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Abstract: Hydroformylation of olefins is widely used in the chemical industry due to its versatility
and the ability to produce valuable aldehydes with 100% atom economy. Herein, a hybrid phosphate
promoter was found to efficiently promote rhodium-catalyzed hydroformylation of styrenes under
remarkably mild conditions with high regioselectivities. Preliminary mechanistic studies revealed that
the weak coordination between the Rhodium and the P=O double bond of this pentavalent phosphate
likely induced exceptional reactivity and high ratios of branched aldehydes to linear products.

Keywords: hybrid phosphate; hydroformylation; styrene; branched selectivity

1. Introduction

Hydroformylation, popularly known as the “oxo” process, is an important transition-
metal-catalyzed industrial process for the production of aldehydes from alkenes [1,2].
Annually, these oxo products have been produced on the scale of over 10 million tons
worldwide [3–5]. BASF and ICI [6–8] developed the first- and second-generation catalytic
systems using cobalt as the catalyst, respectively, under harsh conditions of 100–350 bar
pressure and 100–200 ◦C. The third-generation process employs P-ligand-modified Rh
catalysts, reducing the requirements of high pressure and temperature significantly, which
are regarded as the most effective and selective catalysts for hydroformylation to date [9–12].
Despite advancement in recent years, several challenges still remain, including the high cost
of using rhodium as a catalyst, suboptimal selectivity for some substrates, and a relatively
high operational temperature of 85–130 ◦C [13].

Mono-trivalent phosphine-ligands have been well-studied in the rhodium catalyzed
hydroformylation of styrene to produce branched aldehyde selectively [14–17] (Scheme 1a).
The ratios of branched to linear products was limited to 6.7:1 when using the phosphole
ligand [14]. The tris(2, 4-di-tert-butylphenyl)phosphite ligand, widely utilized in the indus-
try with a high s/c of 3500, exhibited poor regioselectivity (b/l = 3.7:1) [15]. When using
trispyrrolylphosphine [16] and phosphanorbornadienes [17] as ligands, only moderate
regioselectivities could be achieved. Furthermore, the possibility of phosphine oxidation
to phosphine oxide during both preparation and reaction restricts the utility of P(III) lig-
ands. Typically, the oxidation of triphenylphosphine (TPP) ligands to triphenylphosphine
oxide (TPPO) decreases the electron density of the P atom, leading to lower coordination
ability. However, pentavalent phosphate as an additive is usually stable and has been less
extensively explored [18–20].
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Scheme 1. State of the art in Rh-catalyzed hydroformylation of styrenes with P(III)-ligands and this 
work: P(V) promoted Rh-catalyzed hydroformylation under mild conditions [14–17]. 

Macheetti and He et al. found that the carbon monoxide insertion into metal alkyl 
complexes was accelerated by P(V) [21,22]. Alper used a phosphine oxide ligand in 
rhodium-catalyzed hydroformylation of alkenes, achieving moderate yields and high 
regioselectivities [23]. Gusevskaya and co-workers reported cobalt-catalyzed 
hydroformylation with phosphine oxides under milder conditions [24]. The bidentate 
ligands, including phosphine, amino, and oxygen-phosphine oxide, have also been shown 
to promote the selectivity of transition-metal-catalyzed hydroformylation [25–32]. In our 
previous research, we developed the heterogeneous and homogeneous catalytic protocols 
of hydroformylation [33,34]. To continue our efforts in this field, in this paper, we present 
a novel hybrid phosphate that promoted rhodium-catalyzed hydroformylation of 
styrenes, exhibiting high reactivity and regioselectivity under remarkably mild conditions 
(Scheme 1b). 

2. Results and Discussion 
We initiated our study of Rh-catalyzed hydroformylation with styrene as the model 

substrate, 0.1 mol% [Rh(COD)Cl]2 as the catalyst, and 0.6 mol% trimethyl phosphate P1 in 
toluene at 30 °C. In 24 h, only a 16% yield of branched aldehyde 2a was obtained with 
moderate regioselectivity (b/l = 8.0:1, Table 1, entry 1). A notable increase in activity was 
achieved compared to the triphenyl phosphate P2, leading to a 40% yield of 2a with 6.6:1 
regioselectivity (entry 2), while the triphenylphosphine oxide P3 was used, only yielding 
a trace amount of 2a (entry 4). Moreover, the chiral phosphoric-acid-derived (R)-P4 [35–
37] was tested, resulting in a slowed reaction and the detection of only a trace amount of 
the desired product (entry 5).  

Inspired by the hybrid phosphine–phosphite developed by Takeya [38], we prepared 
a series of hybrid phosphates, P5-P11, and evaluated their efficiency for our desired Rh-

Scheme 1. State of the art in Rh-catalyzed hydroformylation of styrenes with P(III)-ligands and this
work: P(V) promoted Rh-catalyzed hydroformylation under mild conditions [14–17].

Macheetti and He et al. found that the carbon monoxide insertion into metal alkyl com-
plexes was accelerated by P(V) [21,22]. Alper used a phosphine oxide ligand in rhodium-
catalyzed hydroformylation of alkenes, achieving moderate yields and high regioselectivi-
ties [23]. Gusevskaya and co-workers reported cobalt-catalyzed hydroformylation with
phosphine oxides under milder conditions [24]. The bidentate ligands, including phosphine,
amino, and oxygen-phosphine oxide, have also been shown to promote the selectivity of
transition-metal-catalyzed hydroformylation [25–32]. In our previous research, we devel-
oped the heterogeneous and homogeneous catalytic protocols of hydroformylation [33,34].
To continue our efforts in this field, in this paper, we present a novel hybrid phosphate that
promoted rhodium-catalyzed hydroformylation of styrenes, exhibiting high reactivity and
regioselectivity under remarkably mild conditions (Scheme 1b).

2. Results and Discussion

We initiated our study of Rh-catalyzed hydroformylation with styrene as the model
substrate, 0.1 mol% [Rh(COD)Cl]2 as the catalyst, and 0.6 mol% trimethyl phosphate P1
in toluene at 30 ◦C. In 24 h, only a 16% yield of branched aldehyde 2a was obtained with
moderate regioselectivity (b/l = 8.0:1, Table 1, entry 1). A notable increase in activity was
achieved compared to the triphenyl phosphate P2, leading to a 40% yield of 2a with 6.6:1
regioselectivity (entry 2), while the triphenylphosphine oxide P3 was used, only yielding a
trace amount of 2a (entry 4). Moreover, the chiral phosphoric-acid-derived (R)-P4 [35–37]
was tested, resulting in a slowed reaction and the detection of only a trace amount of the
desired product (entry 5).
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Table 1. Screening P(V) reagents for Rh-catalyzed hydroformylation of styrene a.
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catalyzed hydroformylation. When (R, R)-P5 was used, high regioselectivity was 
observed, albeit the overall yield of 2a was only 28% (entry 5). To our delight, (S, R)-P6, 
the diastereomer of P5, was employed, leading to a 96% yield of 2a with excellent 
regioselectivity, and the ratio of b/l was up to 25.4:1 (entry 6,). However, no 
enantioselectivity was observed with P6, suggesting that the chiral skeleton may not affect 
asymmetric hydroformylation, which represents an important transformation to produce 
chiral aldehydes from simple alkenes [39–44]. Furthermore, we screened other hybrid 
chiral phosphates, such as the more sterically hindered (S, R)-P7, featuring a phenyl 
substituent at ortho-position of the hydroxyl group. Only a moderate outcome was 
achieved without any stereoselective control (entry 7). In addition, the employment of (S, 
R)-P8 [45,46] yielded moderate results in terms of both yield and regioselectivity (entry 
8). We then utilized more rigid chiral spiro backbone-based hybrid phosphates, P9–P11, 
recognized as a class of privileged ligands in asymmetric catalysis [47–52]; the reactivity 
and selectivity were not significantly improved (entries 9–11).  

Table 1. Screening P(V) reagents for Rh-catalyzed hydroformylation of styrene a. 

1 P1 16 8.0:1
2 P2 40 6.6:1
3 P3 5 /
4 P4 10 /
5 P5 28 23.4:1

6 c P6 96 25.4:1
7 c P7 75 15.0:1
8 d P8 49 5.2:1
9 P9 27 22.8:1

10 P10 33 22.2:1

Entry P(V) Reagents Yield of 2a (%) b b/l (2a/3a) b

1 P1 16 8.0:1
2 P2 40 6.6:1
3 P3 5 /
4 P4 10 /
5 P5 28 23.4:1

6 c P6 96 25.4:1
7 c P7 75 15.0:1
8 d P8 49 5.2:1
9 P9 27 22.8:1

10 P10 33 22.2:1
11 P11 6 /

a Reaction conditions: styrene 1a (3.0 mmol), [Rh(COD)Cl]2 (0.1 mol %), P(V) reagents (0.6 mol %), toluene (25 mL),
syngas (CO/H2 = 1), 4.0 MPa, 30 ◦C, 24 h. b Determined using GC. c 0% ee of branched aldehyde. d 48 h.

Inspired by the hybrid phosphine–phosphite developed by Takeya [38], we prepared
a series of hybrid phosphates, P5–P11, and evaluated their efficiency for our desired Rh-
catalyzed hydroformylation. When (R, R)-P5 was used, high regioselectivity was observed,
albeit the overall yield of 2a was only 28% (entry 5). To our delight, (S, R)-P6, the diastere-
omer of P5, was employed, leading to a 96% yield of 2a with excellent regioselectivity, and
the ratio of b/l was up to 25.4:1 (entry 6,). However, no enantioselectivity was observed
with P6, suggesting that the chiral skeleton may not affect asymmetric hydroformylation,
which represents an important transformation to produce chiral aldehydes from simple
alkenes [39–44]. Furthermore, we screened other hybrid chiral phosphates, such as the
more sterically hindered (S, R)-P7, featuring a phenyl substituent at ortho-position of the
hydroxyl group. Only a moderate outcome was achieved without any stereoselective
control (entry 7). In addition, the employment of (S, R)-P8 [45,46] yielded moderate results
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in terms of both yield and regioselectivity (entry 8). We then utilized more rigid chiral spiro
backbone-based hybrid phosphates, P9–P11, recognized as a class of privileged ligands in
asymmetric catalysis [47–52]; the reactivity and selectivity were not significantly improved
(entries 9–11).

To verify the function of P6, we compared the performance of P6 with triphenyphos-
phine (TPP) in Rh-catalyzed hydroformylation. As depicted in Figure 1, P6 was found to
promote hydroformylation efficiently (blue line). However, the reaction proceeded slowly
in the absence P6, resulting in 82% conversion of 1a (gray line). Under the same conditions,
TPP was utilized to slow the reaction, leading to lower conversion of styrene (orange line).
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Figure 2. High-pressure (CO/H2 1:1, 4.0 MPa) in-situ IR spectra. 

Inspired by these results, we conducted a comprehensive study of various reaction 
parameters of regioselective Rh-catalyzed hydroformylation with phosphate P6, as de-
tailed in Table 2. Initially, we noted that the yield of 2a was not increased notably by 
simply elevating the reaction temperature from 30 to 50 °C. However, it resulted in a sig-
nificant decrease in the b/l ratio (Table 2, entries 1–3). Our efforts then focused on the ad-

Figure 1. Catalytic performance of P6 and TPP.

Moreover, the acceleration effect may induce the rapid formation of active Rh-H
species in the hydroformylation process [24]. As illustrated in Figure 2, we conducted in situ
high-pressure (CO/H2 1:1, 4.0 MPa) IR to detect the possible Rh−H species. Fortunately,
we observed the Rh−H signal (2050 cm−1) within 10 min in the absence of P6. Notably, the
use of P6 shortened the time for the appearance of the same peak to 5 min.
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Inspired by these results, we conducted a comprehensive study of various reaction
parameters of regioselective Rh-catalyzed hydroformylation with phosphate P6, as detailed
in Table 2. Initially, we noted that the yield of 2a was not increased notably by simply
elevating the reaction temperature from 30 to 50 ◦C. However, it resulted in a significant
decrease in the b/l ratio (Table 2, entries 1–3). Our efforts then focused on the adjustment
of the ratio of Rh/phosphate to optimize the conditions. Unfortunately, decreasing the
ratio of Rh/L6 from 1:3 to 1:2 or increasing the ratio to 1:6 led to lower yields of 2a with
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lower selectivity (entries 4 and 5, respectively). Further increasing the molar ratio to 1:8
resulted in less satisfactory results, suggesting that the optimal ratio of Rh/phosphate was
1:3 (entry 6). Of note, when we lowered the pressure of syngas (CO/H2 = 1:1) from 4.0 to
2.0 MPa, a trace amount of 2a was detected (entries 7 and 8).

Table 2. Optimization of Rh-catalyzed regioselective hydroformylation of styrene with P6 a.
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1 1/3 30 4.0 toluene 96 25.4:1
2 1/3 40 4.0 toluene 92 12.1:1
3 1/3 50 4.0 toluene 87 6.7:1
4 1/2 30 40 toluene 90 19.5:1
5 1/6 30 4.0 toluene 31 20.1:1
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a Reaction conditions: 1a (3.0 mmol), [Rh(COD)Cl]2 (0.1 mol %), P6 (0.3–0.8%), organic solvent (25 mL), syngas
(CO/H2 = 1:1). b Determined using GC. c Rh(acac)(CO)2 (0.1 mol%), d RhCl3 (0.1 mol%).

In addition, we examined the influence of various organic solvents. The transition
to THF as the solvent slightly decreased the selectivity towards the branched product 2a
(entry 9), while the yield of 2a and regioselectivity did not benefit from other solvents such
as Et2O and DCM (entries 10 and 11). We changed different Rh catalysts in the desired
hydroformylation reaction and found that the comparable results were obtained, when
Rh(acac)(CO)2 was treated as the catalyst (entry 12) and RhCl3 significantly reduced the
yield of 2a, despite with good regioselectivity (entry 13).

With the optimal reaction conditions in hand, we next explored the scope of the
Rh-catalyzed regioselective hydroformylation. This is depicted in Scheme 2. In general,
styrene bearing diverse substituents at the para, meta, or ortho positions on the benzyl ring
(1b–1u) were accommodated well to afford the corresponding products 2b–2u in good-to-
excellent yields (88–95%) with high regioselectivities (b/l = 11.3:1–39:1). Notably, mono-
substituted styrenes with electron-withdrawing groups, including fluoro (1b–1d), chloro
(1e–1g), bromo (1h–1j), and nitro groups (1k), showed comparatively higher reactivities
and regioselectivities than those with electron-donating groups, such as methyl (1l–1n),
iso-butyl (1o), tert-butyl (1p), hydroxyl (1q), and methoxyl (1r). Moreover, the side reactions,
for instance, hydrogenation or hydrogenolysis, were not involved, and the possible by-
products were not detected with GC analysis in 2b–2k. Furthermore, disubstituted styrenes
with dimethyl and dimethoxy groups also performed well under standard conditions,
producing the target branched aldehydes 2s and 2t with commendable regioselectivities
(b/l = 16.4:1–11.3:1) with 91% and 89% yields, respectively. Polyarene styrene derivative
was successfully transformed into the aldehyde product 2u with a 92% yield and a b/l ratio
of 20.9:1.
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(CO/H2 = 1:1); all yields were isolated yields; b/l ratios were determined using GC.

To elucidate the possible reaction mechanism, we conducted a series of control ex-
periments as depicted in Scheme 3a. In the absence of rhodium catalyst, the aldehyde
products were not detected and lower regioselectivity was observed without P6. When
the reaction progress was monitored with offline analysis of time aliquots, we noticed a
linear relationship between the reaction time and yield of 2a (Scheme 3b). Furthermore,
deuterium labeling experiments (Scheme 3c) were also carried out to reveal the possible
role of the phosphate ligand P6 in the catalytic cycle. First, the KIE of C1/C2 deuterated
styrene was determined as 1.57. Then, we conducted the hydroformylation under a deu-
terium/hydrogen atmosphere and found that 49% deuterium labeled aldehyde 2aD’ was
detected under standard conditions, but a relatively lower yield was obtained without P6.
This disparity provided support for the accelerated hydrogenolysis of Rh-acyl species (VI)
into Rh-H species (II) [53,54].
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With the developed methods of continuous variation at a concentration of 0.6 mol%,
we observed a liner correlation between the reactivity and the P6/TPP ratio (Table S1).
The competing experiment showed that the coordination ability of P6 is weaker than TPP.
We also monitored the formation of Rh/P6 complex in solution state via NMR analysis.
Unfortunately, the chemical shift of 31P of P6 did not show significant differences after
stirring with [Rh(COD)Cl]2. In the IR spectra, a shift of the P=O stretching band from
1203.4 to 1210.5 cm−1 was observed (Scheme 3d). This shift indicated a possible weak
coordination of the phosphine oxide group to the Rh. Moreover, we successfully detected
the [Rh(COD)P6] and [Rh(CO)2P6] species, respectively, via ESI-HRMS by simply mixing
[Rh(COD)Cl]2 with P6 in toluene under a nitrogen and CO atmosphere (Scheme 3e).
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Based on the precedent research and our experimental evidence, we proposed the
mechanism of the regioselective Rh-catalyzed hydroformylation. As showed in Scheme 4,
[Rh(COD)Cl]2 reacted with syngas to form rhodium complex (I) assisted by ligand, which
was rapidly transformed into complex (II) via the release of one CO molecule. Subsequently,
complex (II) coordinated with styrene to generate complex (III), with the hydride of
rhodium complex (III) favoring attack on the C1 carbon atom of styrene over the C2 carbon
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atom, resulting in excellent regioselectivity. Following another coordination of CO and
hydrolysis by H2, branched product 2a was obtained and complex (II) was regenerated.
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3. Materials and Methods

All commercial regents were used directly without further purification and solvents
were dried according to standard procedures. NMR spectra were recorded on a Bruker
ADVANCE III (400 MHz) spectrometer. CDCl3 or DMSO-d6 were the solvents used for
the NMR analysis, with tetramethylsilane as the internal standard. Data are reported
as follows: chemical shift [multiplicity (br = broad, s = singlet, d = doublet, t = triplet,
m = multiplet), coupling constant(s) in Hertz, integration]. GC-MS analysis was carried out
on Angilent 7820A GC system and Angilent 5977B MSD. HRMS were recorded on a Bruker
micrOTOF spectrometer (ESI). IR spectra were carried out on a ThermoFisher NICOLET
iS10 IR spectrometer.

3.1. Synthesis of the Phosphates
3.1.1. Synthesis of (R)-P4 [35,37,55,56]
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The (R)-(+)-1,1′-bi-2-naphthol (858 mg, 3 mmol) and Et3N (1.2 mL, 9 mmol) were
dissolved in dry CH2Cl2 (10 mL), and then phenyl dichlorophosphate (756 mg, 3.6 mmol)
was added dropwise under argon at 0 ◦C. The reaction was allowed to warm to room
temperature and stirred overnight. After that, the solid was removed via filtration. The
filtrate was concentrated and purified using flash column chromatography (CH2Cl2/PE) to
obtain product P4 as a white solid (1.14 g, 90% yield). 1H NMR (400 MHz, CDCl3) δ 7.96 (d,
J = 8.9 Hz, 1H), 7.90 (d, J = 8.9 Hz, 1H), 7.85 (d, J = 8.2 Hz, 2H), 7.55 (d, J = 8.9 Hz, 1H),
7.37 (q, J = 3.0 Hz, 3H), 7.29–7.18 (m, 8H), 7.14–7.09 (m, 1H).
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3.1.2. Synthesis of (R, R)-P5
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Under a nitrogen atmosphere, to a solution of S1 (36.6 mg, 0.1 mmol) and S2 (43.8 mg,
0.1 mmol) in anhydrous CH2Cl2 (10 mL), Et3N (30 mg, 0.3 mmol) was added at 0 ◦C.
The reaction was stirred at room temperature overnight. The solvent was removed under
vacuum and the residue was purified using flash column chromatography (CH2Cl2/PE)
to obtain P7 as a white solid (616 mg, 80% yield). 1H NMR (400 MHz, CDCl3) δ 8.10 (t,
J = 9.3 Hz, 2H), 7.90 (d, J = 8.2 Hz, 1H), 7.87–7.79 (m, 3H), 7.71 (d, J = 7.9 Hz, 1H), 7.52 (m,
3H), 7.44–7.37 (m, 2H), 7.24 (m, 5H), 7.15–7.09 (m, 1H), 6.98 (m, 3H), 6.88 (d, J = 5.8 Hz,
1H), 6.80 (m, 5H), 6.60–6.53 (m, 1H), 6.28 (m, 5H). 13C NMR (100 MHz, CDCl3) δ 151.4,
146.3, δ 146.2 (d, J = 8.2 Hz), 144.4 (d, J = 11.7 Hz), 144.3, 143.5 (d, J = 8.9 Hz), 143.4, 138.9,
138.6, 138.5, 138.4, 133.3, 133.0, 132.9 (d, J = 2.0 Hz), 132.8, 131.1, 130.3, 129.4, 128.2, 127.9,
127.8, 127.2, 127.0, 126.8, 126.8, 126.7, 126.6, 126.5, 126.4, 125.7, 125.6, 125.6 (d, J = 2.2 Hz),
125.5, 125.3, 125.1, 124.4 (d, J = 2.6 Hz), 124.3, 123.7, 123.6, 1123.5 (d, J = 3.5 Hz), 122.9, 122.8,
122.7, 121.6 (d, J = 2.0 Hz), 121.0, 120.7 (d, J = 2.1 Hz). 120.4, 119.3, 118.5, 114.7. 31P NMR
(161 MHz, CDCl3) δ −0.28.

3.1.5. Synthesis of (S, R)-P8
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overnight. The solvent was removed under vacuum and the residue was purified using
flash column chromatography (CH2Cl2/PE) to obtain product P11 as a white solid (466 mg,
75% yield). 1H NMR (400 MHz, CDCl3) δ 8.01 (d, J = 8.9 Hz, 1H), 7.94 (t, J = 7.9 Hz, 2H),
7.85 (d, J = 8.9 Hz, 1H), 7.57 (d, J = 8.9 Hz, 1H), 7.53–7.43 (m, 3H), 7.30 (m, 5H), 7.16 (d,
J = 7.4 Hz, 1H), 7.06 (d, J = 8.9 Hz, 1H), 6.87 (t, J = 7.6 Hz, 1H), 6.76 (d, J = 7.3 Hz, 1H),
6.35 (d, J = 7.9 Hz, 1H), 3.15 (dd, J = 15.9, 7.5 Hz, 1H), 2.73 (dd, J = 15.5, 6.1 Hz, 2H), 2.65 (s,
1H), 2.57 (s, 1H), 2.29 (dd, J = 15.1, 7.6 Hz, 1H), 1.47 (m, 4H), 1.28–1.19 (m, 2H); 13C NMR
(100 MHz, CDCl3) δ 152.7, δ 148.3 (d, J = 6.6 Hz), 147.7, 147.1 (d, J = 11.6 Hz), 146.2 (d,
J = 8.7 Hz), 144.9, 135.7 (d, J = 8.1 Hz), 133.3, 132.2 (d, J = 7.7 Hz), 131.8, 131.6, 131.5, 131.1,
129.2, 128.5 (d, J = 8.9 Hz), 128.0, 127.1, 126.9, 126.8 (d, J = 6.9 Hz), 125.9, 123.0, 121.4 (d,
J = 2.3 Hz), 120.9 (d, J = 2.3 Hz), 120.5 (d, J = 2.9 Hz), 120.0 (d, J = 3.4 Hz), 118.3, 117.2, 115.3,
61.1, 44.4, 43.0, 37.8, 36.0, 25.8, 23.5, 17.2; 31P NMR (161 MHz, CDCl3) δ −2.93. HRMS (ESI)
calcd for [C40H31NaO5P, M+Na]+: 645.1801, found: 645.1791.

3.2. Deuteration of Styrene
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9.72 (s, 1H), 7.44 (dd, J = 7.5, 1.8 Hz, 1H), 7.31–7.22 (m, 2H), 7.14 (dd, J = 7.3, 2.1 Hz, 1H), 
4.14 (q, J = 7.1 Hz, 1H), 1.44 (d, J = 7.1 Hz, 3H). 

A mixture of RuHCl(CO)(PPh3)3 (38.1 mg, 0.04 mmol, 2.0 mol%), styrene (230 µL,
2.0 mmol) and D2O(1 mL) in dioxane (4 mL) in a stoppered Schlenck tube was stirred and
heated at 100 ◦C for 5 h. The reaction mixture was cooled to room temperature and then
extracted with diethyl ether. The combined organic extract was washed with water and
a brine solution and dried over MgSO4. The crude product was purified using column
chromatography on silica gel using n-hexane as the eluent to obtain the desired product
1aD as a colorless oil (128 mg, 60% yield). Theoretical percentage of deuteration at the vinyl
position = 97%. 1H NMR (400 MHz, CDCl3) δ 7.43–7.41 (m, 2H), 7.36–7.31(m, 2H), 7.28–7.24
(m, 1H), 6.71 (brs, 0.03H), 5.74–5.73 (m, 0.03H), 5.23(m, 0.03H).

3.3. General Procedure for Hydroformylation

The hydroformylation reactions were conducted in a batch reactor (Shanghai Yanzheng).
In a typical run, 0.001 mmol of Chloro(1,5-cyclooctadiene)rhodium(I) dimer, 0.006 mmol
of ligand (Rh/P = 1:3) was dissolved in 25 mL toluene, and then the solution of substrate
(3.0 mmol) was added. Subsequently, the reactor was charged with 4.0 MPa syngas
(CO/H2 = 1:1) for 12–48 h at 30 ◦C. The products were analyzed with GC and GC-MS.
The yield and the regioselectivity of aldehydes were identified using GC. The mixture was
concentrated under reduced pressure. Then, the crude product was purified using flash
chromatography on silica gel to obtain the desired aldehyde.

2-(2-Fluorophenyl)propanal (2b) Colorless oil, 94% yield. 1H NMR (400 MHz, CDCl3) δ
9.67 (d, J = 0.7 Hz, 1H), 7.22 (m, 1H), 7.11–7.01 (m, 3H), 3.84 (q, J = 7.1 Hz, 1H), 1.38 (d,
J = 7.2 Hz, 3H).
2-(3-Fluorophenyl)propanal (2c) Colorless oil, 94% yield. 1H NMR (400 MHz, CDCl3) δ
9.56 (d, J = 1.4 Hz, 1H), 7.27–7.21 (m, 1H), 6.92–6.87 (m, 2H), 6.85–6.81 (m, 1H), 3.54 (q,
J = 6.4 Hz, 1H), 1.34 (d, J = 7.1 Hz, 3H).
2-(4-fluorophenyl)propanal (2d) Colorless oil, 93% yield. 1H NMR (400 MHz, CDCl3) δ
9.67 (d, J = 1.3 Hz, 1H), 7.38–7.34 (m, 2H), 7.18–7.14 (m, 2H), 3.64 (q, J = 6.7 Hz, 1H), 1.45 (d,
J = 7.1 Hz, 3H).
2-(2-chlorophenyl)propanal (2e) Colorless oil, 95% yield. 1H NMR (400 MHz, CDCl3) δ
9.72 (s, 1H), 7.44 (dd, J = 7.5, 1.8 Hz, 1H), 7.31–7.22 (m, 2H), 7.14 (dd, J = 7.3, 2.1 Hz, 1H),
4.14 (q, J = 7.1 Hz, 1H), 1.44 (d, J = 7.1 Hz, 3H).
2-(3-chlorophenyl)propanal (2f) Colorless oil, 94% yield. 1H NMR (400 MHz, CDCl3) δ
9.68 (d, J = 1.3 Hz, 1H), 7.35–7.28 (m, 2H), 7.23 (d, J = 1.9 Hz, 1H), 7.11 (m, 1H), 3.64 (q,
J = 6.7 Hz, 1H), 1.46 (d, J = 7.1 Hz, 3H).
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2-(4-Chlorophenyl)propanal (2g) Colorless oil, 93% yield. 1H NMR (400 MHz, CDCl3) δ
9.64 (d, J = 1.3 Hz, 1H), 7.36–7.31 (m, 2H), 7.16–7.12 (m, 2H), 3.62 (q, J = 7.1 Hz, 1H), 1.42 (d,
J = 7.1 Hz, 3H).
2-(2-bromophenyl)propanal (2h) Colorless oil, 91% yield. 1H NMR (400 MHz, CDCl3) δ
9.65 (s, 1H), 7.55 (dd, J = 8.0, 1.3 Hz, 1H), 7.27–7.22 (m, 1H), 7.09 (m, 1H), 7.03 (dd, J = 7.7,
1.7 Hz, 1H), 4.08 (q, J = 7.1 Hz, 1H), 1.34 (d, J = 7.1 Hz, 3H).
2-(3-bromophenyl)propanal (2i) Colorless oil, 94% yield. 1H NMR (400 MHz, CDCl3) δ
9.50 (d, J = 1.3 Hz, 1H), 7.29–7.23 (m, 2H), 7.10 (t, J = 7.8 Hz, 1H), 7.00 (m, 1H), 3.47 (q,
J = 7.1, 6.4 Hz, 1H), 1.28 (d, J = 7.1 Hz, 3H).
2-(4-bromophenyl)propanal (2j) Colorless oil, 93% yield. 1H NMR (400 MHz, CDCl3) δ
9.66 (d, J = 1.3 Hz, 1H), 7.53–7.47 (m, 2H), 7.12–7.05 (m, 2H), 3.62 (q, J = 7.1, 6.7 Hz, 1H),
1.44 (d, J = 7.1 Hz, 3H).
2-(4-nitrophenyl)propanal (2k) Yellow solid, m.p. 39.5–40.1 ◦C, 94% yield. 1H NMR
(400 MHz, CDCl3) δ 9.65 (d, J = 1.1 Hz, 1H), 8.17 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 8.7 Hz, 2H),
3.73 (q, J = 7.1 Hz, 1H), 1.45 (d, J = 7.2 Hz, 3H).
2-(o-Tolyl)propanal (2l) Colorless oil, 92% yield. 1H NMR (400 MHz, CDCl3) δ 9.52 (s,
1H), 7.12–7.06 (m, 3H), 6.92 (d, J = 6.4 Hz, 1H), 3.72 (q, J = 7.0 Hz, 1H), 2.24 (s, 3H), 1.29 (d,
J = 8.3 Hz, 3H).
2-(m-Tolyl)propanal (2m) Colorless oil, 92% yield. 1H NMR (400 MHz, CDCl3) δ 9.59 (d,
J = 1.0 Hz, 1H), 7.18 (t, J = 7.9 Hz, 1H), 7.03 (d, J = 7.5 Hz, 1H), 6.92 (d, J = 6.6 Hz, 2H),
3.51 (q, J = 7.0 Hz, 1H), 2.27 (s, 3H), 1.34 (d, J = 7.1 Hz, 3H).
2-(p-Tolyl)propanal (2n) Colorless oil, 92% yield. 1H NMR (400 MHz, CDCl3) δ 9.66 (d,
J = 1.3 Hz, 1H), 7.20 (d, J = 7.9 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 3.60 (q, J = 6.9 Hz, 1H),
2.35 (s, 3H), 1.42 (d, J = 7.1 Hz, 3H).
2-(4-iso-Butylphenyl)propanal (2o) Colorless oil, 92% yield. 1H NMR (400 MHz, CDCl3) δ
9.55 (d, J = 1.4 Hz, 1H), 7.06–6.98 (m, 4H), 3.49 (q, J = 6.1 Hz, 1H), 2.36 (d, J = 7.2 Hz, 2H),
1.75 (m, 1H), 1.31 (d, J = 7.1 Hz, 3H), 0.80 (d, J = 6.6 Hz, 6H).
2-(4-(tert-Butyl)phenyl)propanal (2p) Colorless oil, 88% yield. 1H NMR (400 MHz, CDCl3)
δ 9.71 (d, J = 1.3 Hz, 1H), 7.44 (d, J = 8.3 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 3.65 (q, J = 7.0 Hz,
1H), 1.47 (d, J = 7.1 Hz, 3H), 1.36 (s, 9H).
2-(4-Hydroxyphenyl)propanal (2q) Colorless oil, 92% yield. 1H NMR (400 MHz, CDCl3) δ
9.53 (d, J = 1.0 Hz, 1H), 6.96 (d, J = 8.4 Hz, 2H), 6.77 (d, J = 8.4 Hz, 2H), 6.57 (s, 1H), 3.50 (q,
J = 6.8 Hz, 1H), 1.31 (d, J = 7.1 Hz, 3H).
2-(4-Methoxyphenyl)propanal (2r) Colorless oil, 91% yield. 1H NMR (400 MHz, CDCl3) δ
9.53 (d, J = 1.4 Hz, 1H), 7.05–7.00 (m, 2H), 6.84–6.79 (m, 2H), 3.69 (s, 3H), 3.48 (q, J = 7.1 Hz,
1H).
2-(2,5-dimethylphenyl)propanal (2s) Colorless oil, 91% yield. 1H NMR (400 MHz, CDCl3)
δ 9.71 (d, J = 1.1 Hz, 1H), 7.19 (d, J = 7.7 Hz, 1H), 7.08 (d, J = 9.1 Hz, 1H), 6.92 (s, 1H),
3.91–3.84 (m, 1H), 2.39 (s, 3H), 2.38 (s, 3H), 1.46 (d, J = 7.0 Hz, 3H).
2-(3,4-dimethoxyphenyl)propanal (2t) Colorless oil, 89% yield. 1H NMR (400 MHz, CDCl3)
δ 9.54 (d, J = 1.4 Hz, 1H), 6.78 (d, J = 8.2 Hz, 1H), 6.66 (dd, J = 8.2, 2.0 Hz, 1H), 6.60 (d,
J = 2.0 Hz, 1H), 3.77 (s, 3H), 3.77 (s, 3H), 3.51–3.44 (m, 1H), 1.32 (d, J = 7.1 Hz, 3H).
2-(naphthalen-2-yl)propanal (2u) White solid, m.p. 87.0–88.2 ◦C, 92% yield. 1H NMR
(400 MHz, CDCl3) δ 9.80 (d, J = 1.4 Hz, 1H), 7.92–7.86 (m, 3H), 7.72 (s, 1H), 7.60–7.51 (m,
2H), 7.36 (dd, J = 8.4, 1.8 Hz, 1H), 3.82 (q, J = 6.6 Hz, 1H), 1.59 (d, J = 7.1 Hz, 3H).

4. Conclusions

In this study, we successfully developed a novel hybrid phosphate as a promoter for
rhodium-catalyzed hydroformylation of styrenes, facilitating the synthesis of a variety
of branched aldehydes with excellent yields and impressive regioselectivities. Moreover,
this hybrid phosphate exhibited exceptional stability under standard conditions. Further-
more, mechanistic studies highlighted the weak coordination of rhodium catalyst, with
phosphate likely accelerating the hydrogenolysis step in the catalytic cycle. The potential
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of application in hydroformylation reactions along with a comprehensive analysis of the
reaction mechanism are currently ongoing in our lab.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29092039/s1, Table S1. Effect of the concentration of
TPP and P6. Table S2. Competition isotope effect of deuterated styrene. Figure S1. GC spectra of
reaction crude sample. Figure S2. HRMS-ESI spectra of Rh(COD)P6. Figure S3. HRMS-ESI spectra of
Rh(CO)2P6. IR spectra: Figures S4–S55. Scheme S1. Competition Isotope Effect of deuterated styrene.
Scheme S2. Competition isotope effect under H2/D2 atmosphere. References [35,37,48,55–69] are
cited in the supplementary materials.
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