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Abstract: Gallic acid (GA) is a type of polyphenolic compound that can be found in a range of fruits,
vegetables, and tea. Although it has been confirmed it improves non-alcoholic fatty liver disease
(NAFLD), it is still unknown whether GA can improve the occurrence of NAFLD by increasing
the low-density lipoprotein receptor (LDLR) accumulation and alleviating cholesterol metabolism
disorders. Therefore, the present study explored the effect of GA on LDLR and its mechanism of
action. The findings indicated that the increase in LDLR accumulation in HepG2 cells induced by GA
was associated with the stimulation of the epidermal growth factor receptor–extracellular regulated
protein kinase (EGFR-ERK1/2) signaling pathway. When the pathway was inhibited by EGFR mab
cetuximab, it was observed that the activation of the EGFR-ERK1/2 signaling pathway induced
by GA was also blocked. At the same time, the accumulation of LDLR protein and the uptake of
LDL were also suppressed. Additionally, GA can also promote the accumulation of forkhead box
O3 (FOXO3) and suppress the accumulation of hepatocyte nuclear factor-1α (HNF1α), leading to
the inhibition of proprotein convertase subtilisin/kexin 9 (PCSK9) mRNA expression and protein
accumulation. This ultimately results in increased LDLR protein accumulation and enhanced uptake
of LDL in cells. In summary, the present study revealed the potential mechanism of GA’s role in
ameliorating NAFLD, with a view of providing a theoretical basis for the dietary supplementation
of GA.

Keywords: gallic acid; NAFLD; LDLR; PCSK9; cholesterol metabolism

1. Introduction

In recent years, there has been a worldwide rise in the occurrence of non-alcoholic
fatty liver disease (NAFLD), which is now responsible for most instances of long-term liver
illnesses [1]. NAFLD has long been considered to be closely related to obesity, dyslipidemia,
hypertension, and other diseases. One key factor in the development of NAFLD is the
metabolism of cholesterol [2,3]. Cholesterol, which is one of the important components
that make up the cell membrane of the body, is a highly hydrophobic lipid and the main
raw material for the synthesis of steroid hormones [4]. As the main organ of cholesterol
metabolism, the liver maintains the balance of cholesterol metabolism in the liver mainly

Molecules 2024, 29, 1999. https://doi.org/10.3390/molecules29091999 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29091999
https://doi.org/10.3390/molecules29091999
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules29091999
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29091999?type=check_update&version=2


Molecules 2024, 29, 1999 2 of 16

through biological processes such as endogenous synthesis, uptake, efflux, and esterifica-
tion. At the same time, the liver is the only organ that can eliminate excess cholesterol by
converting it into bile acids and excreting it with bile. However, maintaining the balance of
intracellular cholesterol metabolism is an important basis for cells to perform physiolog-
ical functions [5]. When liver cholesterol metabolism is abnormal, it leads to cholesterol
accumulation in the liver to induce NAFLD [6]. Epidemiological studies have suggested
a correlation between elevated levels of low-density lipoprotein cholesterol (LDL-C) and
a higher prevalence of NAFLD [7]. The primary location of the low-density lipoprotein
receptor (LDLR) is on the surface of liver cells, where it plays a role in regulating blood
lipid levels and maintaining fibrinolytic function. LDLR is responsible for clearing and
metabolizing over 70% of LDL-C in the liver [8]. Therefore, LDLR is critical in aiding LDL-C
elimination. Additionally, enhancing the level of LDLR accumulation is a key approach for
managing and preventing NAFLD.

The regulation of LDLR levels is a complex multi-layered regulatory mechanism in-
volving the transcriptional level, the post-transcriptional level, and the post-translational
level. At the transcriptional level, LDLR mRNA expression is controlled by a negative feed-
back mechanism of cholesterol reactivity, which is achieved by sterol-responsive element
binding protein 2 (SREBP2) [9]. At the post-transcriptional level, LDLR mRNA stability
is one of the key factors in its regulation. For example, berberine (BBR) enhances LDLR
mRNA stability by activating the ERK pathway, which in turn enhances LDLR protein
accumulation [10,11]. The main control of LDLR’s post-translational regulation comes
from PCSK9, which leads to its degradation by binding to LDLR [12]. Prior research has
indicated that the LDLR mRNA has a half-life of around 30 min [13]. Activation of the
signaling pathway involving the epidermal growth factor receptor–extracellular regulated
kinase (EGFR-ERK1/2) can extend the lifespan of LDLR mRNA, leading to an increase
in the accumulation level of LDLR protein [14–16]. Based on the information provided,
it has been reported that berberine, a type of alkaloid compound categorized within the
isoquinoline sesquiterpene group, is capable of enhancing LDLR accumulation through
the activation of the ERK1/2 signaling pathway [17,18]. This activation can help improve
NAFLD caused by disruptions in cholesterol metabolism. Meanwhile, there is increasing
evidence indicating that the proprotein convertase subtilisin/kexin 9 (PCSK9) is associated
not only with autosomal dominant hypercholesterolemia but also has a substantial impact
on the regulation of lipid metabolism in the body [19]. PCSK9 regulates hepatic LDLR by
binding to the cell surface of LDLR after it has been translated. The PCSK9 protein secreted
out of hepatocytes binds to LDLR, thereby forming a PCSK9-LDLR complex and inducing
the degradation of LDLR in lysosomes, reducing the recycling of LDLR [20–22]. PCSK9
is controlled by a variety of transcriptional regulators at the transcriptional level. In liver
cells, hepatocyte nuclear 1α (HNF1α) can bind to the PCSK9 promoter and promote the
accumulation of PCSK9 [23]. In contrast, the forkhead box O3a (FoxO3) protein interacts
with the PCSK9 promoter, recruits sirtuin6 to the proximal promoter region of the PCSK9
gene, acetylates histone H3, and inhibits PCSK9 transcriptional accumulation [24]. The
production of PCSK9 is also controlled by SREBP2 through transcriptional regulation.
When cellular cholesterol levels are depleted, activated SREBP-2 moves into the nucleus,
binds to the PCSK9 promoter (SRE-1 region), and promotes enhanced transcription and
translation of PCSK9 [25].

Gallic acid (GA), also called 3,4,5-trihydroxybenzoic acid, is a type of polyphenolic
compound found in vegetables, fruits, red wine, and tea as it is part of hydrolysable
tannins [26,27]. The health benefits and high quality of tea are well known, as it is made
from the young leaves of the tea tree. Studies have indicated that the amount of GA in
various types of tea can vary from 0.1% to 2% [28]. Related findings suggest that GA can
ameliorate metabolic diseases such as diabetes and NAFLD by reducing blood glucose and
hepatic lipid peroxidation through the upregulation of peroxisome proliferator-activated
receptor (PPAR) in liver, muscle, and adipose tissue [27,29,30]. In addition, cell experiments
confirmed that GA can reduce cholesterol levels in 3T3-L1 adipocytes [31]. Furthermore,
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GA can reduce lipid and cholesterol accumulation in HepG2 cells by inhibiting the activity
of enzymes related to fatty acid and cholesterol synthesis [32]. Although these findings
confirm that GA improvement has a role in NAFLD. However, the mechanism by which
GA slows down the occurrence of NAFLD by alleviating cholesterol metabolism disorders
has not yet been revealed [33]. As a result, the current research investigated how GA
affects the regulation of LDL-C metabolism and its molecular mechanism in HepG2 cells
by enhancing LDL uptake through the increased accumulation of LDLR.

2. Results
2.1. The Accumulation of LDLR Was Increased by GA, Leading to an Enhancement in the Uptake
of LDL in HepG2 Cells

Firstly, the effect of GA on HepG2 cell viability was examined in this study using the
MTT assay, and the results indicated that the viability and proliferation of HepG2 cells were
not significantly affected after being exposed to various concentrations of GA (0, 5, 10, 20,
40, and 80 µM) for a duration of 24 h (Figure 1C). Subsequent experiments were performed
in this concentration range. Moreover, the study examined the effect of GA treatment on
the expression of LDLR protein in HepG2 cells. The results suggested that GA was able
to enhance the accumulation of LDLR protein in HepG2 cells in a manner dependent on
both concentration and time (Figure 1B,D). Additionally, to validate the impact of GA on
the uptake of LDL in HepG2 cells, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanide
perchlorate (Dil)–LDL was employed for the purpose of tagging LDL within cells. The
findings indicated that the uptake of LDL by HepG2 cells was notably enhanced following
GA treatment in comparison to the control group (Figure 1E). These results indicated
that GA could potentially enhance the uptake of LDL in HepG2 cells by upregulating the
production of LDLR protein.

2.2. The EGFR-ERK1/2 Signaling Pathway Was Activated by GA, Leading to an Enhancement of
LDLR Accumulation in HepG2 Cells

The above results suggest that GA is able to enhance LDL uptake by promoting LDLR
protein accumulation, and LDLR protein levels are generally regulated by two pathways:
one approach is to enhance the production of LDLR mRNA, while the other is to prevent
the breakdown of LDLR by PCSK9. Therefore, the present study explored the effect of
GA on LDLR mRNA stability. The present study investigated the impact of GA on LDLR
mRNA expression and demonstrated that GA significantly increased the expression of
LDLR mRNA in HepG2 cells (Figure 2A). Then, this research employed Actinomycin D
to assess the impact of GA on the stability of LDLR mRNA. The results suggested that
GA can significantly extend the half-life of LDLR mRNA, increasing the half-life of LDLR
mRNA from approximately 0.59 h to approximately 1.02 h, thereby improving the stability
of LDLR mRNA (Figure 2B).

According to relevant research, an overactive EGFR-ERK1/2 signaling pathway has
been found to inhibit the degradation of LDLR mRNA and enhance the LDLR accumula-
tion [16]. It was observed that treatment with GA led to a significant increase in the levels
of phosphorylated EGFR and ERK1/2 compared to those of the control group (Figure 2C).
For reconfirming the association between GA’s promotion of LDLR accumulation and
activation of the EGFR-ERK1/2 signaling pathway, additional experiments were conducted
in this study to assess the impact of GA on LDLR accumulation and LDL uptake in HepG2
cells when cetuximab is used to block the EGFR signaling pathway. The results suggested
that cetuximab could counteract the stimulatory effect of GA on the pathway, as well as
hinder the rise in LDLR protein level and uptake of LDL caused by GA (Figure 2D,E).

Molecular docking can effectively predict the drug binding mode and the molecular
mechanism. To further investigate whether GA can specifically bind to the extracellular
segment of EGFR to alter its conformation and activate its phosphorylation level, molecular
docking between GA (CAS: 149-91-7) and EGFR (PDB ID: 3njp) was performed using
AutoDock 4.2.6. The binding mode of GA in the active pocket of EGFR is shown in
Figure 2F. GA is able to form hydrogen bonds with LYS304, LYS303, and GLU306 of EGFR,
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indicating that hydrogen bonds play an important role in the interaction between GA and
EGFR. Moreover, there is a hydrophobic interaction between GA and TYR292. Further
calculation of the affinity between GA and EGFR revealed that the binding energy between
the two was −6.97 kcal/mol. It is generally accepted that components with binding energy
of <0 kcal/mol can spontaneously bond. The lower the binding energy value, the more
stable the binding conformation and the greater the interaction between the ligand and the
receptor. Therefore, we hypothesized that GA binds specifically to the active pocket of EGFR
by forming hydrogen bonds (LYS304, LYS303, and GLU306) and hydrophobic interactions
(TYR292) with specific amino acids. This binding not only enhances the interaction force
between GA and EGFR but also helps to maintain the structural stability of the EGFR-GA
complex, thereby changing the conformation of EGFR. The conformational change in EGFR
activates the EGFR-ERK signaling pathway by promoting its phosphorylation protein level.
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Figure 1. The administration of GA resulted in an upregulation of LDLR accumulation and enhanced
LDL uptake in HepG2 cells: (A) GA molecular structure; (B,D) HepG2 cells were subjected to GA
treatment at various concentrations and durations, followed by quantification of LDLR protein levels
via Western Blot analysis; (C) HepG2 cells were exposed to various concentrations of GA (5, 10, 20, 40,
and 80 µM) for a duration of 24 h, and the assessment of cell viability was conducted using the MTT
assay; and (E) HepG2 cells were exposed to different concentrations of GA (10, 20, and 40 µM) for a
duration of 20 h. Subsequently, the cells were treated with Dil-LDL (20 µg/mL) for a period of 4 h.
The uptake activity of LDL was then visualized using fluorescence microscopy. Values are presented
as means ± SEM (n = 3). *: p < 0.05, **: p < 0.01, ***: p < 0.001 compared with control group.
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Figure 2. The EGFR-ERK1/2 signaling pathway was activated by GA, leading to an increase in LDLR
accumulation and improved uptake of LDL in HepG2 cells: (A) The HepG2 cell line was exposed
to gallic acid at concentrations of 10, 20, and 40 µM for a duration of 24 h. The LDLR mRNA levels
were measured by RT-PCR. (B) The HepG2 cells were exposed to actinomycin D (Act D: 5 µg/mL)
for 30 min, and then treated with or without 20 µM GA at intervals of 0.5 h, 1 h, 2 h, 3 h, and 4 h for
RNA extraction. The impact of GA on LDLR mRNA half-life was evaluated using RT-qPCR. (C) The
HepG2 cell line was treated with varying concentrations of GA (10, 20, and 40 µM) for a duration
of 24 h. Subsequently, the effect of GA on the levels of p-EGFR, EGFR, p-ERK1/2, and ERK1/2
proteins was evaluated through Western Blot analysis. (D) The EGFR signaling pathway in HepG2
cells was blocked by treating them with cetuximab for 1 h, followed by a 24 h treatment with GA
(20 µM). Western Blot analysis was performed to evaluate the effects of 20 µM GA treatment on LDLR,
p-EGFR, EGFR, p-ERK1/2, and ERK1/2 protein levels in HepG2 cells. (E) The HepG2 cells were first
exposed to cetuximab for 1 h to block the EGFR signaling pathway. This was followed by treatment
with GA (20 µM) for 20 h and then Dil-LDL (20 µg/mL) for 4 h. The effect of GA on the LDL uptake
activity of the inhibited EGFR signaling pathway was then observed using inverted fluorescence
microscopy. (F) 3D schematic diagram (EGFR: green; GA: red), hydrogen bond receptor surface
schematic diagram, and 2D schematic diagram of docking between gallic acid and EGFR extracellular
domain. Values are presented as means ± SEM (n = 3). *: p < 0.05, **: p < 0.01, ***: p < 0.001 compared
with control group.
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The results suggested that GA might have a direct impact on the extracellular region
of EGFR, leading to the self-phosphorylation of EGFR and the activation of the downstream
ERK1/2 signaling pathway. This ultimately resulted in a prolonged LDLR mRNA half-life,
promoting increased LDLR accumulation and LDL uptake.

2.3. The Accumulation of PCSK9 Was Inhibited by GA, Leading to an Enhancement in
Accumulation of LDLR in HepG2 Cells

PCSK9 interactes with the terminal extracellular domain of LDLR and guides LDLR
degradation (Figure 3A). Hence, it is theoretically possible to manipulate the post-transcriptional
accumulation of PCSK9 either directly or indirectly, with the aim of reducing the interaction
between PCSK9 and LDLR in order to lessen lysosomal-mediated degradation of LDLR.
This research delved deeper into the influence of GA on PCSK9 accumulation and explored
the potential correlation between GA and PCSK9, which indicated that GA inhibited
PCSK9 mRNA expression and protein accumulation in a concentration-dependent manner
(Figure 3B). The binding mode of GA (CAS: 149-91-7) specifically bound to the active
pocket position of PCSK9 (PDB ID:2P4E) was predicted using molecular docking. The
results showed a good conformational match of GA at the position of PCSK9 active pocket
(Figure 3C), which indicated that GA was able to bind to the active pocket region of PCSK9
in a stable manner. This stability was mainly due to the hydrogen bonds between GA
and the amino acid residues HIS139, VAL140, THR61, and LYS136 of PCSK9, as well as
the hydrophobic interactions with LEU137, PRO138, LYS83, ALA62, ASP141, and LUE135.
The binding energy was further found to be −5.36 kcal/mol. These interactions not only
strengthen the binding affinity between GA and PCSK9 but also facilitate GA’s specific
binding to the “active pocket” of PCSK9 and induce a change in the conformation of PCSK9.
These findings suggest that GA can specifically bind to the active pocket of PCSK9 through
stable hydrogen bonds and hydrophobic interactions and may indirectly impact LDL-C
metabolism by modulating the conformation of PCSK9 to inhibit its activity or enhance
LDLR activity. In conclusion, GA inhibits the activity of PCSK9 and may directly act
on PCSK9 to inhibit the binding of PCSK9 to LDLR, thereby reducing the degradation
of LDLR.

2.4. GA Activated FOXO3 Accumulation and Inhibited HNF1α and SREBP2 Accumulation in
HepG2 Cells

From the above results, it can be seen that GA reduced LDLR degradation by inhibiting
the accumulation of PCSK9. The transcriptional regulation of PCSK9 involves the control
of its expression by a range of factors, one of which is SREBP2. In order to delve deeper
into the molecular mechanism behind the decrease in PCSK9 mRNA expression and
protein accumulation induced by GA, this research conducted a quantitative analysis of the
important transcription factors FoxO3, HNF1α, and SREBP2 of PCSK9. The results showed
that GA significantly increased FOXO3 levels while decreasing HNF1α and SREBP2 levels,
both at the protein accumulation and transcription levels (Figure 4A). FoxO3, HNF1α,
and SREBP2, as nuclear transcription factors, were transferred to the nucleus to exert
transcriptional activity. As a result, this research delved deeper into the effects of GA on
the protein concentrations of FoxO3, HNF1α, and SREBP2 in both the cytoplasmic and
nuclear compartments of HepG2 cells. The findings indicated that GA resulted in a notable
increase in FOXO3 protein levels, while leading to a reduction in HNF1α and SREBP2
protein levels in both the cytoplasm and the nucleus (Figure 4B,C). Although this study has
proved that GA can inhibit the accumulation of SREBP2, there are still some shortcomings
in this study. SREBP2 is a transcription factor located on the endoplasmic reticulum
membrane, and its activity is regulated by cholesterol levels. When intracellular cholesterol
levels rise, SREBP cleavage-activating protein (SCAP) binds to SREBP2 and is transported
to the Golgi for processing. Finally, SREBP2 is released into the nucleus to activate the
expression of related genes and promote the synthesis of cholesterol and fatty acids [34].
When cholesterol levels in hepatocytes are reduced (for example, cholesterol levels in blood
are decreased due to increased LDLR), Insulin-Induced Gene 1/2 (INSIG1/2) and SCAP
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binding prevents SREBP2 transport to the Golgi for processing, thereby inhibiting SREBP2
accumulation [35]. Therefore, it remains to be further investigated whether the decrease in
SREBP2 accumulation is due to the effect of GA or an increase in LDLR accumulation. These
results suggest that GA was able to reduce PCSK9 accumulation by increasing FOXO3
accumulation while inhibiting HNF1α accumulation.
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Figure 3. Repression of PCSK9 accumulation and its binding with LDLR in HepG2 cells is inhibited
by GA: (A) The catalytic structural domain of PCSK9 (green) and the EGF-A region of LDLR (yellow)
both bind to form the PCSK9: EGF-A complex. (B) The HepG2 cell line was treated with GA at 10, 20,
and 40 µM concentrations for a period of 24 h. After the treatment, the levels of PCSK9 mRNA and
protein were analyzed using Western Blot and RT-PCR. (C) 3D schematic diagram (PCSK9: green; GA:
red), hydrogen bond receptor surface schematic diagram, and 2D schematic diagram of GA docking
with PCSK9. Values are presented as means ± SEM (n = 3). *: p < 0.05, **: p < 0.01, ***: p < 0.001
compared with control group.
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Figure 4. GA decreased PCSK9 accumulation in HepG2 cells by increasing FOXO3 accumulation
and inhibiting HNF1α and SREBP2 accumulation: (A) HepG2 cells were exposed to GA (10, 20, and
40 µM) for a duration of 24 h, as well as FOXO3, HNF1α, and SREBP2 mRNA and protein levels were
measured by Western Blot and RT-PCR and (B,C) GA (10, 20, 40 µM) was used to treat HepG2 cells
for 24 h, and FOXO3, HNF1α, and SREBP2 cytosis and nuclear protein levels were measured through
Western Blot. Values are presented as means ± SEM (n = 3). *: p < 0.05, **: p < 0.01, ***: p < 0.001
compared with control group.

3. Discussion

Nonalcohol fatty liver disease (NAFLD) is a major health problem leading to hepatic
and extrahepatic morbidity, with a global prevalence as high as 25.2% [36,37]. With the
emergence of new research results, the traditional “double whammy” theory can no longer
fully explain the pathogenesis of NAFLD. Currently, NAFLD is generally considered to
be associated with risk factors for metabolic diseases such as obesity, dyslipidemia, hyper-
tension, and diabetes [38]. Cardiovascular disease (CVD), the leading worldwide reason
for death, is the primary cause of mortality in NAFLD patients, particularly Atheroscle-
rosis (AS) [39]. Low-density lipoprotein cholesterol (LDL-C) is derived from Very LDL-C
(VLDL-C) in the circulatory system, predominantly produced in the blood vessels and
primarily metabolized in the liver. Elevated levels of LDL-C in the liver have been linked
to the development of non-alcoholic fatty liver disease [7]. Recent studies on the spread of
diseases have suggested that higher levels of LDL-C may potentially increase the risk of
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developing non-alcoholic fatty liver disease [40]. In addition, the potential beneficial effects
of ezetimibe and atorvastatin, which are commonly used clinically for the treatment of
hyperlipidemia, may also be mediated by a reduction in hepatic cholesterol levels [41,42].
Recent research has shown that the low-density lipoprotein receptor (LDLR) accumulation
in the liver is essential. The clearance of low-density lipoprotein (LDL) in the bloodstream
by hepatocyte entosis mediated by LDLR, as well as the feedback regulation of endogenous
cholesterol synthesis, is a crucial regulatory mechanism for maintaining optimal levels
of LDL in the blood [43]. Therefore, the management of NAFLD induced by elevated
cholesterol levels may include upregulating LDLR accumulation or suppressing proprotein
convertase subtilisin/kexin9 (PCSK9)-mediated LDLR degradation to enhance LDLR levels.

Plant polyphenols, also known as plant tannins, are a class of secondary metabolites
that are widely present in plants with complex chemical structures and a wide range of
pharmacological properties. Plant polyphenols have become an increasingly important
area of research in food science due to their diverse physiological effects. As a naturally
abundant endogenous plant phenol, gallic acid (GA) can improve NAFLD by increasing
the antioxidant capacity of the liver and inhibiting the ROS/NF-κβ/TNFα inflammatory
pathway [44,45]. Moreover, GA can also lower cholesterol levels in 3T3-L1 adipocytes and
decrease lipid and cholesterol accumulation in HepG2 cells by inhibiting the activities of
enzymes involved in fatty acid and cholesterol synthesis [31,32]. These results indicated
that GA could improve NAFLD. However, the effect of GA on LDLR has not been reported.
LDLR is a key protein that regulates cholesterol levels in the blood, and its dysfunction
is closely related to the development of NAFLD. In this study, it was found that GA
induced a significant increase in LDLR protein level in HepG2 cells in a concentration
and time-dependent manner (Figure 1B,D). In addition, the uptake of LDL by HepG2
cells was significantly promoted after GA treatment compared with the control group
(Figure 1E). Although the present study demonstrated that GA could promote the uptake
of LDL by HepG2 cells by increasing LDLR activity by Western Blot and 1,1′-dioctadecyl-
3,3,3′,3′-tetramethylindocarbocyanide perchlorate (Dil)–LDL uptake assay, related studies
have shown that HepG2 cells can increase intracellular cholesterol levels by synthesis or
uptake when the intracellular free cholesterol level is reduced. The excess intracellular
free cholesterol is balanced by efflux and esterification [46]. Therefore, further studies are
necessary to investigate the effect of GA on free cholesterol and esterified cholesterol levels
in HepG2 cells.

Further studies showed that the accumulation of LDLR protein in HepG2 cells induced
by GA was related to the activation of epidermal growth factor receptor–extracellular
regulated protein kinase (EGFR-ERK1/2) signaling pathway. This study demonstrated
that GA was able to improve LDLR mRNA stability and promote LDLR accumulation
by activating the EGFR-ERK1/2 pathway in HepG2 cells, and this effect was inhibited
when EGFR signaling was blocked by cetuximab (Figure 2A–E). In other words, GA
activated the EGFR-ERK1/2 signaling pathway to enhance LDLR mRNA stability and
induced LDLR mRNA expression and protein accumulation. It has been reported that
the post-transcriptional regulation of LDLR is mainly achieved by regulating the stability
of its mRNA [10]. LDLR mRNA is unstable, and its rapid degradation is controlled by
a Au-enriched element (ARE1) present in the 3′-untranslated region (3′-UTR) of LDLR
mRNA. The ARE-binding protein (ARE-BP) binds specifically to ARE1, thereby promoting
LDLR mRNA instability, an effect that is inhibited when ERK1/2 is activated [13,47].
Relevant studies have shown that some natural small molecules such as berberine and
ellagaloic acid can stabilize LDLR mRNA levels through the ERK1/2 pathway, thereby
improving NAFLD [48,49]. However, unlike berberine and ellagic acid, the molecular
docking results in this study showed that GA was able to bind to the extracellular domain
of EGFR, forming a strong affinity through hydrogen bonding and hydrophobic interaction
(Figure 2F). These interactions enable GA to specifically bind to the extracellular domain
of EGFR and induce the conformational change in EGFR, which ultimately leads to the
activation of EGFR-ERK1/2 signaling pathway. Although this study confirmed that GA
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can enhance LDLR mRNA stability at the post-transcriptional level by activating EGFR-
ERK1/2 signaling pathway, the exact mechanism of post-transcriptional regulation and the
functional proteins involved in the process of enhancing LDLR mRNA stability need to be
further investigated. This study suggested that GA may reduce the binding of ARE-BP to
the 3′-UTR of the unstable LDLR mRNA, thereby promoting its stabilization and increasing
LDLR accumulation [47]. In addition, the application of small interfering RNA (siRNA)
technology in this study to further demonstrate the effect of GA through EGFR-ERK1/2
pathway needs to be further studied. As a kind of double-stranded short RNA molecule
composed of 21–25 nucleotides, siRNA can specifically induce the silencing of target genes,
and then inhibit the accumulation of proteins. This technology is based on the RNA
interference (RNAi) mechanism, in which the expression of specific genes is silenced by
the recognition and binding of specific siRNA molecules to the target mRNA, resulting
in degradation or translation block of the target mRNA [50]. Therefore, transfection of
EGFR and ERK1/2 siRNA into HepG2 cells can not only further inhibit the accumulation
of EGFR and ERK proteins but also provide another effective research method for studying
the effect of GA on the EGFR-ERK1/2 signaling pathway.

Additionally, this study also found that GA could inhibit PCSK9 mRNA expression
and protein accumulation in HepG2 cells, which in turn increased LDLR protein accu-
mulation and increased LDLR uptake (Figure 3B). PCSK9, a serine protease produced by
hepatocytes, serves as a crucial modulator of LDLR and exerts significant influence on
the regulation of plasma LDL-C levels. A research has shown that the catalytic domain of
PCSK9 binds to the extracellular epidermal growth factor-like repeat A (EGF-A) domain
of LDLR (Figure 3A), and this binding leads to the transfer of LDLR to lysosomes for
degradation, resulting in a decrease in LDLR on the hepatocyte surface and an increase in
plasma levels of LDL-C [51]. It was further found that GA could inhibit the accumulation
of PCSK9 by activating forkhead box O3 (FOXO3) and inhibiting the accumulation of hepa-
tocyte nuclear factor-1α (HNF1α), which in turn favored the accumulation of LDLR protein
and the uptake of LDL (Figure 4A–C). In liver tissue, the transcriptional level of PCSK9 is
mainly regulated by HNF1α, FoxO3, sterol-responsive element binding protein 2 (SREBP2),
and other transcription factors. Related studies have shown that HNF1α binds to the HNF1
motif located upstream of SRE1 in the PCSK9 promoter to promote PCSK9 transcription,
whereas FoxO3 interacts with the PCSK9 promoter and inhibits PCSK9 transcription ex-
pression [52,53]. Meanwhile, mutations in the HNF1α binding site significantly reduced the
SREBP2-mediated upregulation of PCSK9 transcription. Thus, HNF1α is able to cooperate
with SREBP2 to activate PCSK9 transcription [23]. It is worth noting that, although this
study found that GA could inhibit the accumulation of SREBP2 (Figure 4A–C), it cannot be
denied that this study could not prove the specific role of SREBP2 in the regulation of LDLR.
When cholesterol levels in hepatocytes are reduced (for example, cholesterol levels in blood
are decreased due to increased LDLR), Insulin-Induced Gene ½ (INSIG1/2) and SREBP
cleavage-activating protein (SCAP) binding prevents SREBP2 transport to the Golgi for
processing, thereby inhibiting the SREBP2 activity [35]. Molecular docking results showed
that GA could specifically bind to the active pocket of PCSK9 and cause a conformational
change to inhibit the binding of PCSK9 to LDLR, thereby reducing the degradation of
LDLR (Figure 3C).

4. Materials and Methods
4.1. Materials and Reagents

Gallic acid (GA) (HPLC ≥ 98%) from Shanghai yuanye Bio-Technology Co., Ltd,
Shanghai, China; Trypsin–EDTA (0.25%), penicillin–streptomycin, phenylmethanesulfonyl
fluoride (PMSF), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and
Trizol reagent from Thermo Fisher Scientific, Shanghai, China; Dulbecco’s modified Ea-
gle’s medium (DMEM) and Fetal Bovine Serum (FBS) from MeilunBio; 4′,6-diamidino-2-
phenylindole (DAPI) and Human 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanide
perchlorate–low-density lipoprotein (Human Dil-LDL) from Yeasen Biotechnology (Shang-
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hai) Co., Ltd., Shanghai, China; SYBR Green real-time PCR Master Mix from Takara Biomed-
ical Technology (Beijing) Co., Ltd., Beijing, China; Kit for the nuclear extraction of the cell
from Beijing Solarbio Science & Technology Co., Ltd., Beijing, China; BCA Protein Reagent
from Shanghai Beyotime Biotechnology Co., Ltd., Shanghai, China; anti-LDLR, ERK1/2,
phospho-ERK1/2, EGFR, phospho-EGFR, and β-tubulin from HuaBio, Hangzhou, China;
and Anti-PCSK9, HNF1α, FOXO3, and SREBP-2 from Wuhan ABclonal Biotechnology Co.,
Ltd., Wuhan, China.

4.2. Cell Culture

Upon reaching a cell density of 80–90%, well-developed hepatocellular carcinoma
HepG2 cells (from the Kunming Cell Bank of the Chinese Academy of Sciences) are in-
troduced into high-glucose DMEM medium with 1% penicillin–streptomycin and 10%
FBS at a concentration of 1.5 × 105/mL and are then incubated in a constant temperature
environment (37 ◦C, 5% CO2).

4.3. MTT Assay

The HepG2 cells were plated in 96-well plates at a concentration of 2 × 104 cells/well,
and the outer wells were filled with sterile PBS. They were then incubated in a 5% CO2
and 37 ◦C environment for 12–24 h until reaching the desired cell density. After that, GA
(0, 5, 10, 20, 40, or 80 µM) was added under light-free conditions and incubated for an
additional period of 24 h. Next, 20 µL of a solution containing 5% MTT was added to each
well, and the plate was placed in a dark environment for 4–5 h with aluminum foil covering.
Following the incubation period, the culture was terminated, and the liquid from each well
was carefully removed. Next, 200 µL of dimethyl sulfoxide (DMSO) was introduced into
each well and gently agitated on a low-speed shaker for 15 min to facilitate the dissolution
of the formazan crystals. The absorbance readings for each well were then taken at 492 nm
using a multi-purpose enzyme reader.

4.4. Western Blot Analysis

First, various concentrations of GA (0, 10, 20, and 40 µM) were administered to HepG2
cells for a duration of 24 h, and protease and phosphatase inhibitors were added to RIPA
buffer to extract the total protein of HepG2 cells. The cell extract underwent centrifugation
at 1000–15,000× g for 15 min at 4 ◦C. The resulting supernatant was utilized for total
protein analysis, with cytoplasmic and nuclear proteins extracted from the cells following
the guidelines of the nuclear protein extraction kit. The BCA protein assay reagent was
utilized to determine the overall protein concentration. A total of 50 µg of protein was then
evenly distributed and transferred onto a 0.45 µm PVDF membrane using 8% SDS-PAGE.
After being blocked in TBST with 5% bovine serum albumin for 1 h at room temperature,
the membrane was subsequently incubated with rabbit anti-LDLR antibody overnight at
4 ◦C.

4.5. Dil-LDL Uptake Test

The HepG2 cells were exposed to varying levels of GA (0, 10, 20, and 40 µM) for
a period of 20 h. The DiI-LDL was diluted to a concentration of 30 µg/mL in the cell
medium under sterile and dark conditions. Subsequently, the medium from the culture
plate was removed in the absence of light, and the aforementioned LDL was introduced
to the live cells for incubation at 37 ◦C for a period of 4 h. After the cells were cultured,
the solution with Human DiI-Ox-LDL was removed and rinsed three times with PBS.
The cells were then fixed in 3% formaldehyde at room temperature for a duration of
20 min and counterstained with DAPI-containing anti-fade mounting solution for nuclear
restaining. The cells were ultimately observed using fluorescence microscopy with an
inverted configuration (Ex/Em = 549 nm/565 nm) to assess the LDLR uptake activity on
the membrane surface. Subsequently, the quantitative analysis of immunofluorescence was
conducted utilizing Image J.
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4.6. Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR)

First, HepG2 cells were treated with different concentrations of GA (0, 10, 20, and
40 µM) for 24 h. Following the cell treatment, the cells were rinsed three times with
PBS after removing the medium. Then, 1 mL of Trizol reagent was used to lyse HepG2
cells for total RNA extraction according to the manufacturer’s instructions. Reversing
the instructions provided in the kit, cDNA was synthesized from 1 µg of total RNA, and
real-time quantitative PCR was performed on the LightCycler480 system with SYBR Green
as the template. The relative expression levels of relevant mRNA were measured after
normalization with β-actin levels using the 2−∆∆Ct method. The detailed primer sequence
for quantitative real-time PCR analysis can be found in Table 1.

Table 1. Primer sequences used for quantitative real-time PCR analysis in this study.

Genes Primer Sequences (5′-3′)

LDLR F: GAACCCATCAAAGAGTGCG R: TCTTCCTGACCTCGTGCC
PCSK9 F: CCAAGCCTCTTCTTACTTCACC R: GCATCGTTCTGCCATCACT
SREBP2 F: CCCTGGGAGACATCGACGA R: CGTTGCACTGAAGGGTCCA
HNF1α F: GTGGCGAAGATGGTCAAGTCC R: CCCTTGTTGAGGTGTTGGG
FOXO3 F: ACATGGGCTTGAGTGAGT R: GCCTGAGAGAGAGTCCGAGA
β-actin F: ACAGAGCCTCGCCTTTGCCG R: ACATGCCGGAGCCGTTGTCG

4.7. Molecular Docking

Molecular docking of GA with EGFR and PCSK9 was performed using AutoDock4.2.6.
Firstly, download the EGFR (PDB ID: 3njp) and PCSK9 (PDB ID: 2P4E) protein structures
from the PDB database (https://www.rcsb.org/, accessed on 14 December 2023) and
import them into PyMOL2.5 to remove excess ligands. Secondly, AutoDock4.2.6 was
used to preprocess the structures of EGFR and PCSK9 protein molecules by dehydration,
hydrogenation, etc. and use them as receptors. Then, the 3D structure of GA (CAS: 149-91-
7) in SDF format was downloaded from the PubChem database (https://pubchem.ncbi.
nlm.nih.gov/, accessed on 14 December 2023), imported into Chem3D 20.0 for energy
and structure optimization, and the Minimum RMS Gradient was set to 0.001, and it was
used as a ligand. Finally, molecular docking was performed, and binding energies were
calculated using AutoDock 4.2.6, and graphics were created using Discovery Studio 2021.

4.8. Data Analysis and Mapping

The experimental data were assessed using GraphPad Prism 9.0 to establish signifi-
cance and for the purpose of visualization. Statistical analysis utilized the Student t test, and
the findings are displayed as the mean ± standard error (SEM) derived from a minimum
of three separate experiments (*: p < 0.05, **: p < 0.01, ***: p < 0.001).

5. Conclusions

In summary, GA had the ability to stimulate the EGFR-ERK1/2 signaling pathway
by specifically focusing on the EGFR extracellular domain. This leads to a longer lifes-
pan of LDLR mRNA and improved stability, ultimately leading to an increase in LDLR
accumulation and an enhanced uptake of LDL in HepG2 cells. Moreover, GA can also
reduce the expression of PCSK9 mRNA and the accumulation of protein by activating
FOXO3 and inhibiting the accumulation of HNF1α. Simultaneously, GA may act directly
on PCSK9 to block its binding to LDLR, which in turn reduces the degradation of LDLR
protein, thereby increasing the uptake of LDL (Figure 5). Overall, this research has clarified
how GA works to increase LDLR accumulation and LDL uptake in HepG2 cells, laying
a new theoretical foundation for the development of NAFLD drugs. These significant
findings will also provide fresh perspectives on exploring natural remedies for preventing
and treating NAFLD, effectively utilizing the advantages and characteristics of natural
products in managing the condition.

https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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