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Abstract: The aim of this study is to solve the problems of the complicated pretreatment and high an-
alytical cost in the detection technology of trace drugs and their metabolites in municipal wastewater.
A high-performance magnetic sorbent was fsynthesized for the enrichment of trace drugs and their
metabolites in wastewater to develop a magnetic solid-phase extraction pretreatment combined with
the acoustic ejection mass spectrometry (AEMS) analytical method. The magnetic nanospheres were
successfully prepared by magnetic nanoparticles modified with divinylbenzene and vinylpyrrolidone.
The results showed that the linear dynamic range of 17 drugs was 1–500 ng/mL, the recovery was
44–100%, the matrix effect was more than 51%, the quantification limit was 1–2 ng/mL, and the MS
measurement was fast. It can be seen that the developed magnetic solid-phase extraction (MSPE)
method is a good solution to the problems of the complicated pretreatment and analytical cost
in the analysis of drugs in wastewater. The developed magnetic material and acoustic excitation
pretreatment coupled with mass spectrometry analysis method can realize the low-cost, efficient
enrichment, and fast analysis of different kinds of drug molecules in urban sewage.

Keywords: analysis technology of drugs in urban sewage; magnetic solid-phase extraction; acoustic
ejection mass spectrometry analysis method

1. Introduction

The analysis of drugs in waste water can be used to assess the drug consumption of
specific populations (workplaces, schools, prisons, etc.) in large regions (cities or countries)
and small regions, and can be used to obtain trends in the types of drugs consumed or
information on new types of drugs through short-term or long-term sampling and testing.
The results of the monitoring are of high reference value for the investigation and seizure
of drug manufacturing laboratories, the fight against drug crimes, and the early warning of
new psychoactive substances [1–5].

Most of the current research on illegal drugs and their metabolites uses active sam-
pling methods, and then the collected water samples are brought back to the laboratory
for pretreatment and instrumental analysis [6–9]. In various laboratories, solid-phase ex-
traction (SPE) is widely used to extract and enrich the drugs in water samples and liquid
chromatography–mass spectrometry is commonly used to detect the analytes. In the pro-
cess of solid-phase extraction, due to the differences in the physical and chemical properties
of drugs, different types of solid-phase extraction columns are used, especially hydrophilic,
lipophilic reversed-phase adsorption column Oasis HLBTM, and cation-exchange solid-
phase extraction column Oasis MCXTM [10,11]. However, this technique takes 0.5–3 h to
manually process a sample when dealing with urban wastewater samples of about 50 mL
to 100 mL, low levels (ng/L)of drug toxins, and complex matrix interferences. Especially
in the case of a large number of sewage samples being tested, the SPE method inevitably
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requires activation, buffer activation, drenching, drying, elution, nitrogen blowing, and
volume fixing before entering the chromatographic analysis, which is a considerable con-
sumption of time and economic costs. Therefore, it is difficult for the current conventional
pretreatment methods to meet the actual needs of the rapid analysis of trace drugs in urban
wastewater, and there is an urgent need to use scientific and efficient pretreatment methods
and highly sensitive detection instruments to establish a rapid analytical method [12–18].

In recent years, magnetic solid-phase extraction (MSPE) has been applied more to the
pretreatment of complex samples in the fields of the environment, food, and biomedicine.
Due to its advantages of a simple operation, short extraction time, low use of organic
reagents, strong adsorption capacity, and easy automation, MSPE has attracted the attention
of many analytical researchers and has achieved very good application results [19–22].
MSPE has three main advantages: first, it makes the extraction process simple, for it does
not require expensive equipment, and the magnetic sorbents can be separated in a short
time to adsorb trace analytes in a sample with the volume more than 50 mL; second,
the amount of chemical substances used in MSPE is relatively reduced, and there is no
secondary pollution; and third, it can not only extract the analytes in solution but can
also adsorb analytes in suspension. Because the impurities in the sample are generally
antimagnetic substances, it can effectively avoid the interference of impurities. Therefore,
MSPE is widely applied to the separation and enrichment of samples in the fields of the
environment, food, biology, medicine, and so on. However, the one-step adsorption will
result in more matrix interference and lower selectivity, which can be compensated for by
the chromatograph or mass spectrometer instrument. This study will develop magnetic
materials and establish pretreatment and analytical methods for common drugs and their
metabolites in wastewater combined a with mass spectrometer instrument.

Liquid chromatography–mass spectrometry has high specificity and sensitivity and
can meet the requirements of scientific applications, especially for samples with a low con-
centration of analytes [23]. However, liquid chromatography–mass spectrometry analytical
techniques usually use gradient elution, which is time-consuming, and the analysis time of
one injection may exceed 10–30 min. This study also wants to try a new way to save time
on chromatography. The Echo® MS system (Figure 1), Acoustic Ejection Mass Spectrometry
(AEMS), is a integrated system consisting of acoustic droplet ejection technology (ADE),
an open-port probe sampling interface (OPI), and a powerful quantitative SCIEX Triple
Quad™ 6500+ system (with electrospray ionization source). The Echo® MS system is opti-
mized for rapid sampling and analysis at 1 sample per second, which is hundreds of times
faster per sample than conventional liquid chromatography mass spectrometry (10 min per
sample). The Echo® MS system is compatible with standard 384-well or 1536-well injection
plates, which are suitable for rapid, high-throughput sample testing. The Echo® MS system
eliminates the need for conventional liquid chromatography consumables such as columns
and pre-columns [24–26].
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Wastewater samples are commonly thought to be difficult to analyze because of their
complex matrix. In this study, magnetic solid-phase extraction (MSPE) technology was
combined with Echo® MS system detection technology to establish pretreatment and
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analytical methods for the rapid analysis of drugs and their metabolites in wastewater.
In our study, the lack of a chromatographic technique could presumably lead to isobaric
interferents and ionization suppression, so we firstly apply magnetic nanoparticles with
adsorption for illegal drugs also including other weakly polar and non-polar organics to
partly decrease the matrix effects, and secondly make use of the interference resistance of
an acoustic mass spectrometer coupled to a QqQ to increase the selectivity. Combining a
conventional Echo® MS with high-throughput magnetic solid-phase extraction technology
not only saves preprocessing time but also saves analysis time. This study is the first report
of the integration of the magnetic solid-phase sample pre-concentration with the Echo® MS
system to achieve both high-throughput and high-sensitivity simultaneously.

2. Results
2.1. Magnetic Solid-Phase Extraction Technique and Characterization of Magnetic Materials

Magnetic solid-phase extraction is a kind of adsorption coating with magnetic particles
as the core and the outer surface modified to have a strong adsorption effect on the analyte.
In the magnetic solid-phase extraction process, the magnetic adsorbent is not directly filled
into the adsorption column but is added to the solution or suspension of the sample; the
analyte is adsorbed to the dispersed magnetic adsorbent surface, and under the action of
an external magnetic field, the analyte can be separated from the sample matrix.

Figure 2 shows the hysteresis curve of Fe3O4, Fe3O4@SiO2-MA, and Fe3O4@SiO2-
MA@PLS at room temperature. As can be seen, the three curves have a similar shape
and symmetry about the origin. The saturation magnetization value was found to be
52.6 emu·g−1 for Fe3O4@SiO2-MA and 67.4 emu·g−1 for Fe3O4. This difference might be
attributed to the non-magnetic SiO2-MA shell surrounding the magnetite particles. After
divinylbenzene and vinylpyrrolidone were grafted on Fe3O4@SiO2-MA, the saturation
magnetization value for Fe3O4@SiO2-MA@PLS was 38.7 emu·g−1. This indicated the
formation of a PLS shell on the surface of the SiO2-MA shell.
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Figure 3 shows the Fourier transform infrared spectroscopy that was used to char-
acterize the chemical interaction between Fe3O4 and functional groups. As can be seen
from Figure 3, the adsorption band of Fe-O is at 567 cm−1 (Figure 3a), which is the char-
acteristic peak of Fe3O4 nanoparticles. The two bands at 952 and 1091 cm−1 (Figure 3b)
are the stretching vibration of Si-O bonds of the SiO2 shell. These prove that the SiO2
shell is linked to the surface of the magnetic Fe3O4. In Figure 3c, the peak of 1091 cm−1 is
almost invisible, and peaks in the region of 1100–1400 cm−1 are attributed to C-H and C-C
stretching vibrations from divinylbenzene and vinylpyrrolidone. These results indicate
that the divinylbenzene and vinylpyrrolidone are successfully chemisorbed on the surface
of Fe3O4@SiO2-MA@PLS nanoparticles.
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The detailed morphological and structural features of the prepared Fe3O4@SiO2-
MA@PLS nanoparticles were characterized using SEM. Figure 4 indicates that nanoparticles
are well-dispersed with the average size of 200 nm.
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2.2. Method Validation

Figure 5 is a representative synthetic chart created by Echo® MS system software
(SCIEX OS 1.6.1) overlaying the chromatograms with 17 colors together obtained by the
corresponding methods of 17 drugs in one experiment turn (not the results of all samples),
where each method takes about 6 min and the total of all methods takes 6 × 17 = 102 min.
For each analyte method, 0.6~2.3 min was for linear analysis, 2.4~3.2 min was for blank
samples, and 3.3~5.8 min was for recovery and matrix effect analysis.

The linear range, the linear regression equation, the coefficient, and the LOQs are
shown in Table 1, and demonstrate that the linear range of the 17 drugs was 1–500 ng/mL,
and the limit of quantification was 1–2 ng/mL.

The precision results indicated that the RSD values of the peak areas of the 17 drugs
were less than 5%, and the detailed data are shown in Table 2 below. Figure 6a,b show typi-
cal chromatograms of methamphetamine-D5 and methamphetamine in Sample 5, Sample 6,
Sample 7 for six consecutive injections. The examination of the matrix effects and extraction
recovery of the 17 drugs are listed in Table 3, which shows that this MDSPE method had an
acceptable matrix effect and recovery except for Norketamine and Cathinone.
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Table 1. Linear range and limit of quantification for 17 drugs.

No Drugs Linear Range
(ng/mL)

LOQ
(ng/mL) Linear Regression Equation R2

1 Amphetamine 2–500 2 y = 0.00200 x + −8.92197e−4 0.99968

2 Methamphetamine 1–250 1 y = 0.00625 x + 0.00113 0.99603

3 O6-monoacetylmorphine 2–500 2 y = 0.00463 x + 3.36531e−4 0.99827

4 Morphine 2–500 2 y = 0.00218 x + 1.56023e−4 0.99509

5 Ketamine 1–500 1 y = 0.00318 x + 0.00102 0.99772

6 Norketamine 2–500 2 y = 0.00256 x + 0.00136 0.99593

7 Cocaine 1–500 1 y = 0.00721 x + 0.00269 0.99694

8 Benzoylecgonine 1–500 1 y = 0.00299 x + 0.00105 0.99501

9 3,4-Methylenedioxyamphetamine 2–500 2 y = 0.04854 x + −0.00804 0.99952

10 3,4-methylenedioxymethamphetamine 2–500 2 y = 0.00244 x + −5.97610e−4 0.99522

11 Cathinone 1–500 1 y = 0.00341 x + 0.00402 0.99550

12 Methcathinone 1–500 1 y = 0.00162 x + −0.00110 0.99264

13 Fentanyl 1–500 1 y = 0.00608 x + −0.00142 0.99910

14 Diazepam 1–500 1 y = 0.00313 x + 0.00316 0.99822

15 Estazolam 1–500 1 y = 0.00394 x + 5.11284e−4 0.99747

16 Methadone 1–500 1 y = 0.00664 x + 0.00565 0.99431

17
N-(1-methoxy-3,3-dimethyl-1-oxobutan-

2-yl)-1-(5-fluoropentyl)-1H-indole-
3-carboxamide

1–500 1 y = 0.02089 x + 0.03709 0.99773



Molecules 2024, 29, 2060 6 of 13

Table 2. Intra-assay precision of samples spiked at 250 ng/mL by MSPE.

No. Drugs
Precision, RSD % (n = 6)

Sample 5 Sample 6 Sample 7

1 Amphetamine 3.4 2.3 2.5
2 Methamphetamine 3.4 3.8 4.5
3 O6-monoacetylmorphine 2.7 3.4 3.4
4 Morphine 1.6 4.9 4.7
5 Ketamine 2.6 2.7 3.7
6 Norketamine 4.0 0.8 4.8
7 Cocaine 4.8 4.8 3.6
8 Benzoylecgonine 1.4 2.5 2.7
9 3,4-Methylenedioxyamphetamine 2.3 3.4 4.1

10 3,4-methylenedioxymethamphetamine 4.4 3.4 3.6
11 Cathinone 1.9 4.3 3.7
12 Methcathinone 2.5 4.1 2.9
13 Fentanyl 4.2 4.6 4.9
14 Diazepam 3.3 4.4 4.5
15 Estazolam 2.1 3.3 1.9
16 Methadone 5.0 4.9 2.3

17
N-(1-methoxy-3,3-dimethyl-1-oxobutan-

2-yl)-1-(5-fluoropentyl)-1H-indole-
3-carboxamide

1.1 3.7 2.0
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Sample 7 (6 consecutive injections) (b).

Table 3. Matrix effects and recoveries for 17 drugs.

No. Drugs
Matrix Effects %

(20 ng/mL) a

(%RSD)

Recoveries %
(20 ng/mL) a

(%RSD)

Matrix Effects %
(100 ng/mL) b

(%RSD)

Recoveries %
(100 ng/mL) b

(%RSD)

Matrix Effects %
(250 ng/mL) c

(%RSD)

Recoveries %
(250 ng/mL) c

(%RSD)

1 Amphetamine 75 (7.1) 85 (4.6) 83 (5.7) 96 (3.1) 88 (6.3) 95 (2.9)

2 Methamphetamine 80 (6.9) 90 (5.2) 89 (6.1) 91 (4.9) 95 (4.3) 92 (3.5)

3 O6-monoacetylmorphine 84 (7.2) 89 (6.2) 92 (6.3) 97 (5.6) 100 (4.9) 99 (5.8)

4 Morphine 79 (8.5) 92 (7.9) 91 (7.2) 97 (5.1) 94 (6.1) 97 (4.3)

5 Ketamine 81 (3.9) 88(3.2) 89 (4.1) 96 (6.3) 91 (3.5) 97 (5.4)

6 Norketamine 82 (8.2) 59 (3.9) 72 (7.8) 67 (7.5) 69 (4.6) 68 (6.3)

7 Cocaine 91 (3.1) 90 (2.9) 93 (4.2) 92 (3.7) 96 (2.3) 93 (1.6)

8 Benzoylecgonine 87 (3.9) 91 (3.1) 84 (2.8) 99 (2.2) 91 (6.4) 95 (4.1)

9 3,4-Methylenedioxyamphetamine 83 (5.6) 87 (3.5) 87 (3.4) 87 (3.1) 92 (4.7) 97 (6.7)

10 3,4-Methylenedioxymethamphetamine 86 (4.8) 83 (3.9) 92 (3.6) 94 (4.8) 91 (5.3) 88 (6.3)

11 Cathinone 67 (9.7) 46 (8.5) 69 (7.2) 56 (7.5) 51 (6.8) 44 (4.3)

12 Methcathinone 63 (7.3) 86 (6.6) 108 (8.9) 82 (6.4) 107 (6.2) 95 (5.2)

13 Fentanyl 86 (3.4) 80 (3.6) 86 (5.1) 93 (4.3) 84 (6.9) 90 (3.1)

14 Diazepam 92 (4.7) 93 (2.5) 95 (4.3) 100 (3.6) 101 (5.1) 95 (4.7)

15 Estazolam 89 (6.3) 93 (2.9) 79 (3.2) 83 (5.1) 89 (3.3) 91 (2.2)

16 Methadone 77 (7.4) 88 (6.2) 90 (6.6) 95 (4.9) 87 (5.6) 92 (7.8)

17
N-(1-methoxy-3,3-dimethyl-1-

oxobutan-2-yl)-1-(5-fluoropentyl)-1H-
indole- 3-carboxamide

78 (5.9) 89 (5.5) 85 (7.8) 91 (4.6) 83 (3.4) 96 (6.1)

a Spiked at 20 ng/mL; b spiked at 100 ng/mL; c spiked at 250 ng/mL.

3. Materials and Methods
3.1. Material and Reagents

Native drug standards and mass-labeled internal standards were obtained from the
third Institute of the Ministry of Public Security (Shanghai, China) and the purity is shown
in Supplementary Materials Table S1. Synthetic magnetic bead reagents were purchased
from Beijing Chemical Industry Co Ltd. (Beijing, China). All chemicals can be used directly
without further purification.
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3.2. Test Instruments and Analytical Methods

The AEMS system was an Echo® MS system with LC-MS grade water as the coupling
fluid, methanol + 0.1% formic acid as the mobile phase, a flow rate of 360 µL/min, and
SP mode (i.e., the sample viscosity is less than that of water) as the injection mode. The
injection volume was 2.5 nL and the mass spectrometer was a SCIEX Triple Quad™ 6500+
system. The curtain gas was 20 psi, the CAD gas was 9 unit, the ionspray voltage was
5500 V, the source temperature was 300 ◦C, the ion source gas1 was 90 psi, and the ion
source gas2 was 45 psi. MRM transition information is shown in Table 4. Scanning electron
micrographs (SEM) were obtained with a S3400N scanning electron microscope (Hitachi,
Tokyo, Japan). Infrared spectra were recorded by a Nicolet 6700 FT-IR spectrophotometer
(Nicolet, Waltham, MA, USA). The magnetic properties were analyzed through a vibrat-
ing sample magnetometer (VSM, PPMS-9) made by Quantum Design, Ltd., San Diego,
CA, USA.

Table 4. MRM transition information of 17 kinds of drugs and their deuterium compounds.

No. Drugs Precursor Ion
(m/z)

Fragment Ion
(m/z)

Declustering
Potential (V)

Collision
Energy (V)

1
amphetamine

136.1 119.1 * 20 13

136.1 91.1 20 23

amphetamine-D5 141.1 124.1 * 20 13

2
methamphetamine

150.1 119.1 * 25 16

150.1 91.1 25 27

methamphetamine-D5 155.2 121.1 * 25 16

3
O6-monoacetylmorphine

328.2 211.1 * 120 34

328.2 165.1 120 50

O6-monoacetylmorphine-D3 331.2 211.1 120 34

4
morphine

286.1 201.1 * 110 36

286.1 165.1 110 57

morphine-D3 289.2 201.1 * 110 36

5
ketamine

238.1 207.1 * 35 19

238.1 125 35 35

ketamine-D4 242.1 211.1 * 35 19

6
Norketamine

224.1 207.1 * 30 18

224.1 125 30 35

Norketamine-D4 228.1 211.1 * 30 18

7
Cocaine

304.2 182.1 * 80 27

304.2 150.1 80 32

Cocaine-D3 307.2 185.1 * 80 27

8
Benzoylecgonine

290.1 168.1 * 70 26

290.1 105 70 36

Benzoylecgonine-D3 293.1 171.1 * 70 26

9
3,4-Methylenedioxyamphetamine

180.1 133.1 * 15 25

180.1 105.1 15 30

3,4-Methylenedioxyamphetamine-D4 184 167 * 15 16
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Table 4. Cont.

No. Drugs Precursor Ion
(m/z)

Fragment Ion
(m/z)

Declustering
Potential (V)

Collision
Energy (V)

10
3,4-methylenedioxymethamphetamine

194.1 163.1 * 30 16

194.1 105.1 30 32

3,4-methylenedioxymethamphetamine-D4 198.1 167.1 * 30 16

11
Cathinone

150.4 117.2 * 30 31

150.4 132.2 30 17

Cathinone-D5 155.3 122 * 40 31

12
Methcathinone

164.1 105.1 * 70 31

164.1 131.1 70 26

Methcathinone-D5 169.1 136.1 * 70 31

13
Fentanyl

337.2 188.3 * 90 31

337.2 105.2 90 45

Fentanyl-D5 342.2 105 * 90 45

14
Diazepam

285.1 193 * 125 44

285.1 154 125 35

Diazepam-D5 290 198 * 125 44

15
Estazolam

295.2 267.3 * 130 32

295.1 205.2 130 54

Estazolam-D5 300 272 * 130 34

16
methadone

310.2 265.2 * 40 21

310.2 105.1 40 34

methadone-D10 320 275 * 40 21

17

N-(1-methoxy-3,3-dimethyl-1-oxobutan-2-yl)-
1-(5-fluoropentyl)- 1H-indole-3-
carboxamide(5F-MDMB-PICA)

377 232 * 110 20

377 144 110 54

N-(1-methoxy-3,3-dimethyl-1-oxobutan-2-yl)-
1-(5-fluoropentyl)-

1H-indole- 3-carboxamide-D4
381 236 * 110 20

* Quantifier ion.

3.3. Synthesis of Magnetic Adsorbents

Amounts of 1 g of ferric chloride hexahydrate, 3 g of sodium acetate, and 0.2 g of
sodium citrate were added to 100 mL of ethylene glycol and stirred to dissolve for 30 min,
then added to a 200 mL polytetrafluoroethylene reactor and placed in an oven at 200 ◦C
for 12 h. After being cooled to room temperature, the magnetic separation was washed
three times repeatedly using ethanol and deionized water to obtain magnetic tetraferric
oxide particles (Fe3O4). In total, 1 g of 400 nm Fe3O4 was dispersed in 200 mL of ethanol
in ultrasonic treatment, and then 50 mL of water was added to the above dispersion by
ultrasonic treatment for 5 min. After stirring for 30 min, 2 mL of concentrated ammonia was
added to the solution and mixed thoroughly for 20 min; then 5 mL of tetraethyl orthosilicate
and 1.5 mL methacrylic acid-3-(trimethoxymethylsilyl) propyl ester were added drop by
drop, and the reaction was continued for 12 h at room temperature to obtain double-bond
modified magnetic silica microspheres (Fe3O4@SiO2-MA) [27]. The magnetic separation
was cleaned three times with ethanol and deionized water repeatedly, and then the products
were placed in a vacuum at 60 ◦C. The magnetic separation was washed three times with
ethanol and deionized water, and particles were dried in a vacuum oven at 60 ◦C. In total,
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2 g of the above particles was dispersed in a 1000 mL round-bottomed flask and added to
500 mL of acetonitrile, and then 3.6 mL of divinylbenzene, 7.2 mL of vinylpyrrolidone, and
0.4 g of 2,2-azobisisobutyronitrile were added to the solution. The mixture was allowed
to react for 1 h with mechanical stirring under nitrogen protection. Then, the temperature
was set to 75 ◦C and the mixture was allowed to continue to react at that temperature for
8 h. The magnetic separation was washed three times with deionized water and ethanol,
and finally, the product (Fe3O4@SiO2-MA@PLS) was dried at room temperature.

3.4. Wastewater Pretreatment Method

As shown in Figure 7, 20 mg of MSPE sorbent was added to a centrifuge tube contain-
ing 50 mL of wastewater samples (including mass-labeled internal standards), sonicated for
1 min to fully disperse, and then vortexed at room temperature for 10 min. Subsequently, a
magnet was placed on the side of the centrifuge tube in order to separate the MSPE sorbent
from the solution. The solution became clear after about 60 s and the supernatant was
carefully removed. The analytes were eluted from the magnetic solid-phase extraction
adsorbent by ultrasonic washing for 5 min with 3 mL of acetonitrile solution, the eluate
was quickly blown dry using nitrogen at 60 ◦C, re-solubilized using 200 µL of methanol
solution (methanol: water = 2:8, v/v) and passed through a 0.22 µm filter membrane to
remove impurities, and finally, injected into the sample for analysis.
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3.5. Method Validation

Mixed standard solutions were sequentially diluted with methanol water (methanol–
water = 2:8, v/v) as the solvent. Calibration standards in methanol water with concentra-
tions of 1, 2, 5, 10, 20, 50, 100, 250, and 500 ng/mL were prepared for the calibration curves.
The concentration of the internal standard contained in each calibration standard solution
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was 250 ng/mL. By injecting spiked samples at different concentrations, the linearity was
investigated based on the peak area ratio of the analytes to the internal standards. The
performance of the method was evaluated by linearity, limit of quantification (LOQ), preci-
sion, and accuracy. The limit of quantification (LOQ) based on signal-to-noise ratios of 10
(S/N = 10) was determined. Three validation batches were tested to assess the precision of
the method.

Samples spiked with 17 analytes at concentrations of 20 ng/mL, 100 ng/mL, and
250 ng/mL were used to investigate the matrix effect and recovery. Three blank matrices
provided by different labs at low, medium, and high QC levels (n = 6) were used to evaluate
the matrix effect, and the matrix effect was determined as the peak area ratio of the analytes
to mass-labeled internal standards when standards were added after extraction divided
by the peak area ratio of the analytes to mass-labeled internal standards when standards
were added in solvent. Three blank samples were prepared at low, medium, and high QC
levels (n = 6) to evaluate the recovery, and the recovery was determined as the peak area
ratio of the analytes to mass-labeled internal standards when standards were added before
extraction divided by the peak area ratio of the analytes to mass-labeled internal standards
when standards were added after extraction. Intra-assay precision was evaluated by the
relative standard deviation (RSD) of the measured values of the 3 different samples (i.e.,
Sample 5, Sample 6, Sample 7) spiked at 250 ng/mL (n = 6) when standards were added
before pretreatment.

4. Conclusions

In this study, magnetic adsorbents were prepared for the enrichment of drugs and
their metabolites in wastewater, and the magnetic dispersive solid-phase extraction (MSPE)
pretreatment combined with direct injection mass spectrometry (MS) analysis was estab-
lished. Magnetic nanomaterials were used as adsorbents with a 250 enrichment factor
(50 mL enriched to 200 µL), which were mixed with water, and then concentrated by
magnetic separation and elution. It is faster, more economical, less time-consuming, and
easier to be high-throughput than the methods of traditional solid-phase extraction. Cur-
rently, high-throughput pretreatment with magnetic solid-phase extraction is common for
small-volume samples, such as nucleic acid extraction. High-throughput sample prepara-
tion equipment for large-volume samples (>5 mL) is not common but is achievable. The
magnetic solid-phase extraction automobile equipment with a 24-sample high-throughput
developed by our team is in the final stage of testing, and we are performing tests in which
coupling with high-throughput direct injection mass spectrometry will dramatically reduce
the experiment’s analyzing time. The speed of the analysis make this method a valuable
tool compared to traditional methods. However, because there is no chromatographic sepa-
ration step, the potential isobaric interferences will limit quantification capabilities. Another
drawback comes from the ionization suppression effect, which arises from competitive
ionization with other components in the matrix.

The Echo® MS system is equipped with ADE technology, which uses acoustic energy
to excite the sample from a very small sample volume (2.5 nL) in the sample plate, and the
small droplets of the sample are transported to the SCIEX Triple Quad™ 6500+ system for
analysis and detection via OPI technology, eliminating the need for conventional liquid
chromatography consumables, such as columns and pre-columns, in the entire process. The
injection volume of the system is 2.5 nL with dilution during injection, which is 1/1000th of
that of a conventional LC-MS/MS. It is very favorable for complex matrices as the negative
matrix effects are greatly diluted. At the same time, other substances in the wastewater
enriched on the surface of the magnetic beads in the wastewater are also diluted, which
also makes the interferences decrease.

The Echo® MS system is equipped with ultra-fast injection speed, 1 sample per second
for rapid sampling and analysis, and standard 384-well or 1536-well injection plates, which
is suitable for rapid and high-throughput sample detection. In one of our experiments,
127 samples can be completed in 6.3 min, while 1397 min is needed compared with the
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liquid–mass spectrometry method. The Echo® MS system analyzes the same samples at a
rate of at least 220 times faster than conventional liquid–mass spectrometry methods. The
Echo® MS system equipped with the SCIEX Triple Quad™6500+ system also possesses
powerful quantification capability, and the data showed that the limit of quantification
(LOQ) for the 17 drugs could reach 1–2 ng/mL. In the precision study, the Echo® MS
system was able to achieve the RSD of matrix samples of <5%. In addition, the recovery
of all 17 drugs could reach more than 80% (except Norketamine and Cathinone) in the
investigation experiment. The methodological data showed that the proposed method
could provide a promising application for the analysis of drugs and their metabolites in
complex water samples.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29092060/s1.
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