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Abstract: Photoporation is an up-and-coming technology for the gentle and efficient transfection of
cells. Inherent to the application of photoporation is the optimization of several process parameters,
such as laser fluence and sensitizing particle concentration, which is typically done one factor at
a time (OFAT). However, this approach is tedious and runs the risk of missing a global optimum.
Therefore, in this study, we explored whether response surface methodology (RSM) would allow
for more efficient optimization of the photoporation procedure. As a case study, FITC-dextran
molecules of 500 kDa were delivered to RAW264.7 mouse macrophage-like cells, making use of
polydopamine nanoparticles (PDNPs) as photoporation sensitizers. Parameters that were varied
to obtain an optimal delivery yield were PDNP size, PDNP concentration and laser fluence. Two
established RSM designs were compared: the central composite design and the Box-Behnken design.
Model fitting was followed by statistical assessment, validation, and response surface analysis. Both
designs successfully identified a delivery yield optimum five- to eight-fold more efficiently than
when using OFAT methodology while revealing a strong dependence on PDNP size within the design
space. In conclusion, RSM proves to be a valuable approach to efficiently optimize photoporation
conditions for a particular cell type.

Keywords: response surface methodology; polydopamine nanoparticles; photoporation; intracellular
delivery; cell therapy

1. Introduction

Instrumental to understanding and harnessing the functioning of biological systems
at their most fundamental levels is the intracellular delivery of molecules (e.g., small
biomolecules, nucleic acids, proteins and synthetic nanomaterials) that do not passively
diffuse across the cell membrane under normal circumstances [1–3]. To this end, a plethora
of intracellular delivery methods has been developed, which can be categorized as either
carrier-mediated [4–7] or membrane-disruption-mediated methods [8]. Though carrier-
mediated delivery shows great therapeutic potential, particularly for in vivo applications,
interest in physical membrane-disruption-mediated delivery techniques has risen over
the past few years, especially for in vitro or ex vivo manipulation of cells. Here, the cell
membrane is transiently perturbed by physical phenomena (e.g., of mechanical, optical,
thermal, magnetic and/or electrical nature), creating membrane pores through which
molecules of interest can enter the cells [2,8]. Examples of physical membrane disruption
techniques are electroporation [9], sonoporation [10], magnetofection [2,11] and microflu-
idic mechanoporation [12].

Emerging as another capable and flexible physical intracellular delivery method is
photoporation. In photoporation, a laser irradiates photothermal nanoparticles (NPs),
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which are highly efficient in converting electromagnetic energy (i.e., light) into thermal
energy [13,14]. When the photothermal NPs are present at or close to the cell membrane,
laser irradiation induces the formation of pores by means of thermal, mechanical and/or
chemical effects [14]. When the NP its temperature increases above the critical temperature
of the water, a distinct mechanical effect can arise, which is the generation of water vapor
nanobubbles (VNBs) [15]. VNB-formation takes place when the heated NPs evaporate the
liquid in their immediate vicinity. The VNB will increase in size until the NPs’ thermal
energy is depleted, at which point the VNB collapses again [13,16–18]. Rapid expansion and
collapse of VNBs induce mechanical stress on the nearby cell membrane, resulting in pore
formation [19,20]. So far, mostly metallic (e.g., gold and iron oxide) [21–28] or carbon-based
(e.g., carbon black, reduced graphene oxide and graphene quantum dots) [29–36] NPs have
been used for the photoporation of cells. However, concerns regarding the potentially
toxic effects of such essentially non-degradable nanoparticles [37–43] have led researchers
to seek more biocompatible alternatives, such as polydopamine NPs (PDNPs). PDNPs
possess excellent photothermal properties across the visible range of wavelengths [44–47].
Moreover, a broad range of PDNP sizes can be readily synthesized in an ecological manner,
and their highly functionalized surface allows for chemical modifications in a multitude
of ways [48–52]. Successful use of PDNPs in the photoporation of human T cells for the
delivery of mRNA shows a promising future for these NPs [53].

When using photoporation to deliver cargo molecules into cells, several parameters
need to be optimized to maximize the delivery efficiency while minimizing cytotoxicity.
Important experimental factors include NP size [53], NP concentration [24,25] and laser
fluence [19]. In photoporation studies so far, these factors are optimized with a one-
factor-at-a-time (OFAT) approach [54]. While OFAT is commonly used in experimental
sciences, it is time- and resource-consuming and runs the risk of not finding the true global
maximum [54,55]. This can be remedied by using response surface methodology (RSM),
which was first introduced by Box and Wilson in 1951 [56]. Derived from the design of
experiments, RSM consists of a collection of statistical and mathematical tools, which allow
a researcher to gain knowledge of a certain process and optimize it as efficiently as possible,
not requiring replicates [57,58]. This can be done by careful selection of a limited set of data
points to be collected, termed the experimental design, and fitting a low-order polynomial to
the results using ordinary least squares (OLS) regression [59–63].

Currently, the applicability of RSM for the optimization of photoporation parameters
has not been explored. Therefore, we investigated this for several parameters of interest:
PDNP size, PDNP concentration and laser fluence. With each having their particular merits,
two commonly used RSM designs were compared, a central composite design and a Box-
Behnken design, to determine the parameter values that lead to an optimal delivery yield
of FITC-dextran 500 kDa (FD500) cargo molecules in RAW264.7 murine macrophage-like
cells. Fitted models were statistically evaluated and experimentally validated. Insights
from the models were related to the physicochemical characteristics of the used PDNPs,
showing that RSM can provide insights beyond mere process optimization.

2. Results
2.1. Synthesis of Polydopamine Nanoparticles

The first parameter that can influence the outcome of photoporation experiments is
the size of the PDNPs. As summarized in Section 4.8.1, the following sizes were included in
the experimental design: 142 nm, 300 nm, 500 nm, 700 nm and 858 nm. Using 3.5 mg/mL
dopamine (DA), a DA:NaOH ratio of 1:0.7 and a reaction temperature of ca. 50 ◦C resulted
in a gradual growth of PDNPs, as evidenced by DLS size measurements at regular intervals
(Figure 1A). This gradual growth allowed for a refined control over the NP size by tuning
the reaction time, DA concentration and DA:NaOH ratio. Five distinct sizes of PDNPs
were prepared this way, based on having a hydrodynamic diameter close to the desired
values of the experimental designs. UV-Vis spectrophotometry showed a clear change in
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the extinction spectrum between the DA monomer solution and the PDNP dispersions, as
exemplified in Figure 1B for 500 nm PDNPs.
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Figure 1. Characterization of BSA-coated and uncoated polydopamine nanoparticles (PDNPs).
(A) Evolution of the PDNP hydrodynamic diameter in the function of reaction time as measured by
DLS. All samples were sonicated by tip sonication to remove potential agglomerates. (B) Normalized
UV/Vis spectrum of DA (blue), BSA (red), 500 nm PDNPs (dashed blue) and 500 nm BSA-coated
PDNPs (dashed red). (C) Size distributions representing the stability of uncoated 500 nm PDNPs in
water (blue) and Opti-MEM (dashed blue), showing a clear size increase after incubation in Opti-
MEM. BSA-coated PDNPs maintain the same size distribution in both waters (red) and Opti-MEM
(dashed red). Measured by DLS for an incubation time of 15 min.

To improve colloidal stability and facilitate the interaction of PDNPs with cells, a
coating of BSA was additionally applied to the PDNPs, which did not affect the UV-
Vis spectrum (Figure 1B). The size of PDNPs was measured in Opti-MEM, as this is the
medium that was used for photoporation experiments. In the absence of the BSA coating,
agglomeration occurred in Opti-MEM (Figure 1C), which was not observed for the BSA-
coated PDNPs (Figure 1C). A summary of the size and polydispersity index (PDI) of all
PDNPs used in this study is provided in Table 1 and Table S1.

Table 1. Summary of the average (±standard deviation) hydrodynamic diameter (size), polydis-
persity index (PDI), and zeta potential (Z.P.) of the BSA coated PDNPs with sizes corresponding to
factor levels −1, 0 and 1 in both HyClone Pure water and Opti-MEM. Z.P. was only measured for
BSA-coated PDNPs in HyClone Pure water.

300 nm
Factor Level: −1

500 nm
Factor Level: 0

700 nm
Factor Level: +1

HyClone Opti-MEM HyClone Opti-MEM HyClone Opti-MEM

Size (nm) 290.8 ± 3.5 309.0 ± 6.8 516.1 ± 9.3 492.3 ± 5.8 728.4 ± 8.7 754.6 ± 23.6

PDI 0.084 ± 0.020 0.078 ± 0.015 0.051 ± 0.014 0.050 ± 0.019 0.118 ± 0.048 0.112 ± 0.043

Z.P. (mV) −33.0 ± 0.1 −37.9 ± 0.9 −40.6 ± 0.5

Most importantly, PDNPs could be synthesized with a monodisperse size close to what
is required in the model design, regardless of incubation in HyClone Pure water or Opti-
MEM (Figure 2A–C and Figure S1). All synthesized PDNPs demonstrated excellent long-
term colloidal stability during a period of 90 days, considering that their hydrodynamic size
and PDI measured by DLS remained virtually unaltered after 90 days (Table S2). Moreover,
it became evident that all PDNPs had a negative zeta potential (Z.P.), as expected after BSA
coating [53,64], which helps to explain their colloidal stability [65]. Further characterization
of the PDNPs by scanning electron microscopy (SEM) and transmission electron microscopy
(TEM) revealed a uniform, quasi-spherical shape (Figure 2D–I) that was observed across
the entire used PDNP size range. The PDNP diameter, as determined from SEM and TEM
images (Table S3 and Figure S2), was smaller than the hydrodynamic diameter measured
by DLS, which is consistent with earlier studies [53,64].
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(Figure 3B–F) enables the identification of the VNB-threshold. For the 142 nm PDNPs, no 
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expected sigmoidal curve was obtained, as is needed to reliably determine the VNB 

Figure 2. Size and morphology characterization of BSA-coated polydopamine nanoparticles (PDNPs)
of various sizes. (A–C) Representative intensity size distributions as measured by DLS of BSA-coated
PDNPs of 300 nm (A), 500 nm (B) and 700 nm (C) in water (blue) and 15 min incubated in Opti-
MEM (red). (D–F) Representative SEM images of BSA-coated PDNPs of 300 nm (D), 500 nm (E)
and 700 nm (F). Scale bar = 500 nm. (G–I) Representative TEM images of BSA-coated PDNPs of
300 nm (G), 500 nm (H) and 700 nm (I). Scale bar = 500 nm.

Next, the photothermal behavior of the different PDNPs was assessed by determina-
tion of the VNB-threshold–that is, the laser fluence at which 90% of the irradiated NPs
form VNBs that are visible in darkfield microscopy images (Figure 3A) [19]. Plotting the
normalized number of VNBs as a function of laser fluence and fitting a Boltzmann curve
(Figure 3B–F) enables the identification of the VNB-threshold. For the 142 nm PDNPs, no
VNBs could be generated within the range of fluences achievable with our optical setup,
indicating a PDNP size threshold for VNB formation (Figure 3B). For 300 nm PDNPs,
VNBs began to appear (Figure 3C), but it was only from 500 nm PDNPs onwards that
the expected sigmoidal curve was obtained, as is needed to reliably determine the VNB
threshold (Figure 3D–F). The VNB-thresholds were determined to be 1.33 J/cm2, 1.12 J/cm2

and 0.95 J/cm2 for 500 nm, 700 nm and 858 nm PDNPs, respectively.
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Figure 3. VNB formation by PDNPs. (A) Visualization of vapor nanobubbles (VNBs) (red arrows) by
dark field microscopy before (pre) and upon (pulse) local laser irradiation with a fluence of 1 J/cm2

in a 500 nm PDNP dispersion (dashed yellow circle). (B–F) VNB formation as a function of laser
pulse fluence for 142 nm (B), 300 nm (C), 500 nm (D), 700 nm (E) and 858 nm (F) PDNPs. By fitting a
Boltzmann curve (solid black curve), the VNB threshold (dashed red line) could be determined for
500 nm, 700 nm and 858 nm PDNPs. Scale bar = 50 µm.

2.2. Optimization of Delivery Yield by Response Surface Methodology
2.2.1. Model Fitting and Statistical Assessment

Two commonly used RSM designs were created to compare their performance in
optimizing photoporation parameters (PDNP size, PDNP concentration and laser pulse
fluence). An eighteen-run Circumscribed Central Composite (CCC) design–belonging to
the class of Central Composite Designs (CCDs)–was generated as the first design with
five-factor levels for each parameter, representing a spherical and flexible design space [66].
The second design was a sixteen-run Box-Behnken design (BBD), only requiring three-factor
levels, as a simpler design, which does not require the inclusion of extreme parameter values
and simultaneous combinations thereof that can be technically unattainable at times [67,68].
Both designs were repeated three times to achieve an indication of reproducibility [69].
Ordinary Least Squares (OLS) on the experimental results allowed for an analysis of
variance (ANOVA). As can be seen from the bottom two rows in Table S4, all replicates of
the CCC design and BBD resulted in significant models that did not show any significant
lack-of-fit. Note that the intercept terms were all significant, but they do not hold any
information on the contribution of the design factors. Upon investigating the models’ terms,
only the size of the PDNPs was consistently coming up as a significant factor in both the
linear and quadratic terms, regardless of the design used. In addition, the CCC design-
based models identified the quadratic PDNP concentration term (Conc.2) and quadratic
fluence term (Fluence2) to be weakly significant in two of the three replicates, providing no
convincing proof of a consistently significant contribution of these variables. Both designs
thus led to models that suggest a considerable dependency of the delivery yield on the
PDNP size, whereas the PDNP concentration and laser pulse fluence only seem to have
relatively minor effects on the investigated response within the defined ranges, with the
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BBD-based models generally estimating them to be less of importance than the models
based on the CCC design.

Next, we investigated how well each model predicted the delivery yields that were
included in the model fitting process—i.e., model fit. We found that the BBD performed
better in this regard than the CCC design, as concluded from the summary statistics related
to the distance between an observed value and the predicted mean value for that data point
(Table 2). This can be seen from the BDD-based models’ consistently higher coefficients
of determination (multiple R2) and adjusted R2 (adj. R2). Higher values of statistics, such
as the root mean squared error (RMSE) and mean absolute error (MAE) for the CCC
design-based models, also demonstrate a less adequate fit relative to the BBD-based models.
Preliminary metrics of the models’ predictive powers, also based on the fit itself, again
suggest the BBD result in better fitting models, as reflected by their seemingly higher
predicted R2 (pred. R2) and lower predicted residual sum of squares (PRESS) values.
However, relatively small pred. R2 values in contrast to both multiple R2 and adj. R2, for
all cases, signifies potentially tenuous reliability of the models to make predictions in the
design space but can only be confirmed by testing the fit on data that was not used to fit
the model.

Table 2. Summary statistics for the optimization of photoporation yield using PDNPs as photothermal
NPs and FD500 as cargo molecules, with both a CCC design and BBD. Triplicates were performed to
assess model output reproducibility. The mean and standard deviation of the triplicates are presented.
Values indicated in red and with * are significant at p < 0.05 for a one-sided unpaired Welch’s t-test
between the CCC design- and BBD-based model summary statistics.

CCC BBD

Statistic Mean ± Standard Deviation Mean ± Standard Deviation

Multiple R2 0.871 ± 0.038 * 0.951 ± 0.009 *

Adjusted R2 0.726 ± 0.081 * 0.877 ± 0.022 *

PRESS 1921 ± 821 907 ± 79

Predicted R2 0.145 ± 0.275 0.416 ± 0.046

RMSE 3.957 ± 0.824 * 2.180 ± 0.191 *

MAE 3.340 ± 0.505 * 1.850 ± 0.185 *

The primary assumptions of a well-fitted regression model are the normal distribution
and homoscedasticity of the residuals. None of the replicates of the two designs showed
a significant departure from normality in their residuals, as indicated by their Q-Q plots
(Figure S3) and non-significant p-values (p > 0.05) for the Shapiro–Wilk test (Table S5)
and homoscedasticity was confirmed for all models (p > 0.05) by the Bruesch-Pagan test
(Table S5). For all experiments, the run order did not have a definite impact on the
introduction of bias by a time-effect (Figure S3), as confirmed by a Durbin-Watson test
(Table S5), which revealed no significant autocorrelation (p > 0.05). Thus, as no deviations
from the model assumptions were present, inferences could be reliably made based on the
model outputs and (statistical) observations.

2.2.2. Analysis of the Response Surface

Having verified the models’ validity, the nature of the response surface and stationary
points could be evaluated next. The CCC design-based models identified a stationary point
that was practically identical between the three replicates (Table 3), with relatively low
coefficients of variation (C.V.). Moreover, all three replicates had a set of three negative
eigenvalues, revealing that the stationary point is indeed an optimum, as desired in this
application. Results for the BBD-based models were more variable, as clearly reflected by
their sizeable C.V. While the NP size at the stationary point is rather similar for all replicates,
both the fluence and NP concentration at the stationary point differ from replicate to
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replicate. Except for the first replicate, which shows a clear optimum, the canonical analysis
revealed that some eigenvalues were close to zero (i.e., ridge system) and had mixed signs
(i.e., saddle point), thus implying that there was no clear (unique) optimum within the
explored design space and largely explaining the variation between the replicate outputs.

Table 3. Summary of the stationary points (S.P.) of all replicates for both the CCC design and BBD
in original units, delivery yield at the S.P., coefficients of variation (C.V.) and all corresponding
eigenvalues, providing more information on the nature of the S.P.

CCC BBD

Replicate 1 Replicate 2 Replicate 3 C.V. Replicate 1 Replicate 2 Replicate 3 C.V.

Size (nm) 534.956 550.250 536.688 1.549 524.159 540.399 567.548 4.029

Concentration
(×108 NPs/mL) 2.594 2.455 2.504 2.800 2.823 2.404 1.279 36.817

Fluence (J/cm2) 0.950 0.841 0.939 6.594 1.076 0.745 0.793 20.528

Delivery yield at
S.P. (%) with 95%

confidence
intervals

41.899 ± 7.044 39.591 ± 7.684 36.015 ± 5.214 7.569 37.781 ± 3.981 43.076 ± 4.515 41.798 ± 8.796 6.758

Eigenvalues
−2.393 −2.053 −2.718

N.A.
−1.491 0.693 0.915

N.A.−3.822 −4.777 −4.169 −3.494 −0.956 −0.851
−10.576 −10.385 −10.025 −16.884 −18.166 −17.735

By keeping one of the three factors constant at its stationary point value and plotting
the surface for the other two factors with the delivery yield as a response, the difference in
the nature of the BBD-based and CCC design-based models’ response surfaces becomes
more evident (Figure 4 and Figure S4). Here, a clear optimum is seen for the CCC design-
based models (Figure 4A), while the BBD-based models show a ridge system with a
saddle-like nature in four dimensions, having no apparent (unique) optimum. This is
reflected by the parallel contour lines in the plot (Figure 4B).
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2.2.3. Design Adjustment for the BDD

Despite the BBD-based models appearing to be more adequate than the CCC-based
models in the statistical assessment, the saddle-like nature of the ridge system implied
the possible absence of an optimum or an optimum—when, in fact, present–outside the
explored design space, suggesting that the BBD might not be useful for identifying a true
optimum in this application. However, such behavior of a response surface could be due
to a poor choice in variable ranges [62]. Expansion of the ranges in the BBD was made
(Table S6), as perhaps an optimum in the delivery yield could yet be identified using a
design that resulted in models being more statistically adequate in comparison to the
CCC design.
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Models fitted to the data of the BBD with extended ranges (Tables S7 and S8) indeed
gave more significant model terms with a higher pred. R2 and other metrics match those of
the original BBD-based models. Nonetheless, the PDNP size was again the only consistent
significant estimate in its linear and quadratic terms, with other terms being more variable
in their significance. Breaches of the underlying assumptions were not detected.

Analysis of the stationary points for each of the replicates’ models (Table S9) proved
that the saddle point-containing ridge system was resolved. A clear optimum was identified
in all cases (Figure 4C and Figure S5). Moreover, the identified optimum was very similar
for every replicate and corresponded well to the optimum identified by the CCC-design-
based models, with only a considerable deviation for the PDNP concentration, which
had now increased. Some variability in the identified optimal parameter values was still
present, as reflected by the C.V. (Table S9), but they now approached those of the CCC
design-based models. Importantly, the replicates optimal conditions are geometrically
close in the design space and are quasi-optimal when considered in each of the individual
models. Thus, extending the variable ranges of the BBD led to models with a clear set of
optimal parameter values, and that provided better basic statistical metrics regarding the
model fit with respect to the CCC design-based models (Table S8).

2.2.4. Model Validation

Following the response surface analyses, it was evaluated to which extent the models
can predict the delivery yield when parameter values are used which were not included in
the initial designs. Therefore, twenty confirmation runs for the CCC design and twenty-
two for the (revised) BBD were performed in biological triplicates, after which the mean
and standard deviation were calculated for the three replicates of each run factor level
combination. By averaging, the predictions of each parameter value combination for the
three model replicates and calculating the standard deviation, an estimate of the models’
variability in prediction was obtained.

The results (Table 4, Tables S10 and S11) revealed that only three of the twenty means
observed values significantly departed from the mean predicted value (85% accuracy) for
the CCC design-based model, whereas only two of the twenty-two mean observed values
did so for the BBD-based model (91% accuracy) and three of the twenty-two when extending
the variable ranges of the BBD (86% accuracy). Relatively low standard deviations of both
the observed and predicted delivery yields support that these calculations are not the
result of large sample variability. Despite different metrics (e.g., multiple R2, RMSE and
MAE) indicating a clear decrease in model performance when evaluating their fit to the
confirmation run data (Table S12), these accuracies suggest that the model output of each of
the used designs is capable of predicting the yield within the design space with sufficient
reliability. No discernable differences were observed between the CCC design-based and
BBD-based models–original or extended–regarding their predictive power.

Figure 5 further illustrates the quality of the model predictions by visualizing the
experimentally obtained delivery yields corresponding to several parameter value com-
binations across the design space. It is clearly shown that parameter value combinations
in the relative vicinity of the predicted optima—e.g., 500 nm PDNPs at a concentration of
3.5 × 108 PDNPs/mL—resulted in considerably higher, and even close to optimal, yields
than when suboptimal parameter value combinations—e.g., 300 nm or 700 nm PDNPs,
regardless of concentration and fluence—were used. Thus, the models’ identified optimum
is successfully corroborated. Further support for this assertion was found in run four for
all designs (Table 4, Tables S10 and S11), with a quasi-optimal factor level combination
identified by the models, as they resulted in the practically highest obtained delivery
yields. Moreover, it became evident that the PDNP size was the main contributor to the
delivery yield, whereas the PDNP concentration and laser pulse fluence only demonstrated
comparatively minor effects within the explored design space, exactly as predicted.
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Table 4. Summary of the unpaired Welch’s t-test between the averaged predicted values and averaged
observed values for the BBD-based models, with standard deviations (SD) also reported. Values
indicated in red and with * are significant at p < 0.05.

Variables Observed Values Predicted Values t-Test

Run Size Concentration Fluence Mean SD Mean SD t-Value p-Value

1 0.25 0.5 0.5 29.437 1.902 38.215 1.973 −5.548 0.005 *

2 −0.5 −0.5 0.5 24.316 7.639 33.033 4.837 −1.670 0.183

3 −0.5 0.5 −0.5 24.166 5.488 33.613 3.379 −2.539 0.077

4 0.25 −0.5 −0.5 39.794 4.459 39.713 4.606 0.022 0.984

5 0.25 0.5 −0.5 34.062 1.541 39.812 2.952 −2.991 0.058

6 0.25 −0.5 0.5 32.018 4.620 39.429 3.919 −2.119 0.103

7 −0.5 0.5 0.5 28.528 5.513 33.866 2.278 −1.550 0.230

8 −0.5 −0.5 −0.5 20.523 3.739 31.467 4.622 −3.188 0.035 *

9 −1 1 1 19.168 7.338 20.149 2.872 −0.216 0.845

10 1 0 0 26.262 4.842 26.630 1.628 −0.125 0.910

11 −1 1 −1 19.090 7.274 18.492 7.245 0.101 0.925

12 −1 −1 1 13.305 5.476 17.069 8.981 −0.620 0.576

13 0 0 1 23.111 8.938 38.893 2.800 −2.919 0.081

14 0 0 −1 38.841 2.164 39.541 4.478 −0.244 0.824

15 1 1 1 20.239 3.217 17.903 3.677 0.828 0.455

16 1 1 −1 28.705 1.443 26.108 5.100 0.849 0.475

17 −1 −1 −1 15.425 2.595 10.159 6.440 1.314 0.292

18 −1 0 0 22.932 9.079 18.488 2.998 0.805 0.492

19 0 −1 0 34.199 10.266 38.359 6.726 −0.587 0.593

20 0 1 0 37.972 5.081 38.609 2.644 −0.193 0.860

21 1 −1 −1 34.704 3.256 28.689 7.757 1.238 0.313

22 1 −1 1 28.532 3.118 25.737 6.291 0.690 0.541
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presence of unfavorable factor level combinations. Near-optimal parameter value combinations led to
delivery yields close to the mean (±standard deviation) of the predicted optimal delivery yield by the
CCC design- (dotted line; 39.168 ± 2.965%) and revised BBD-based (alternating stripe and dot line;
44.577 ± 1.971%) models. In the case of the BBD, these values were near the mean of its predicted sta-
tionary point by BBD-based models (striped line; 40.885± 2.763%). Error bars = standard deviations.

3. Discussion

Given its successful application to a wide variety of fields (e.g., microbial cultures,
synthetic biology and manufacturing) [60,70,71], we have explored here the utility of RSM
for the optimization of photoporation parameters. As a case study, we measured the
delivery yield (i.e., a fraction of living positive cells) for FITC-dextran 500 kDa (FD500)
delivery in RAW264.7 murine macrophage-like cells. RAW264.7 macrophage-like cells are
a useful case study since they are of interest in fundamental and applied research regard-
ing immunology and pathology [59], where intracellular delivery is crucial when trying
to harness macrophages’ natural functions (e.g., engineering chimeric antigen receptor-
macrophages) [72]. FD500 was selected as a model cargo molecule as its hydrodynamic
diameter of 31 nm is close to that of relevant biological effector molecules, such as tran-
scription factors or gene-editing nucleases [73].

Part of investigating the suitability of models fitted to the data collected using these
designs is the statistical assessment of the adherence to the underlying model assumptions,
as any violation can hamper the inferences made [74]. Supported by several plots, and as
indicated by the non-significant results of the Shapiro-Wilk normality test, Bruesch-Pagan
heteroscedasticity test and Durbin-Watson test for autocorrelation, we concluded that the
model assumptions were respected when using the CCC design and BBD. The suitability
of both designs is further reinforced by the absence of lack-of-fit and the significance of
the fitted models in all replicates. However, a comparison of the metrics regarding the
adequacy of the models did reveal some differences between both designs. Consistently
higher R2 values, whether multiple or adjusted and lower values for the RMSE and MAE
favor the choice for the BBD in this specific area [62,75–77].

Since the predicted optimum rarely corresponds to one of the experimental data points
in the designs, the models’ predictive power was investigated. A preliminary study of the
pred. R2 metric for the models resulting from the two designs revealed a severe decrease
(>0.20) in comparison to the multiple and adj. R2, suggesting the low predictive power
of the models [78]. Confirmation runs corroborated this finding by also establishing a
true sizeable reduction in the multiple R2 using their data points—i.e., a measure of fit
between the originally fitted curve and newly collected data points. Possible reasons for
this are the presence of irrelevant model terms (i.e., overfitting) [78], model biases due to
factor level errors [79] and the possibility that a second-order model does not adequately
describe the relationship between the response and factors [80]. Broad design regions—e.g.,
by ±α-values in the CCC design—can also contribute to this issue [81]. Interestingly, the
similarity of the multiple R2, RMSE and MAE for the confirmatory run replicates of the
two designs indicated that they had equal predictive power based on statistical metrics,
even though the BBD-based models had a considerable advantage in the first adequacy
check. It must, however, be considered that some of the confirmatory runs for the BBD-
based models were located outside its design space, thus requiring extrapolation, which is
inherently more unreliable [82]. Despite the suggested lackluster predictive capabilities of
both designs’ models by several calculated metrics, the high obtained accuracies based on
experimental validation data points provided a first indication that the models can indeed
reliably predict experimental regions of interest to some extent [83]. No difference between
the outputs of the designs could be made in this aspect.

Ultimately, more important than the statistical assessment and validation of the mod-
els is their performance in practice—i.e., the ability to correctly identify the parameter
values for which an optimal yield is obtained. We found that only the CCC-based models
identified a true optimum in all cases, whereas the BBD-based models rather returned
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a saddle point-containing ridge system for two of the three replicates. The latter is an
indication that certain variables—or their interactions–had an insignificant effect on the
response [66], which can be caused by factor ranges being set too small [62]. Given that
BBD-based models might be more suitable in some practical applications of photoporation
with less flexibility, we investigated whether expanding the parameter ranges in the BBD
was helpful in obtaining a true optimum. Indeed, extending the PDNP concentration
and laser fluence ranges of the BBD resulted in models that contained a true optimum
within the design space, which was similar to the optimum as predicted by the CCC design.
Only in the predicted optimal PDNP concentration did the two designs lead to different
results, with the extended range BBD-based models marking ca. 3.5 × 108 NPs/mL as
optimal instead of ca. 2.5 × 108 NPs/mL by the CCC design-based models. In practice,
however, these are rather small differences that are likely close to optimal. A comparison
of the delivery yields of predicted near-optimal parameter value combinations to predicted
suboptimal combinations did indeed confirm that optimum identification was effective for
the models resulting from both designs. This further strengthened the preceding model
validation based on confirmation runs. Considering that both designs resulted in models
that were equally successful in identifying an optimum and the aforementioned effective
practical validation, it is shown that (better) general statistical metrics do not necessarily
lead to better/proper predictive capabilities in practice, possibly warranting some practical
liberties. Additionally, the similarity of the discerned optimal conditions between the dif-
ferent design replicates proved that only one designed experiment is sufficient, confirming
one of the key concepts in RSM. Lastly, a note on the design selection has to be made,
however. Even though both designs were successfully used for optimization purposes in
this study, the BBD should only be selected if the experiment permits little flexibility, as a
CCC design has better predictive capacities across the entire design space [62]. Carefully
made considerations of the experimental design remain crucial.

In addition to the identification of an optimum, the model output can also be used to
gather information about the factors that have the most influential impact on the response.
This way, a more biological/physical and mechanistic interpretation of the process can be
obtained, though this necessitates a critical view of the used experimental design–especially
the possibility of confounding factors and set factor ranges (in original units) [62,84]. We
found that the PDNP size was consistently the most influential factor. This could be
attributed to the fact that laser pulse fluences and PDNP concentrations were only varied
over relatively small ranges in this study, making PDNP size the predominantly influential
factor. Laser fluence was varied from 0.7 to 1.3 J/cm2, for which the balance of heating vs.
VNB formation is fairly similar per PDNP size (Figure 3). It is, therefore, understandable
that it had little influence on the final delivery yield. For a given fluence, however, there
is a big difference in the predominant photothermal mechanism depending on the PDNP
size. For the smaller PDNPs, heating is more prevalent, while VNB formation will be more
likely for the larger PDNP sizes. Within the tested concentration range, permeabilization by
VNBs appears to be more beneficial than by heating, an observation that was made before
for AuNPs [19]. The fact that 500 nm PDNPs come out as more beneficial than larger ones,
which also form VNBs, is likely related to the fact that they may give rise to larger and
more powerful VNBs, which can lead to more damage to cells [20]. Indeed, delivery yield
is the balance between delivery efficiency and cell viability. Within the tested concentration
range, PDNPs larger than 500 nm inflict damage to cells too extensively (Figure S6), which
negatively impacts delivery yield. It cannot be excluded that higher (still sub-optimal)
delivery yields are possible for those large PDNPs if the concentration range is expanded
to include lower concentrations so as to reduce toxic effects. Similarly, for higher PDNP
concentrations, it may be that better, but perhaps still sub-optimal, yields are possible for
the smaller PDNPs. This remains to be explored in future research.

Finally, it is of interest to consider the reduction in resources made possible by the
RSM approach versus the commonly used OFAT approach. Based on previous reports
on photoporation, OFAT requires about 50 experimental conditions—including technical
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and biological replicates—to determine the optimal nanoparticle concentration and laser
fluence for a given nanoparticle size [22,25,26,53]. This means that for three PDNP sizes,
this would amount to 150 experimental conditions in the OFAT approach. Instead, the
RSM approach required only sixteen or eighteen runs, depending on the design, for the
optimization of all three parameters, resulting in an over eightfold reduction in time and
materials. Even when an additional experiment with extended ranges in the design is
required, as was the case with the BBD in this study, there is still a five-fold reduction
in resources.

Future work can explore the ability to use the CCC-design and BBD to optimize these
photoporation parameters in other, more therapeutically relevant photoporation applica-
tions. Moreover, the inclusion of other parameters is to be investigated for parameters that
can improve our fundamental knowledge of how cell biology affects the photoporation
outcome. Previous research indicates that different cell types require different optimal
parameter combinations [24,25,28,53], which could be related to different cell sizes, seeding
density, morphology and/or their being (non-)adherent, providing possible parameters of
significance. More so, some of these cell characteristics can be related to cell type-specific
phenotypes (e.g., T-cells) [85,86], possibly allowing an even more refined elucidation of
fundamental photoporation effects. Additionally, a combination of biological parameters
with physical parameters (e.g., NP type, NP size, cargo molecule and laser fluence) can
broaden such research. With rising numbers of included parameters, other venues of
RSM might also prove to be of interest. For example, screening designs to reduce factor
numbers, computer-aided designs, combinations of continuous and categorical factors,
and other modeling techniques can offer elegant instruments to study these complex
questions [57,62,66,84,87,88].

4. Materials and Methods
4.1. Synthesis of Polydopamine Nanoparticles and Functionalization with Bovine Serum Albumin

Based on a protocol reported by Harizaj et al. [53], adapted from Ju et al. [52], poly-
dopamine nanoparticles of various sizes were synthesized. In brief, dopamine hydrochlo-
ride powder (Sigma-Aldrich) was dissolved in 20 mL of HyClone pure water (HyPure, Cell
Culture Grade, VWR) at 50 ◦C. 1 M NaOH solution was then added under vigorous stirring,
marking the onset of the polymerization process by turning the solution pale yellow, which
developed into a dark brown over time. Depending on the desired size, the dopamine
hydrochloride concentration was varied between 2 and 4 mg/mL in combination with
varying the molar ratio of dopamine hydrochloride:NaOH between 1:0.6 and 1:0.9. The
polymerization mixture was left to stir for approximately 7 h. Growth kinetics were moni-
tored by measuring the hydrodynamic diameter of the particles every hour by dynamic
light scattering (DLS) (Zetasizer Nano ZS, Malvern Instruments Co., Ltd., Malvern, UK).
Upon reaching the desired hydrodynamic diameter, nanoparticles were washed several
times with HyClone pure water, separating the PDNPs from the unreacted precursors by
centrifugation. Sub-200 nm PDNPs reaction mixtures were divided over 1.5 mL Eppendorf
tubes, and centrifugation was performed at 20,000 RCF for 20 min. Reaction mixtures of
PDNPs larger than 200 nm were collected in 50 mL conical tubes, and the PDNPs with sizes
between 200 and 400 nm were centrifuged for 20 min at 4000 RCF, whereas PDNPS larger
than 400 nm were centrifuged for 10 min at 4000 RCF. Finally, the washed NP suspensions
were sonicated at 10% amplitude for 20 s with a tip sonicator (Branson Digital Sonifier,
Danbury, CT, USA) to disband agglomerates and reduce potential future NP agglomeration
or even aggregation.

The colloidal stability of PDNPs in suspension and their interaction with cell mem-
branes were improved by functionalizing the NPs with bovine serum albumin (BSA)
(Biotechnology grade, VWR Chemicals, Radnor, PA, USA). Uncoated PDNP suspensions
were mixed with a 20 mg/mL BSA solution in DPBS at a 1:1 volume ratio and left to be
mixed vigorously overnight. Unbound BSA was removed by several washing steps with
HyClone water, using the aforementioned RCFs and centrifugation times for the different
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PDNP sizes. At last, the resulting BSA-coated PDNPs were dispersed in HyClone water
and stored at 4 ◦C.

4.2. Physicochemical and Morphological Characterization

Both the hydrodynamic diameter—reported as Z-average and referred to as the size—and
zeta potential of the (BSA coated) PDNPs were measured using DLS (Zetasizer Nano
ZS, Malvern Instruments Co., Ltd.). Nanoparticle concentrations were determined using
nanoparticle tracking analysis (NTA) (NanoSight LM10, Malvern Panalytical, UK). Record-
ing of the UV/VIS spectra was performed with a Nanodrop 2000c spectrophotometer
(Thermofisher, Rockford, IL, USA). Morphological characterization and additional nanopar-
ticle diameter measurements of the BSA-coated PDNPs were obtained by means of both
scanning electron scanning microscopy (SEM) (JSM-100, JEOL, Tokyo, Japan) and transmis-
sion electron microscopy (TEM) (Tecnai G2 Spirit BioTWIN, FEI, Hillsboro, OR, USA).

4.3. VNB-Threshold

Vapor nanobubbles (VNBs) were generated by irradiating samples of ca. 1 × 109 NPs/mL
in double-distilled water (ddH2O), present in a 50 mm γ-irradiated glass bottom dish (Mat-
Tek Corporation, Ashland, MA, USA), with ca. 3 ns pulsed 532 nm laser light (Cobolt
TorTM Series, Cobolt AB, Solna, Sweden). Lasers pulses were generated on demand using
a 25 MHz pulse generator (TGP3121, Aim-TTi, Huntingdon, UK), with control over the
pulse energy being provided by an adjustable DC power supply (HQ Power PS23023,
Velleman Group, Gavere, Belgium). Energies were registered using an Ophir Starlite energy
meter (MKS Instruments, Andover, MA, USA). The VNBs were visualized using dark field
microscopy, where the increased scatter of VNBs resulted in bright white spots [19]. Short
movies of this phenomenon were captured using a cMOS camera (Blackfly S GigE-Mono,
FLIR, Wilsonville, OR, USA) and screen recording software, which allowed the counting
of individual VNBs. The number of generated VNBs was determined in the irradiated
area as a function of the applied laser fluence. A Boltzmann sigmoid curve was fitted to
the data normalized against the maximal number of counted VNBs in GraphPad Prism
version 8.0.0 (GraphPad Software, San Diego, CA, USA), allowing quantification of the
VNB-threshold as the laser pulse fluence at which 90% of the irradiated particles generate a
detectable VNB.

4.4. Cell Culture

RAW264.7 (American Type Culture Collection, ATCC-TIB-71) murine macrophage-
like cells were cultured in DMEM/F-12 medium + GlutaMAXTM-I (GibcoTM), which was
supplemented with 10% fetal bovine serum (FBS, Biowest, Nuaillé, France) and 100 U/mL
Penicillin/Streptomycin (GibcoTM). Every 2 or 3 days, the cells reached confluency and
were subsequently passaged and kept in a humidified incubator (37 ◦C, 5% CO2).

4.5. Photoporation for the Intracellular Delivery of FITC-Dextran 500 kDa

One day prior to performing photoporation, the RAW64.7 cells were seeded in a 96-
well plate at a density of 50,000 cells/well, after which the plate was incubated overnight in
an incubator (37 ◦C, 5% CO2). Next, the cells were washed once with Dulbecco’s phosphate
buffered saline without Ca2+ and Mg2+ [DPBS(-/-), Biowest, Nuaillé, France] [89] after
which the PDNPs, of which a series of dilutions was prepared in reduced serum culture
medium [Optimized-Minimal Essential Medium (Opti-MEM), GibcoTM], were added to
the wells. This step was immediately followed by 10 s centrifugation in a plate centrifuge
(Eppendorf, Hamburg, Germany) until 1300 RCF was reached. Unbound particles were
removed from the cells by washing them with DPBS(-/-). 50 µL of Opti-MEM containing
1 mg/mL FITC-dextran 500 kDa (FD500, Sigma-Aldrich, Bornem, Belgium) was then added
to the wells, followed by photoporation with an in-house developed optical setup with a
nanosecond laser (3 ns pulse duration, 532 nm wavelength) and equipped with a Galvano-
scanner to rapidly scan the laser beam across the samples (5–6 s per well). Immediately
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after laser treatment, cells were washed twice with fresh culture medium to remove excess
FD500 and thus prevent its spontaneous uptake by endocytic processes. Finally, the cells
were prepared for flow cytometry analysis of the delivery efficiency.

4.6. Analysis of Intracellular Delivery Efficiency by Flow Cytometry

Delivery efficiency of FD500 was determined by washing the photoporated cells once
with DPBS(-/-), adding 40 µL/well of enzyme-free cell dissociation buffer (GibcoTM) for
5 min on an orbital shaker (120 rpm) and then adding 110 µL of flow buffer [DPBS(-/-), 1%
Bovine Serum Albumin, 0.1% Sodium Azide] containing 0.5 × 10−6 M of a cyanine dye
monomer TO-PRO3 iodide (Invitrogen, Belgium) as cell viability dye. The samples were
then measured with a CytoFLEX flow cytometry (Beckman Coulter, Krefeld, Germany).
For every sample, 10,000 living cells were gated for the evaluation of the FD500 delivery in
the FITC-channel by excluding TO-PRO3-positive cells in the singlet population. FlowJo™
software (Treestar Inc., Ashland, OR, USA) was used for data analysis.

4.7. Cell Viability Analysis

For every FD500 delivery experiment, a second plate was seeded at 50,000 cells/well of
RAW264.7 cells to measure the effect of photoporation on viability. All steps were identical
to the previously described protocol for flow cytometric analysis, except that FD500 was
omitted from the Opti-MEM added to the cells preceding photoporation. Following laser
treatment, the Opti-MEM was removed, and a fresh culture medium was added. The cells
were then put in an incubator (37 ◦C, 5% CO2) for 2 to 4 h, after which the viability was
assessed using the CellTiter Glo® luminescent cell viability assay (Promega, Belgium). In
this assay, the number of viable cells is determined by quantification of the ATP present
after cell lysis, as an indicator of the metabolic activity of cells. As recommended by the
manufacturer, the old culture medium was removed, and 100 µL of fresh culture medium
was added, which was supplemented by an equal volume of CellTiter Glo® reagent and
shaken on an orbital shaker (120 rpm) for 10 min at room temperature. Next, the cell
lysates were transferred to an opaque white 96-well plate (Greiner Bio-One, Belgium),
and the luminescent signal was measured using a GloMax® microplate reader (Promega,
Belgium). Cell viability was calculated relative to the average of a technical triplicate of
non-treated controls.

4.8. Response Surface Methodology
4.8.1. Experimental Design

Three relatively well-controllable independent variables were chosen as the factors
to optimize the photoporation delivery yield: PDNP size, PDNP concentration and laser
fluence. The photoporation delivery yield is defined as the fraction of cells that are alive,
and FD500 positive after photoporation compared to the starting number of cells and is
calculated as the product of the delivery efficiency (%) as determined by flow cytometry–i.e.,
the percentage of FD500 + cells, after gating for viable cells–and the relative cell viability (%)
as measured by the CellTiter Glo® assay. Both the five-factor level Circumscribed Central
Composite (CCC) design and three-factor level Box-Behnken Design (BBD) (Table S13) were
generated in R (v4.2.1) using the rsm package (v2.10.3) with four center-point runs (i.e., the
center of design space) [67]. Randomization of the run order was performed to prevent
introducing bias in the data by a time-effect. Table 5 displays the parameter values included
in the design, which were selected based on prior knowledge of typical photoporation
parameters, and the corresponding coded values as used in the RSM analysis, which were
defined as

xi =

(
Xi − X′i

)
∆Xi

(1)

where xi is the ith (dimensionless) coded factor, Xi the corresponding ith factor in its
original units, X′i the value of the ith factor at the geometric center point of the design space
and ∆Xi the difference in parameter values between coded factor level +1 and 0 for that
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particular factor (i) in its original units (e.g., ∆Xsize = 700 nm − 500 nm = 200 nm). The CCC
design requires additional coded factor levels that lay out- or inside of the design space of
interest (±α) to estimate the curvature of the response surface [68]. Here, an orthogonal
design [66,90] was preferred over a rotatable design, setting the extra factor levels (±α)
to ±1.789 [62,67]. The interested reader is referred to Myers et al. [62] and Box et al. [84]
for an intuitive geometric interpretation of these designs combined with a more in-depth
analysis of their characteristics.

Table 5. Overview of the parameter values included in the design and their translation to coded
values (bold) as they are used in the RSM model.

Parameter Values

Size (nm) 142 300 500 700 858

Concentration
(NPs/mL) 0.789 × 108 1.5 × 108 2.5 × 108 3.5 × 108 4.289 × 108

Fluence (J/cm2) 0.463 0.7 1 1.3 1.537

Coded factor levels −1.789 −1 0 +1 +1.789

4.8.2. Model Fitting and Statistical Assessment

Once the data was collected and processed, an empirical full second-order polynomial
model was fitted using ordinary least squares regression (OLS) [74,91]. The model for the
three factors of interest assumes the following form

ŷ = β̂0 +
3

∑
i=1

β̂ixi +
2

∑
i=1

3

∑
j=i+1

β̂ijxixj +
3

∑
i=1

β̂iix2
i (2)

in which the predicted response is denoted by ŷ, xi and xj, representing the coded values of
the factors, β̂0 is the estimated intercept term, the estimated coefficients of the interaction
terms are given by β̂ij and those of the quadratic terms by β̂ii. Thus, this model contains
an intercept, three main effect terms (xi), three interaction terms (xixj) and three quadratic
terms (x2

i ), totaling ten terms.
Model fitness was assessed using an analysis of variance (ANOVA) and a collection of

summary statistics. The statistical significance of the model parameters was determined
using t-tests, while the models’ significance and lack-of-fit were evaluated using F-tests [62].
The accuracy of the models was evaluated and compared by calculation of the coefficients
of determination (multiple R2), adjusted coefficients of determination (adj. R2), predicted
R2 (pred. R2), predicted residual sum of squares (PRESS), root mean squared error (RMSE)
and mean absolute error (MAE) [62,75,76,92]. The normal distribution of the residuals was
checked by calculating the residual mean, plotting the relation between the theoretical
normal quantiles and the ordered normalized residuals (Q-Q plot) and the Shapiro-Wilk
test of normality [62,93]. Homoscedasticity was tested using the Bruesch-Pagan test [94].
Lastly, the introduction of bias into the model by a time dependency was checked by the
Durbin-Watson test and plotting the residuals as a function of the run order [62,95]. For all
statistical tests, the null hypothesis was rejected when the p-value < 0.05.

4.8.3. Canonical Analysis

An analytical approach, termed canonical analysis, was used to identify the stationary
point of the fitted model and to clarify if this corresponds to a maximum, minimum, saddle
point and/or ridge system. Though a general overview of the methodology is given here,
the works of Myers et al. [62] and Buyske and Trout [96] excellently explain and derive all
of the relevant results for canonical analysis. In brief, the aforementioned full quadratic
model is represented in its matrix form

ŷ = β̂0 + x′ β̂ + x′B̂x (3)
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where x′ = [x1, x2, . . . , xk] represents the transpose of the vector of the factors,
β̂′ =

[
β̂1, β̂2, . . . , β̂k

]
the transpose of the linear coefficient estimates vector and B̂ the

k× k symmetric matrix of the estimates of the second-order coefficients

B̂ =


β̂11 β̂12/2 · · · β̂1k/2

...
. . .

...
...

symm. · · · β̂kk

 (4)

By differentiating the expression in matrix form with respect to x and setting the
derivative equal to 0, the location of the stationary point in vector form (xs) can be obtained

δ

δx

(
β̂0 + xs

′ β̂ + xs
′B̂xs

)
= β̂ + 2B̂xs = 0⇔ xs = −

B̂−1
β̂

2
(5)

Now, having identified the stationary point, it is possible to center the system at said
point by performing a simple translation (z = x− xs), thus arriving at

ŷ = ŷs + z′B̂z (6)

In the final step, the axes of this re-centered system are rotated in such a manner that
they will become the axes of symmetry of the fitted model (i.e., principal axes). A new
k× k matrix termed P is defined, whose columns are the eigenvectors associated with B̂,
together with a diagonal matrix Λ = P′B̂P containing the eigenvalues (λk) corresponding
to those eigenvectors. The raisons d’être of these matrices are stated in basic linear algebra
texts [97] and proven in more rigorous works dealing with spectral theory [98–100]. If a
new vector w = P′z is introduced, the canonical form of the model is easily derived to be

ŷ = ŷs +
k

∑
i=1

λiw2
i (7)

Thus, the predicted response is now purely a function of the predicted response at
the stationary points, the eigenvalues of the system and the canonical variables wi. From
this polynomial, it becomes clear that, when moving away from the stationary point, the
response decreases if all λi < 0 and increases if all λi > 0, corresponding to a maximum
and minimum in the system, respectively–mixed signs of λi indicate the presence of a
saddle point, where there is no maximum nor minimum in the observed experimental
region. Cases where the presence of at least one near-singular (≈0) eigenvalue in a model
where its canonical form occurs signify a ridge system, where the surface curvature is small
within the design space, meaning that multiple parameter value combinations result in the
same (optimal) response [66]. This offers a relatively simple way to study the nature of the
stationary point.

4.8.4. Model Validation

Having checked the fitness of the model and having established the location of the
optimum, the model was then validated through the collection of new data points and
comparison of the predicted response to the experimentally obtained response. Twenty con-
firmation runs for the CCC design and twenty-two for the BBD were performed (n = 3) [101].
Twelve of the confirmation runs for the CCC design consisted of the runs for the BBD, mi-
nus the center runs, whereas fourteen of the confirmation runs for the BBD were runs used
for the CCC design, also minus the center runs. Validation of one design was thus partly
based on re-using data of the other design, as they both contained different coordinates in
the design space. Eight additional confirmatory runs were selected in the ranges between
−1 and +1 of all factors (Table S14), according to new factor levels defined in Table 6. These
eight runs were the same for both the CCC design-based and BBD-based model validation.
A scheme of the used RSM procedure clarifies this strategy (Figure 6). Both the average and
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standard deviation of the predictions of each model and observed values from the confir-
mation runs were calculated. An unpaired Welch’s t-test was then performed between the
predicted values and the observed values to check if the means were significantly different
(p < 0.05). This allowed us to estimate the predictive capability of models fitted to the data
collected according to the BBD or CCC design. A more detailed view of the performance of
the individual models was obtained by calculation of the multiple R2, RMSE and MAE on
the validation data set.

Table 6. Overview of the parameter values included in the confirmatory runs and their conversion to
coded values (bold) as they are used in the RSM model. * Coded factor level for a size of 550 nm is
0.25, while the other parameter values in that column correspond to coded factor levels of 0.5.

Parameter Values

Size (nm) 400 550

Concentration (NPs/mL) 2.0 × 108 3.0 × 108

Fluence (J/cm2) 0.85 1.15

Coded factor levels −0.5 0.25 or 0.5 *
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5. Conclusions

In this study, we successfully applied RSM to efficiently determine photoporation
parameter values that result in an optimal delivery yield. A comparison of two popular
designs, the CCC design and BBD, revealed equal applicability to RSM for the prediction
of optimal parameter values, though the BBD requires the least flexibility. Compared to the
traditional OFAT approach, RSM resulted in over eight-fold fewer experiments needed to
determine the optimal conditions, with still a five-fold reduction in resources upon design
revision. In future work, it will be of interest to apply the RSM framework to other cell
types and cargo molecules, as well as to expand the range of parameters to gain further
insight into the physicochemical (e.g., NP type, NP size, cargo molecule and laser fluence)
and biological (e.g., cell density, size, type and morphology) aspects that play a role in
intracellular delivery by photoporation.
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