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Abstract: Protein S-nitrosylation is a reversible post-translational modification by covalent 

modification on the thiol group of cysteine residues by nitric oxide. Growing evidence 

shows that protein S-nitrosylation plays an important role in normal cellular function as 

well as in various pathophysiologic conditions. Because of the inherent chemical instability 

of the S-NO bond and the low abundance of endogenous S-nitrosylated proteins, the 

unambiguous identification of S-nitrosylation sites by commonly used proteomic approaches 

remains challenging. Therefore, computational prediction of S-nitrosylation sites has been 

considered as a powerful auxiliary tool. In this work, we mainly adopted an adapted normal 

distribution bi-profile Bayes (ANBPB) feature extraction model to characterize the distinction 

of position-specific amino acids in 784 S-nitrosylated and 1568 non-S-nitrosylated peptide 

sequences. We developed a support vector machine prediction model, iSNO-ANBPB, by 

incorporating ANBPB with the Chou’s pseudo amino acid composition. In jackknife 

cross-validation experiments, iSNO-ANBPB yielded an accuracy of 65.39% and a 

Matthew’s correlation coefficient (MCC) of 0.3014. When tested on an independent 

dataset, iSNO-ANBPB achieved an accuracy of 63.41% and a MCC of 0.2984, which are 

much higher than the values achieved by the existing predictors SNOSite, iSNO-PseAAC, 

the Li et al. algorithm, and iSNO-AAPair. On another training dataset, iSNO-ANBPB also 

outperformed GPS-SNO and iSNO-PseAAC in the 10-fold crossvalidation test.  
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1. Introduction 

Protein S-nitrosylation, the covalent attachment of a nitric oxide (NO) moiety to cysteine residues 

of proteins resulting in the formation of S-nitrosothiols (SNO), is a typical redox-dependent 

posttranslational modification that is associated with redox-based cellular signaling [1–3]. Protein 

S-nitrosylation has been reported to play roles in the in vitro/in vivo regulation of a variety of 

metabolic enzymes, oxidoreductases, proteases, protein kinases, and protein phosphatases, as well as 

in the function of regulatory factors (including G protein) [4,5]. Many studies have shown that 

S-nitrosylated proteins exhibit abnormal increases or decreases in a variety of diseases [6]. For example, 

protein S-nitrosylation products were significantly increased compared with normal levels in diabetes, 

tuberculosis and other diseases; while protein S-nitrosylation products were significantly decreased 

compared with normal levels in asthma, neonatal oxygen deficiency, emphysema, and other diseases. 

Therefore, the regulation of protein S-nitrosylation modification may be a new and effective way for 

health protection. In addition, deregulation of S-nitrosylation has been implicated in tumor initiation 

and progression [4,7]. The increasing prominence of the roles of S-nitrosylation in diseases indicates a 

need for improved analytical methods to identify and quantify S-nitrosylated proteins under various 

physiological and pathophysiological conditions for investigative studies and clinical diagnosis [1,6,7]. 

The use of traditional mass spectrometry-based proteomics has been challenging because of the 

inherent chemical instability of the S-NO bond [4,8]. Currently, the biotin switch technique (BST), 

which was designed to purify and detect S-nitrosylated proteins, has become a widely used method for 

studying protein S-nitrosylation [9]. However, some researchers have suggested that the ascorbic acid 

signal enhancement as necessary and sufficient conditions of BST has led to a high number of false 

positives. A further study has shown that BST cannot be used to determine S-nitrosylated sites when 

the proportion of S-nitrosylated sites is less than 1% [10]. Hence, the computational prediction of 

protein S-nitrosylation sites may provide useful and experimentally testable information about 

potential protein S-nitrosylation sites. In recent years, several computational approaches have been 

developed to predict protein S-nitrosylated sites.  

Hao et al. [11] developed the earliest prediction tool for S-nitrosylation called SNOSID,  

which is a support vector machine (SVM) system trained on the limited 65 S-nitrosylation sites  

and 65 non-S-nitrosylation sites that were available at the time. Xue et al. [12] constructed the first 

online server GPS-SNO for S-nitrosylation site prediction based on the modified group-based 

prediction system (GPS) version 3.0 algorithm. Trained on a large dataset of 504 experimentally 

verified S-nitrosylation sites in 327 unique proteins, GPS-SNO achieved an accuracy of 75.80%,  

a sensitivity of 53.57%, and a specificity of 80.14% in the jackknife cross-validation test. However,  

the independent predictive performance of GPS-SNO was tested on 485 S-nitrosylated substrates that 

were not identified by experimental verification; suggesting that further validation of the predictive 

capability of GPS-SNO is needed. In 2011, Lee et al. [13] and Li et al. [14] used different approaches 
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to try to improve the prediction of protein S-nitrosylation. Lee et al. [13] incorporated information 

about amino acid composition, accessible surface area, and physicochemical properties into the 

maximal dependence decomposition (MDD) algorithm to obtain conserved S-nitrosylation motifs. 

Then, by combining the MDD-clustered motifs with a SVM, they built the online server SNOSite for 

predicting S-nitrosylation sites, which achieved an accuracy of 67.5% and a Matthew’s correlation 

coefficient (MCC) of 0.245. Li et al. [14] established the prediction model CPR-SNO, using a SVM to 

improve the prediction performance. Instead of a SVM, Li et al. [15] proposed a nearest neighbor 

algorithm model that incorporated maximum relevance minimum redundancy and incremental feature 

selection techniques; however, the prediction results were not very satisfactory. On a newly created 

training dataset and an independent testing dataset, the MCCs were only 0.1381 and 0.1886, 

respectively. Xu et al. [16] proposed a web server called iSNO-PseAAc, which incorporated 

position-specific amino acid propensity into pseudo amino acid composition. The iSNO-PseAAc 

predictor achieved a MCC of 0.3515, which is substantially higher than the best MCC of 0.1915 

obtained by GPS-SNO. More recently, Xu et al. [17] developed a new predictor called iSNO-AAPair 

by taking into account the coupling effects for all the pairs formed by the nearest residues and the pairs 

formed by the next nearest residues along protein chains. Despite the many S-nitrosylation predictors 

that have been developed, the MCC prediction values that they achieve are relatively lower than the 

values achieved by predictors of other post-translational modifications. Therefore, the discovery of 

new features will help in the development of more effective tools for protein S-nitrosylation  

site identification. 

Bi-profile feature extraction has been applied in the prediction of many types of protein 

post-translational modification and has provided significant improvements in prediction  

performance [18–25]. The theoretical basis of this approach is that positive and negative peptide 

sequences should exhibit different features or characteristics [18]. In this study, we propose a 

computational model iSNO-ANBPB based on an adapted normal distribution bi-profile Bayes 

(ANBPB) feature extraction model and Chou’s pseudo amino acid compositions for protein 

S-nitrosylation site prediction. We performed jackknife and 10-fold cross-validation experiments on 

two recently constructed training datasets in [15,16] and tested iSNO-ANBPB on an independent 

dataset constructed in [15], to comprehensively compare iSNO-ANBPB with four recently developed 

competing predictors. Three kinds of comparative results consistently indicated that iSNO-ANBPB 

achieved higher MCCs and outperformed other current approaches.  

According to a recent comprehensive review [26] and demonstrated by a series of recent 

publications (see, e.g., [27–30]), to establish a really useful statistical predictor for a protein system, 

we need to consider the following procedures: (i) construct or select a valid benchmark dataset to train 

and test the predictor; (ii) formulate the protein samples with an effective mathematical expression that 

can truly reflect their intrinsic correlation with the target to be predicted; (iii) introduce or develop a 

powerful algorithm (or engine) to operate the prediction; (iv) properly perform cross-validation tests to 

objectively evaluate the anticipated accuracy of the predictor; (v) establish a user-friendly web-server 

for the predictor that is accessible to the public. Below, we describe how to deal with these steps. 
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2. Results and Discussion 

2.1. Results 

2.1.1. Sequence Analysis of S-Nitrosylation Sites 

To explore the distinction between S-nitrosylation peptide sequences and non-S-nitrosylation peptide 

sequences, we conducted sequence analysis on the Li training dataset [15]. We calculated the relative 

position-specific propensities of each amino acid at each position (rxj) in the sequence to obtain the 

relative frequency of a particular amino acid in the S-nitrosylation dataset over the frequency of the 

same amino acid in the non-S-nitrosylation dataset. As shown in Table S1, several amino acids at 

specific positions revealed some distinctive rxj scores. Amino acids H, K, and N were found to be 

relatively enriched in the S-nitrosylation peptides with average rxj scores of 1.23, 1.25, and 1.13 

respectively. On the other hand, amino acids C, F, and W were found to be relatively depleted in the 

S-nitrosylation peptides with average rxj scores of 0.64, 0.86, and 0.74 respectively. However, the 

independent distinct rxj scores are not sufficient for defining a sequence motif for S-nitrosylation sites 

and more complex patterns of position-specific residue propensities in peptide sequences should be 

exploited to further improve the computational performance of S-nitrosylation site predictors. 

2.1.2. Performance of the BPB, BRABSB, ANBPB and RANS Prediction Models 

The weight parameters (W1 and W-1) in a SVM were adapted to increase the precision of 

sensitivity. For each training process, the initial W1 values were set to 1, 1.5, 2, and 2.5, until the 

MCCs reached their maximum. Notably, the performances of all these models significantly improved 

after the optimization of the W1 parameter (Tables S2–S5). 

To find the best prediction model to identify potential protein S-nitrosylation sites, bi-profile  

Bayes (BPB) [18], bi-relative adapted binomial score Bayes (BRABSB) [23], adapted normal 

distribution bi-profile Bayes (ANBPB) [24], and the relative adapted normal score (RANS) [24] 

feature extraction combined with Chou’s pseudo amino acid composition were developed on the same 

Li training datasets. The performances of the BPB, BRABSB, ANBPB, and RANS models for 

predicting protein S-nitrosylation and non-S-nitrosylation sites were examined by jackknife tests. The 

weight parameter W1 was optimized separately for the BPB, BRABSB, ANBPB and RANS models 

and the detailed results are available in Tables S1–S4. The best results obtained by each model are 

listed in Table 1. The BPB and ANBPB models reached their highest MCC values of 0.2933 and 

0.3014, respectively, for W1 = 2, while the BRABSB and RANS models reached their highest MCC 

values of 0.2949 and 0.2391, respectively, for W1 = 2.5. The ANBPB model achieved the best  

MCC value. 
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Table 1. Best predictive performances of four sequence encoding schemes. 

Sequence Encoding Scheme W1 Sn (%) Sp (%) Acc (%) MCC 

BPB + Ecomposition a + Scomposition b 2 65.31 65.63 65.52 0.2933 
BRABSB + Ecomposition + Scomposition 2.5 73.09 58.16 63.14 0.2949 
ANBPB + Ecomposition + Scomposition 2 67.60 64.29 65.39 0.3014 
RANS + Ecomposition + Scomposition 2.5 63.90 61.42 62.24 0.2391 

a Ecomposition denotes the composition of positively charged amino acids; b Scomposition denotes the 

composition of α-helix propensities of amino acids. 

2.1.3. Comparison of the Performance of iSNO-ANBPB with Current Computational Approaches 

The classification performances of iSNO-ANBPB, the Li et al. method [15], SNOSite [13], 

iSNO-PseAAC [16], and iSNO-AAPair [17] were compared directly. Because there is no online server 

for the work done by Li et al. [15], iSNO-ANBPB and the Li et al. approach were both tested on the 

training dataset that was constructed in [15]. The results in Table 2 clearly show that iSNO-ANBPB 

outperformed the Li et al. method in the jackknife test. The Acc and MCC values achieved by 

iSNO-ANBPB are better by 3.78% and 0.163, respectively, than the Acc and MCC values achieved by 

the Li et al. method [15]. Further, using an independent Li test dataset, we tested the predictive power 

of iSNO-ANBPB to recognize novel S-nitrosylation sites and compared it with the power of the  

Li et al. method [15], iSNO-PseAAC [16], iSNO-AAPair [17], and SNOSite [13]. As shown in  

Table 2, the iSNO-ANBPB model achieved an overall accuracy of 63.41% and a MCC of 0.2984, 

which is better than the overall accuracies achieved by the other four methods. We also compared 

iSNO-ANBPB indirectly with the GPS-SNO predictor proposed by Xue et al. [12]. Xu et al. [16] 

reported that iSNO-PseAAC outperformed GPS-SNO when tested on the same benchmark dataset. 

Therefore, to make a fair comparison, we tested the performances of iSNO-ANBPB, GPS-SNO, and 

iSNO-PseAAC on the Xu training dataset. The iSNO-ANBPB model again achieved the best 

prediction performance, with an average accuracy of 70.77% and MCC of 0.4146, for the 50 times it 

was run in the 10-fold crossvalidation. The iSNO-PseAAC model achieved an average accuracy of 

67.01% and a MCC of 0.3515, and GPS-SNO achieved the best average accuracy of 45.01% and MCC 

of 0.1915 with the threshold set at “low”.  

To demonstrate the performance of our iSNO-ANBPB predictor, 37 experimentally-verified 

S-nitrosylated proteins which were not included in the training data set were studied. The sequences  

of such 37 proteins as well as S-nitrosylation site position are given in Supplementary Information. 

The detailed performances of SNOsite, iSNO-PseAAC, iSNO-AAPair, and iSNO-ANBPB against  

the 37 independent proteins are summarized in Figure 1. As can be seen from the table, iSNO-ANBPB 

outperformed the other three predictor in MCC, verifying the generalization ability of iSNO-ANBPB. 
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Table 2. Performance comparison of different computational approaches on different datasets. 

Dataset Methods Sn (%) Sp (%) Acc (%) MCC 

Li training dataset 
Li et al. [15] 42.86 70.98 61.61 0.1381 

iSNO-ANBPB 67.60 64.29 65.39 0.3014 

Xu dataset 

GPS-SNO a 18.88 89.63 56.07 0.1210 

GPS-SNO b 28.04 81.98 56.39 0.1193 

GPS-SNO c 45.01 73.33 59.90 0.1915 

iSNO-PseAAC 67.01 68.15 67.62 0.3515 

iSNO-ANBPB 67.33 73.78 70.77 0.4146 

Li test dataset 

SNOSite 74.42 28.10 40.24 0.0248 

iSNO-AAPair 27.91 80.17 66.46 0.0858 

Li et al. [15] 51.16 69.42 64.63 0.1886 

iSNO-PseAAC 58.14 63.64 62.20 0.1940 

iSNO-ANBPB 74.12 59.50 63.41 0.2984 
a The data was derived from Table 1 in Xu et al. [16] and the threshold of GPS-SNO was set at “high”; b The 

data was derived from Table 1 in Xu et al. [16] and the threshold of GPS-SNO was set at “medium”; c The data 

was derived from Table 1 in Xu et al. [16] and the threshold of GPS-SNO was set at “low”. 

Figure 1. Potential S-nitrosylation sites predicted on 37 proteins through S-nitrosothiols 

(SNO)site, iSNO-PseAAC, iSNO-AAPair and iSNO-adapted normal distribution bi-profile 

Bayes (ANBPB) predictor. 

 

2.2. Discussion 

Protein S-nitrosylation plays a central role in regulatory mechanisms by fine-tuning protein 

activities associated with diverse cellular processes and biochemical pathway [1,3]. In addition, 

S-nitrosylation appears to have major roles in the etiology of a broad range of human diseases. 

However, the direct experimental identification of protein S-nitrosylation has been challenging, 

primarily because of the inherent chemical instability of the S-NO bond and low abundance of 

endogenous S-nitrosylated proteins [4,5]. Experimental identification of protein S-nitrosylation sites 

has other drawbacks such as expensive experimental costs, time-consuming experiments, and low 

specificity. Computational techniques have been developed to help overcome these drawbacks. 
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Moreover, the recent experimental identification of hundreds of S-nitrosylation sites opens up the 

prospect of identifying S-nitrosylation sites by combining the experimental data with computer-based 

screening of peptide sequences.  

In this study, we carefully examined the relative position specificity of each amino acid at each 

position, and identified distinctive amino acid enrichment/depletion profiles for peptide sequences in 

positive and negative datasets. To encapsulate these complex patterns of residue position-specific 

propensities for computational prediction, we constructed SVM prediction models using the ANBPB 

feature extraction approach combined with Chou’s PseAAC. ANBPB has been applied to predict 

protein O-GlaNAcylation sites and was shown to significantly improve prediction performance. The 

theory behind this approach is that the positive and negative profiles for encoding peptide sequences 

originate from an approximation of the binomial distribution, which can capture and exhibit the 

relative deviation of frequency of amino acids that surround the O-GlaNAcylation sites [24]. Apart 

from the ANBPB feature extraction, the physicochemical information of the amino acids in the peptide 

sequence was also considered because it has been demonstrated that the electrostatic charge of amino 

acids distantly located to a cysteine residue and amino acid propensities for secondary structure are 

critical for S-nitrosylation [15]. The resulting 42 features that we obtained were combined with the 

SVM classifier to construct our iSNO-ANBPB prediction model.  

As described in the above sections, we also established BPB, BRABSB and RANS models to find 

the most appropriate predictor for protein S-nitrosylation. The theoretical distinctions among the four 

models have been discussed in [24] and the choice of models is determined by the sequence 

characteristics. For protein S-nitrosylation prediction, the ANBPB model gave the best performance, 

indicating that the ANBPB feature extraction approach may be more suitable than the BPB, BRABSB 

and RANS approaches for recognizing differences between S-nitrosylated and non-S-nitrosylated peptide 

sequences. We suspect that this finding may be because there is a degree of overrepresentation/depletion 

of certain features in S-nitrosylated and non-S-nitrosylated peptide sequences. The definition of BPB and 

BRABSB does not reflect enough the overrepresentation/depletion distinction, so they cannot detect 

S-nitrosylation sites as effectively as the ANBPB model.  

We tested our iSNO-ANBPB model against GPS-SNO [12], SNOSite [13], the algorithm developed 

by Li et al. [15], iSNO-PseAAC [16], and iSNO-AAPair [17], because they are among the best 

S-nitrosylation prediction models that are currently available. We could not compare our iSNO-ANBPB 

model directly with the CPR-SNO predictor [14] because the web-server was not working. Using the 

Li training dataset, the iSNO-ANBPB model achieved an Acc of 65.39%, which is 3.78% higher than 

the Acc for the algorithm developed by Li et al. [15]. Using the Xu training dataset, the iSNO-ANBPB 

model achieved an Acc of 70.77%, which is 3.15% higher than the Acc achieved by the iSNO-PseAAC 

method and 11.27% higher than the best Acc achieved by GPS-SNO. Notably, the Acc achieved by 

iSNO-ANBPB using the Xu training dataset is about 5.38% higher than of the Acc using the Li 

training dataset, perhaps because the proportion of positive and negative samples in the Xu training 

dataset is close to 1. Using the Li test dataset, iSNO-ANBPB achieved a MCC of 0.2984, which is 

0.1044 higher than the previous best-performing predictor iSNO-PseAAC [17], 0.1098 higher than 

method of Li et al. [15], 0.2126 higher than iSNO-AAPair, and 0.2736 higher than SNOSite. The 

results show that iSNO-ANBPB outperformed previous algorithms in term of precision, especially on 

independent testing datasets. These datasets are the most likely datasets to be selected for further 
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experimental validation. Since user-friendly and publicly accessible web-servers represent the future 

direction for developing practically more useful models, simulated methods, or predictors [30,31], we 

shall make efforts in our future work to provide a web-server for the method presented in this paper. 

3. Experimental Section 

3.1. Datasets 

To objectively and comprehensively compare our approach with other available approaches, we 

used two recently constructed datasets reported by Li et al. [14] and Xu et al. [15] (henceforth named 

the Li and Xu datasets, respectively). The Li training dataset contains 784 positive samples and  

1568 negative samples from 499 proteins with <40% sequence similarity, while the Li test dataset 

contains 43 positive samples and 121 negative samples from 30 proteins with <40% sequence 

similarity. The Xu training dataset includes 731 positive samples and 810 negative samples  

from 438 proteins with <40% sequence similarity. Finally, we combined two of the training  

datasets and removed the redundant samples by by clustering program such as BLASTclust 

(http://toolkit.tuebingen.mpg.de/blastclust) [32]. The final 1229 positive samples and 1223 negative 

samples were used to construct the prediction model. After some preliminary trials and in  

the consideration of the previous works [14,15], we extracted 21-mer S-nitrosylation and 

non-S-nitrosylation peptides from both datasets for our analyses. If a possible S-nitrosylation site was 

located at the N- or C-terminus of the protein and the length of the peptide was less than 21 amino 

acids, the missing positions were filled with residue “X”s in this study. 

3.2. Adapted Normal Distribution Bi-Profile Bayes Features Extraction (ANBPB) 

Let 1 2, , , nS s s s   denotes a peptide sequence, where s represents an amino acid, i (i = 1, 2, …, n) 

represents its position, and n = 21 represents the length of the peptide sequence in this study. 

According to bi-profile Bayes method [18], each of the training peptides can be encoded as

1 2 1 2( , , , , , , )n n np p p p p  , where 1 2( , , , )np p p  represents the posterior probability of each amino 

acid at each position in the positive dataset and 1 2 2( , , , )n n np p p    represents the posterior 

probability of each amino acid at each position in the negative dataset. In this study, the frequency of 

each amino acid at each position was encoded as random variables Xij, i (i = 1, 2, …, 20) represents the 
ith amino acid {A,C, D, E, F,G, H, I, K, L, M, N, P,Q, R,S,T, V, W, Y}, and j = 1, 2, …, 21 represents 

the jth position. The random variables Xij, (i = 1, 2, …, 20; j = 1, 2, …, 21) are independent and obey 

the same binomial distribution b(n, p), where n = 784/1568 is the number of peptide sequences in 

positive/negative set, p = 1/20 is the probability of each amino acid occurs in each position. Then the 

normal form variable 
(1 )

ijX np

np p




 has a limiting cumulative distribution function which approximates 

a normal distribution N(0,1). Here, we modified the way of standard variable normalization to 

highlight and emphasize the distinction of each amino acid at the same position. We let Vj denote the 

standard variance of Xi,j (i = 1, 2, …, 20), i.e., the deviation of frequencies of each at the same jth 
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position. And then we ' ij
ij

j

X np
X

V


  as the new normalization of Xij and deemed it obeys the 

standard normal distribution. The posterior probability pj (j = 1, 2, …, 2n) was coded by the adapted 

normal distribution as follows: 
'

, ,( ) ( )j i j i jp P X X X    (1)

where ( )x is the standard normal distribution function given by 
2

2
1

( )
2

t
x

x e dt





  . For more 

details about this method, please refer to the original paper [24]. 

3.3. Pseudo Amino Acid Composition Based on Electrostatic Charge and Secondary Structure 

To avoid losing many important information hidden in protein or peptide sequences, the pseudo 

amino acid composition [30,33] or Chou’s PseAAC [34] was proposed to replace the simple amino 

acid composition (AAC) for representing the sample of a protein or peptide. For a brief introduction 

about Chou’s PseAAC, and its recent development and applications, see a comprehensive review [26]. 

Since the concept of Chou’s PseAAC was proposed in 2001, it has rapidly penetrated into almost all 

the fields of computational proteomics, such as predicting protein submitochondrial localization [35], 

predicting protein structural class [36], identifying bacterial virulent proteins [37], predicting 

metalloproteinase family [38], predicting GABA(A) receptor proteins [39], predicting protein 

supersecondary structure [40], predicting cyclin proteins [41], classifying amino acids [42], identifying 

risk type of human papillomaviruses [43], identifying GPCRs and their types [44], predicting protein 

subcellular localization [45], and discriminating outer membrane proteins [46], among many  

others [26]. Because it has been widely and increasingly used, recently two powerful soft-wares, called 

“PseAAC-Builder” [47] and “propy” [48], were established recently for generating various special 

Chou’s pseudo-amino acid compositions, in addition to the web-server “PseAAC” 

(http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/) [49] built in 2008. 

As indicated by Lee et al. [13], Li et al. [15], and Marino et al. [50], the physicochemical properties 

of amino acids around cysteine residues can affect the occurrence of cysteine S-nitrosylation. Among 

these properties, electrostatic charge and propensity of secondary structure are critical for protein 

S-nitrosylation [15]. Accordingly, the 20 amino acids were divided into two different classes based on 

their electrostatic charge: positively charged amino acids (A): {A, C, D, E, H, L, P, Q, S, V, W} and 

negatively charged amino acids (G): {F, G, I, K, M, N, R, T, Y}. Similarly, based on their secondary 

structure, the 20 amino acids were divided into two other classes: α-helix propensities of amino acids 

(H): {C, D, G, N, P, S, T, W, Y} and other amino acids (E): {A, E, F, H, I, K, L, M, Q, R, V}. Owing 

to the summation of composition of pseudo amino acids (A) and composition of (G) is equal to 1, only 

one is independent. The same cases for the composition of pseudo amino acids (H) and composition of 

(E). So in practical calculations, the composition of positively charged amino acids (A) and α-helix 

propensities of amino acids (H) are adopted to construct the feature vectors. 
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3.4. Feature Space 

According to the recent review [26], a peptide segment in our positive and negative datasets is 

formulated by  

1 2 42[ , , , ]P      (2)

where ( 1,2, , 20)i i    was defined by the posterior probability ip  of each amino acid at each 

position in positive peptide sequences datasets; ( 21,22, , 40)i i    was defined based on the 

posterior probability ip  of each amino acid at each position in negative peptide sequences datasets; 

41 42,   were the composition of pseudo amino acids (A), and (H), respectively. 

3.5. Support Vector Machine Implementation and Parameter Selection 

An SVM is a set of related supervised learning methods used for classification and regression  

based on statistical learning theory. The SVM method has proven to be powerful in many  

fields of bioinformatics [18–20,51,52]. In this study, the SVM was trained with the LIBSVM  

package [53] to build the model and perform the predictions. The radial basis kernel function 
2( , ) exp{ || || }i j i jk x x x x    was used for our SVM method. For different input features, the penalty 

parameter C and kernel parameter   were optimized using the SVMcgForClass program [53] in the 

LIBSVM package based on a 15-fold cross-validation. The final parameters that we obtained were  
C = 22.6274 and 0.03125  . Optimized weight parameters (W1 and W-1) were set as 2 and 1 by 

looking for the best jackknife test results. 

3.6. Performance Assessments 

The jackknife test was used in this study to evaluate our method because it is considered as the most 

objective cross-validation method [31]. Sensitivity (Sn), specificity (Sp), accuracy (Acc) and MCC 

were used to quantify the performance of our method. They are defined as follows: 

 
(3)

 
(4)

 
(5)

 
(6)

where TP, TN, FP and FN denote the number of true positives (correctly predicted S-nitrosylation 

sites), true negatives (correctly predicted non-S-nitrosylation sites), false positives (falsely predicted 

S-nitrosylation sites), and false negatives (falsely predicted non-S-nitrosylation sites), respectively. 
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