Hz, 1H), 7.36–7.30 (m, 2H), and 2.39 (s, 3H);
13C NMR (151 MHz, DMSO-d6) δ 161.8, 154.4, 148.7, 136.1, 134.4, 134.2, 130.5, 129.9, 129.1,
127.4, 126.6, 125.8, 125.7, 120.9, and 19.5.

2-(m-Tolyl)quinazolin-4(3H)-one (3ae) [23]: The title compound was synthesized according to
general procedure A; White solid; Yield: 74% (88 mg); 1H NMR (600 MHz, DMSO-d6) δ
12.45 (s, 1H), 8.15 (d, J = 7.2 Hz, 1H), 8.02 (s, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.85–7.81 (m, 1H),
7.74 (d, J = 7.8 Hz, 1H), 7.54–7.49 (m, 1H), 7.45–7.37 (m, 2H), and 2.40 (s, 3H); 13C NMR
(151 MHz, DMSO-d6) δ 162.2, 152.4, 148.8, 137.9, 134.6, 132.7, 132.0, 128.5, 128.3, 127.5, 126.5,
125.9, 124.9, 120.9, and 20.9.

2-(4-Fluorophenyl)quinazolin-4(3H)-one (3af) [64]: The title compound was synthesized ac-
cording to general procedure A; White solid; Yield: 83% (99.5 mg); 1H NMR (600 MHz,
DMSO-d6) δ 12.55 (s, 1H), 8.27–8.22 (m, 2H), 8.15 (d, J = 7.8 Hz, 1H), 7.82 (t, J = 7.2 Hz, 1H),
7.72 (d, J = 8.4 Hz, 1H), 7.51 (t, J = 7.2 Hz, 1H), and 7.38 (t, J = 8.4 Hz, 2H); 13C NMR (151 MHz,
DMSO-d6) δ 164.1 (d, 1JC-F = 249.4 Hz), 162.2, 151.4, 148.7, 134.6, 130.4 (d, 3JC-F = 9.0 Hz),
129.2 (d, 4JC-F = 2.5 Hz), 127.5, 126.6, 125.9, 120.9, and 115.6 (d, 2JC-F = 21.9 Hz).

2-(2-Chlorophenyl)quinazolin-4(3H)-one (3ag) [65]: The title compound was synthesized
according to general procedure A; White solid; Yield: 63% (81 mg); 1H NMR (600 MHz,
DMSO-d6) δ 12.65 (s, 1H), 8.18 (dd, J = 7.8, 1.2 Hz, 1H), 7.88–7.82 (m, 1H), 7.71 (d, J = 7.8 Hz,
1H), 7.67 (dd, J = 7.8, 1.2 Hz, 1H), 7.63–7.60 (m, 1H), 7.58–7.55 (m, 2H), and 7.50 (td, J = 7.8,
1.2 Hz, 1H); 13C NMR (151 MHz, DMSO-d6) δ 161.5, 152.3, 148.5, 134.6, 133.8, 131.6, 131.5,
130.9, 129.6, 127.4, 127.2, 127.1, 125.9, and 121.2.

2-(4-Bromophenyl)quinazolin-4(3H)-one (3ai) [21]: The reaction was performed in DMSO
solvent and reaction mixture was poured into water to get the solid precipitate. Further
crude product was washed with excess water to obtain the pure product. White solid; Yield:
86% (129 mg); 1H NMR (600 MHz, DMSO-d6) δ 12.60 (s, 1H), 8.15 (dd, J = 7.8, 1.2 Hz, 1H),
8.13 (s, 1H), 8.11 (s, 1H), 7.86–7.81 (m, 1H), 7.76 (d, J = 1.8 Hz, 1H), 7.75 (d, J = 2.4 Hz, 1H),
7.73 (s, 1H), and 7.55–7.51 (m, 1H); 13C NMR (151 MHz, DMSO-d6) δ 162.2, 151.5, 148.5,
134.7, 131.9, 131.6, 129.8, 127.4, 126.8, 125.9, 125.2, and 120.9.

2-([1,1′-Biphenyl]-4-yl)quinazolin-4(3H)-one (3aj) [23]: The title compound was synthesized
according to general procedure A; White solid; Yield: 81% (120.5 mg); 1H NMR (600 MHz,
DMSO-d6) δ 12.58 (s, 1H), 8.30 (d, J = 7.8 Hz, 2H), 8.17 (d, J = 7.8 Hz, 1H), 7.84 (t, J = 9.0 Hz,
3H), 7.76 (d, J = 3.6 Hz, 3H), 7.56–7.47 (m, 3H), and 7.42 (t, J = 7.2 Hz, 1H); 13C NMR
(151 MHz, DMSO-d6) δ 162.3, 151.9, 148.7, 142.9, 138.9, 134.6, 131.5, 129.1, 128.4, 128.2, 127.4,
126.8, 126.7, 126.6, 125.9, and 120.9.

2-(Thiophen-2-yl)quinazolin-4(3H)-one (3ak) [66]: The title compound was synthesized ac-
cording to general procedure A; White solid; Yield: 67% (76 mg); 1H NMR (600 MHz,
DMSO-d6) δ 12.48 (s, 1H), 8.12 (d, J = 7.8 Hz, 1H), 7.99 (s, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.68
(d, J = 8.1 Hz, 1H), 7.63 (d, J = 2.7 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), and 6.74 (s, 1H); 13C
NMR (151 MHz, DMSO-d6) δ 161.6, 148.7, 146.6, 146.1, 144.0, 134.6, 127.2, 126.4, 125.9, 121.2,
114.5, and 112.5.
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2-Hexylquinazolin-4(3H)-one (3al) [67]: The title compound was synthesized according to
general procedure A; White solid; Yield: 73% (84 mg); 1H NMR (600 MHz, DMSO-d6)
δ 12.14 (s, 1H), 8.07 (dd, J = 7.8, 1.2 Hz, 1H), 7.77–7.72 (m, 1H), 7.58 (d, J = 7.8 Hz, 1H),
7.46–7.41 (m, 1H), 2.60–2.55 (m, 2H), 1.73–1.66 (m, 2H), 1.31–1.26 (m, 2H), 1.27–1.19 (m, 4H),
and 0.86–0.79 (m, 3H); 13C NMR (151 MHz, DMSO-d6) δ 161.9, 157.6, 149.0, 134.3, 126.8,
125.9, 125.7, 120.8, 34.6, 30.9, 28.2, 26.8, 21.9, and 13.9.

2-Decylquinazolin-4(3H)-one (3am) [68]: The title compound was synthesized according to
general procedure A; White solid; Yield: 68% (97 mg); 1H NMR (600 MHz, DMSO-d6)
δ 12.13 (s, 1H), 8.07 (dd, J = 7.8, 1.2 Hz, 1H), 7.78–7.73 (m, 1H), 7.57 (d, J = 7.8 Hz, 1H),
7.46–7.41 (m, 1H), 2.61–2.54 (m, 2H), 1.73–1.66 (m, 2H), 1.33–1.25 (m, 5H), 1.25–1.14 (m, 9H),
and 0.84–0.81 (m, 3H); 13C NMR (151 MHz, DMSO-d6) δ 161.9, 157.6, 148.9, 134.3, 126.8,
125.9, 125.7, 120.8, 34.5, 31.3, 28.9, 28.9, 28.7, 28.5, 26.8, 22.1, and 13.9.

6-Fluoro-2-phenylquinazolin-4(3H)-one (3ba) [69]: The title compound was synthesized ac-
cording to general procedure A; White solid; Yield: 89% (107 mg); 89%; 1H NMR (600 MHz,
DMSO-d6) δ 12.65 (s, 1H), 8.17 (s, 1H), 8.16–8.15 (m, 1H), 7.84–7.82 (m, 1H), 7.81 (d, J = 5.6 Hz,
1H), 7.72 (td, J = 8.4, 3.0 Hz, 1H), 7.59 (d, J = 7.2 Hz, 1H), and 7.56–7.53 (m, 2H); 13C NMR
(151 MHz, DMSO-d6) δ 161.6, 159.9 (d, 1JC-F = 245.5 Hz), 151.8, 145.6, 132.6, 131.4, 130.3 (d,
3JC-F = 8.3 Hz), 128.6, 127.7, 123.1 (d, 2JC-F = 24.1 Hz), 122.2 (d, 3JC-F = 8.6 Hz), and 110.5 (d,
2JC-F = 23.3 Hz).

6-Fluoro-2-(4-methoxyphenyl)quinazolin-4(3H)-one (3bb) [19]: The title compound was syn-
thesized according to general procedure A; White solid; Yield: 82% (111 mg); 1H NMR
(600 MHz, DMSO-d6) δ 12.51 (s, 1H), 8.17 (s, 2H), 7.83–7.66 (m, 3H), 7.09 (s, 2H), and 3.85 (s,
3H); 13C NMR (151 MHz, DMSO-d6) δ 161.9, 159.7 (d, 1JC-F = 245.7 Hz), 151.5, 145.8, 130.0,
129.4, 124.6, 123.1, 122.9, 121.8 (d, 3JC-F = 10.6 Hz), 114.0, 110.4 (d, 2JC-F = 23.4 Hz), and 55.5.

6-Fluoro-2-(2-methoxyphenyl)quinazolin-4(3H)-one (3bc) [19]: The title compound was syn-
thesized according to general procedure A; White solid; Yield: 78% (106 mg); 1H NMR
(600 MHz, DMSO-d6) δ 12.22 (s, 1H), 7.82 (dd, J = 8.4, 3.0 Hz, 1H), 7.79–7.76 (m, 1H),
7.73–7.70 (m, 1H), 7.69–7.67 (m, 1H), 7.56–7.52 (m, 1H), 7.19 (d, J = 8.4 Hz, 1H), 7.09
(t, J = 7.2 Hz, 1H), and 3.86 (s, 3H); 13C NMR (151 MHz, DMSO-d6) δ 160.7, 159.9 (d,
1JC-F = 245.3 Hz), 157.1, 151.9, 145.9, 132.3, 130.4, 130.2 (d, 3JC-F = 8.3 Hz), 122.9 (d,
2JC-F = 24.0 Hz), 122.5, 122.2 (d, 3JC-F = 8.4 Hz), 120.4, 111.9, 110.4 (d, 2JC-F = 23.3 Hz),
and 55.8.

6-Fluoro-2-(m-tolyl)quinazolin-4(3H)-one (3be) The title compound was synthesized accord-
ing to general procedure A; White solid; Yield: 87% (110 mg); 1H NMR (600 MHz, DMSO-d6)
δ 12.58 (s, 1H), 8.00 (s, 1H), 7.95 (d, J = 6.6 Hz, 1H), 7.81 (d, J = 6.0 Hz, 2H), 7.72 (d, J = 6.0 Hz,
1H), 7.46–7.37 (m, 2H), and 2.40 (s, 3H); 13C NMR (151 MHz, DMSO-d6) δ 161.7, 159.9
(d, 1JC-F = 244.8 Hz), 151.9, 145.6, 137.9, 132.5, 132.0, 130.3, 130.2 (d, 4JC-F = 4.9 Hz), 128.4
(d, 3JC-F = 7.9 Hz), 124.9, 123.1 (d, 2JC-F = 24.2 Hz), 122.2 (d, 3JC-F = 8.7 Hz), and 110.5
(d, 2JC-F = 23.2 Hz); FTIR ν̃max = 3116, 3075, 1675, 1571, 1484, 1294, 879 cm−1; HRMS:
calculated for C15H12FN2O: 255.0928 [M+H]+; found: 255.0939.

2-(2-Chlorophenyl)-6-fluoroquinazolin-4(3H)-one (3bg): The title compound was synthesized
according to general procedure A; White solid; Yield: 67% (92 mg); 1H NMR (600 MHz,
DMSO-d6) δ 12.76 (s, 1H), 7.85 (dd, J = 8.4, 3.0 Hz, 1H), 7.80 (dd, J = 8.4, 4.8 Hz, 1H), 7.74
(td, J = 8.4, 3.0 Hz, 1H), 7.67 (dd, J = 7.8, 1.8 Hz, 1H), 7.63–7.60 (m, 1H), 7.57 (td, J = 7.8,
1.8 Hz, 1H), and 7.50 (td, J = 7.8, 1.2 Hz, 1H); 13C NMR (151 MHz, DMSO-d6) δ 160.9, 160.3
(d, 1JC-F = 246.0 Hz), 151.8, 145.4, 133.6, 131.7, 131.5, 130.9, 130.4 (d, 3JC-F = 10.0 Hz), 129.6,
127.3, 123.1 (d, 2JC-F = 24.1 Hz), 122.5 (d, 3JC-F = 8.4 Hz), and 110.6 (d, 2JC-F = 23.3 Hz); FTIR
ν̃max = 3045, 2977, 1679, 1604, 1481, 927, 763 cm−1; HRMS: calculated for C14H9ClFN2O:
275.0387 [M+H]+; found: 275.0396.

2-([1,1′-Biphenyl]-4-yl)-6-fluoroquinazolin-4(3H)-one (3bj): The title compound was synthe-
sized according to general procedure A; White solid; Yield: 58% (92 mg); 1H NMR (600 MHz,
DMSO-d6) δ 12.70 (s, 1H), 8.29 (s, 2H), 7.86 (s, 4H), 7.78 (s, 3H), and 7.55–7.49 (m, 3H); 13C
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NMR (151 MHz, DMSO-d6) δ 161.7, 159.9 (d, 1JC-F = 246.1 Hz), 157.4, 154.1, 151.5, 145.7,
142.9, 138.9, 130.3, 129.1, 128.4, 128.2, 126.8 (d, 3JC-F = 13.3 Hz), 123.1 (d, 2JC-F = 23.5 Hz),
122.2, and 110.5 (d, 2JC-F = 22.4 Hz); FTIR ν̃max = 3029, 2952, 1660, 1596, 1481, 1301,
836 cm−1; HRMS: calculated for C20H14FN2O: 317.1090 [M+H]+; found: 317.1103.

6-Chloro-2-phenylquinazolin-4(3H)-one (3ca) [21]: The title compound was synthesized ac-
cording to general procedure A; White solid; Yield: 69% (89 mg); 1H NMR (600 MHz,
DMSO-d6) δ 12.71 (s, 1H), 8.18 (s, 2H), 8.09 (s, 1H), 7.86 (s, 1H), 7.77 (s, 1H), 7.60 (s, 1H),
and 7.56 (s, 2H); 13C NMR (151 MHz, DMSO-d6) δ 161.3, 152.9, 147.5, 134.7, 132.4, 131.6,
130.8, 129.7, 128.6, 127.8, 124.9, and 122.2.

6-Chloro-2-(4-methoxyphenyl)quinazolin-4(3H)-one (3cb) [70]: The title compound was syn-
thesized according to general procedure A; White solid; Yield: 58% (83 mg); 1H NMR
(600 MHz, DMSO-d6) δ 12.56 (s, 1H), 8.19 (s, 1H), 8.17 (s, 1H), 8.06 (d, J = 2.4 Hz, 1H), 7.83
(dd, J = 8.4, 2.4 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.09 (d, J = 8.8 Hz, 2H), and 3.85 (s, 3H);
13C NMR (151 MHz, DMSO-d6) δ 162.0, 161.3, 152.4, 147.7, 134.6, 130.2, 129.6, 129.5, 124.8,
124.5, 121.9, 114.0, and 55.5.

6-Chloro-2-(2-methoxyphenyl)quinazolin-4(3H)-one (3cc) [71]: The title compound was syn-
thesized according to general procedure A; White solid; Yield: 59% (85 mg); 1H NMR
(600 MHz, DMSO-d6) δ 12.27 (s, 1H), 8.08 (d, J = 2.4 Hz, 1H), 7.85 (dd, J = 8.4, 2.4 Hz, 1H),
7.73 (d, J = 8.4 Hz, 1H), 7.70 (dd, J = 7.8, 1.7 Hz, 1H), 7.56–7.51 (m, 1H), 7.20 (d, J = 8.4 Hz,
1H), 7.09 (t, J = 7.8 Hz, 1H), and 3.86 (s, 3H); 13C NMR (151 MHz, DMSO-d6) δ 160.3, 157.1,
152.8, 147.8, 134.5, 132.4, 130.8, 130.5, 129.6, 124.8, 122.4, 122.2, 120.4, 111.9, and 55.8.

6-Chloro-2-(o-tolyl)quinazolin-4(3H)-one (3cd) [72]: The title compound was synthesized
according to general procedure A; White solid; Yield: 53% (72 mg); 1H NMR (600 MHz,
DMSO-d6) δ 12.61 (s, 1H), 8.10 (d, J = 2.4 Hz, 1H), 7.86 (dd, J = 8.4, 2.4 Hz, 1H), 7.71 (d,
J = 8.4 Hz, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.32
(d, J = 7.2 Hz, 1H), and 2.38 (s, 3H); 13C NMR (151 MHz, DMSO-d6) δ 160.8, 154.9, 147.4,
136.2, 134.5, 133.9, 130.8, 130.6, 130.0, 129.6, 129.1, 125.7, 124.8, 122.2, and 19.5.

6-Chloro-2-(m-tolyl)quinazolin-4(3H)-one (3ce): The title compound was synthesized accord-
ing to general procedure A; White solid; Yield: 56% (76 mg); 1H NMR (600 MHz, DMSO-d6)
δ 12.63 (s, 1H), 8.08 (d, J = 2.4 Hz, 1H), 8.01 (s, 1H), 7.96 (d, J = 7.2 Hz, 1H), 7.85 (dd, J = 8.4,
2.4 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.45–7.40 (m, 2H), and 2.41 (s, 3H); 13C NMR (151 MHz,
DMSO-d6) δ 161.3, 152.9, 137.9, 134.8, 134.7, 132.9, 132.4, 132.2, 130.7, 129.7, 128.5, 128.4,
124.9, 124.9, and 20.9; FTIR ν̃max = 3023, 2925, 1671, 1579, 1467, 1309, 842 cm−1; HRMS:
calculated for C15H12ClN2O: 271.0638 [M+H]+; found: 271.0649.

6-Chloro-2-(4-fluorophenyl)quinazolin-4(3H)-one (3cf) [73]: The title compound was synthe-
sized according to general procedure A; White solid; Yield: 65% (89 mg); 1H NMR (600 MHz,
DMSO-d6) δ 12.73 (s, 1H), 8.26–8.21 (m, 2H), 8.08 (d, J = 2.4 Hz, 1H), 7.85 (dd, J = 8.4, 2.4 Hz,
1H), 7.75 (d, J = 8.4 Hz, 1H), and 7.39 (t, J = 8.4 Hz, 2H); 13C NMR (151 MHz, DMSO-d6) δ
164.1 (d, 1JC-F = 249.9 Hz), 161.3, 151.9, 147.4, 134.7, 130.8, 130.5 (d, 3JC-F = 9.0 Hz), 129.7,
128.9 (d, 4JC-F = 2.8 Hz), 124.9, 122.1, and 115.7 (d, 2JC-F = 22.0 Hz).

6-Chloro-2-(2-chlorophenyl)quinazolin-4(3H)-one (3cg) [73]: The title compound was syn-
thesized according to general procedure A; White solid; Yield: 61% (89 mg); 1H NMR
(600 MHz, DMSO-d6) δ 12.82 (s, 1H), 8.12 (d, J = 2.4 Hz, 1H), 7.89 (dd, J = 8.4, 2.4 Hz, 1H),
7.75 (d, J = 8.4 Hz, 1H), 7.67 (dd, J = 7.2, 1.2 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.58 (td, J = 7.2,
1.2 Hz, 1H), and 7.50 (t, J = 7.2 Hz, 1H); 13C NMR (151 MHz, DMSO-d6) δ 160.5, 152.7, 147.3,
134.7, 133.5, 131.8, 131.4, 131.4, 130.9, 129.7, 129.6, 127.2, 124.9, and 122.5.

6-Chloro-2-(4-chlorophenyl)quinazolin-4(3H)-one (3ch) [73]: The title compound was syn-
thesized according to general procedure A; White solid; Yield: 64% (93 mg); 1H NMR
(600 MHz, DMSO-d6) δ 12.67 (s, 1H), 8.20 (d, J = 7.8 Hz, 2H), 8.09 (s, 1H), 7.85 (d, J = 8.4 Hz,
1H), 7.76 (d, J = 8.4 Hz, 1H), and 7.62 (d, J = 7.8 Hz, 2H); 13C NMR (151 MHz, DMSO-d6) δ
161.3, 152.3, 141.4, 139.2, 136.3, 134.4, 129.8, 129.5, 128.5, 127.6, 124.7, and 122.2.
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2-(4-Bromophenyl)-6-chloroquinazolin-4(3H)-one (3ci) [74]: The title compound was synthe-
sized according to general procedure A; White solid; Yield: 76% (127 mg); 1H NMR
(600 MHz, DMSO-d6) δ 12.66 (s, 1H), 8.14 (s, 1H), 8.12 (s, 1H), 8.08 (d, J = 2.5 Hz, 1H), 7.84
(dd, J = 8.7, 2.5 Hz, 1H), and 7.76 (d, J = 8.4 Hz, 3H); 13C NMR (151 MHz, DMSO-d6) δ
161.4, 152.2, 134.4, 131.4, 131.4, 130.6, 129.7, 129.4, 128.8, 125.1, 124.7, and 122.2.

1′H-spiro[cyclopentane-1,2′-quinazolin]-4′(3′H)-one (3an) [75] The title compound was syn-
thesized according to general procedure A; White solid; Yield: 56% (56.6 mg); 1H NMR
(600 MHz, DMSO-d6) δ 8.07 (s, 1H), 7.57 (dd, J = 7.8, 1.2 Hz, 1H), 7.25–7.14 (m, 1H), 6.72 (s,
1H), 6.69 (d, J = 7.8 Hz, 1H), 6.63 (t, J = 7.8 Hz, 1H), 1.83–1.75 (m, 4H), and 1.68–1.63 (m,
4H); 13C NMR (151 MHz, DMSO-d6) δ 163.5, 147.5, 133.0, 127.3, 116.6, 114.6, 114.3, 77.1,
39.3, and 21.9.

1′H-spiro[cyclohexane-1,2′-quinazolin]-4′(3′H)-one (3ao) [75]: The title compound was syn-
thesized according to general procedure A; White solid; Yield: 73% (79 mg); 1H NMR
(600 MHz, DMSO-d6) δ 7.90 (s, 1H), 7.56 (dd, J = 7.8, 1.2 Hz, 1H), 7.24–7.16 (m, 1H), 6.80 (d,
J = 7.8 Hz, 1H), 6.62 (d, J = 7.8 Hz, 1H), 6.60 (d, J = 5.4 Hz, 1H), 1.78–1.67 (m, 2H), 1.65–1.58
(m, 2H), 1.58–1.51 (m, 4H), 1.46–1.36 (m, 1H), and 1.29–1.20 (m, 1H); 13C NMR (151 MHz,
DMSO-d6) δ 163.2, 146.8, 133.1, 127.1, 116.5, 114.6, 114.5, 67.8, 37.2, 24.6, and 20.9.

1′H-spiro[cycloheptane-1,2′-quinazolin]-4′(3′H)-one (3ap) [75]: The reaction was performed in
DMSO solvent, and the reaction mixture was poured into water to get the solid precipitate.
Further crude product was washed with excess water to obtain the pure product. White
solid; Yield: 84% (97 mg); 1H NMR (600 MHz, DMSO-d6) δ 8.00 (s, 1H), 7.55 (dd, J = 7.8,
1.2 Hz, 1H), 7.23–7.16 (m, 1H), 6.71 (s, 1H), 6.70 (s, 1H), 6.62–6.58 (m, 1H), 1.92–1.81 (m, 4H),
and 1.51 (s, 8H); 13C NMR (151 MHz, DMSO-d6) δ 162.9, 146.7, 133.1, 127.1, 116.3, 114.4,
114.3, 71.9, 41.0, 29.2, and 20.9.

6′-Chloro-1′H-spiro[cyclohexane-1,2′-quinazolin]-4′(3′H)-one (3co) [75]: The title compound
was synthesized according to general procedure A; White solid; Yield: 86% (108 mg); 1H
NMR (600 MHz, DMSO-d6) δ 8.10 (s, 1H), 7.49 (d, J = 2.4 Hz, 1H), 7.24 (dd, J = 8.4, 2.4 Hz,
1H), 6.87–6.78 (m, 2H), 1.78–1.70 (m, 2H), 1.63–1.57 (m, 2H), 1.57–1.50 (m, 4H), 1.47–1.38
(m, 1H), and 1.27–1.19 (m, 1H); 13C NMR (151 MHz, DMSO-d6) δ 162.0, 145.5, 132.9, 126.2,
120.1, 116.6, 115.6, 68.0, 37.1, 24.5, and 20.8.

4. Conclusions

In conclusion, the employment of water as a green solvent in the microwave-assisted
synthesis of quinazolinones utilizing aldehyde bisulfite adducts represents a significant
advancement in developing sustainable and efficient chemical processes. This innovative
approach not only achieves high product yields but also streamlines the purification
process, fully embodying the principles of green chemistry. It was also supported by green
metrics and Eco-Scale score calculations. Remarkably, the broad library scope includes the
compounds 3be, 3bg, 3bj, and 3ce, which were prepared in favorable yields but have not
been previously reported in the literature. Water as a solvent is instrumental in minimizing
environmental impacts and enhancing procedural efficiency, underscoring its vital role
in fostering eco-friendly synthetic strategies. This method enables the construction of
quinazolinone frameworks while eliminating the need for column chromatography, further
reducing waste and energy consumption. Such a methodology marks a progressive step
towards greener and more sustainable chemical production, contributing to ongoing efforts
to achieve a cleaner and more sustainable future in chemical manufacturing.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29091986/s1, including general information, the synthesis
of the compounds, the characterization data, and the NMR spectra.
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