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Abstract: Cuproptosis and ferroptosis represent copper- and iron-dependent forms of cell death,
respectively, and both are known to play pivotal roles in head and neck squamous cell carcinoma
(HNSCC). However, few studies have explored the prognostic signatures related to cuproptosis and
ferroptosis in HNSCC. Our objective was to construct a prognostic model based on genes associated
with cuproptosis and ferroptosis. We randomly assigned 502 HSNCC samples from The Cancer
Genome Atlas (TCGA) into training and testing sets. Pearson correlation analysis was utilized
to identify cuproptosis-associated ferroptosis genes in the training set. Cox proportional hazards
(COX) regression and least absolute shrinkage operator (LASSO) were employed to construct the
prognostic model. The performance of the prognostic model was internally validated using single-
factor COX regression, multifactor COX regression, Kaplan–Meier analysis, principal component
analysis (PCA), and receiver operating curve (ROC) analysis. Additionally, we obtained 97 samples
from the Gene Expression Omnibus (GEO) database for external validation. The constructed model,
based on 12 cuproptosis-associated ferroptosis genes, proved to be an independent predictor of
HNSCC prognosis. Among these genes, the increased expression of aurora kinase A (AURKA) has
been implicated in various cancers. To further investigate, we employed small interfering RNAs
(siRNAs) to knock down AURKA expression and conducted functional experiments. The results
demonstrated that AURKA knockdown significantly inhibited the proliferation and migration of
HNSCC cells (Cal27 and CNE2). Therefore, AURKA may serve as a potential biomarker in HNSCC.

Keywords: head and neck squamous cell carcinoma; prognostic model; cuproptosis; ferroptosis; AURKA

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a prevalent form of cancer
globally, found to develop from the mucosal epithelium of the mouth, pharynx, and larynx.
It is the most prevalent malignancy of the head and neck region [1,2]. Currently, the primary
treatment options for HNSCC include surgery, chemotherapy, radiotherapy, and primary
chimeric antigen receptor T cell immunotherapy (CRAT). However, 50% of patients have a
poor prognosis at advanced stages [3]. It has been suggested that incorporating prognostic
and predictive signatures into clinical management may be a solution to overcoming
barriers to targeted cancer therapy and improving patient survival. Therefore, there is an
urgent need to identify signatures to provide new interventions for treating HNSCC.

Int. J. Mol. Sci. 2024, 25, 4372. https://doi.org/10.3390/ijms25084372 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25084372
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6888-6560
https://doi.org/10.3390/ijms25084372
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25084372?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 4372 2 of 20

Metal ions are crucial micronutrients in maintaining cellular homeostasis, regulating
metabolic pathways, facilitating signaling and energy conversion, and other activities.
However, these ions’ inadequate or excessive distribution can significantly affect various
physiological functions, leading to apoptosis [4]. For instance, ferroptosis is an iron-
dependent form of apoptosis. An excess accumulation of intracellular iron results in lipid
peroxide accumulation, leading to programmed cell death in tumor cell membranes [5,6].
HNSCC cells usually exhibit increased intracellular iron concentrations, and ferroptosis-
inducing therapy effectively induces apoptosis in HNSCC [7]. Similarly, cuproptosis is a
copper-dependent mode of cell death. It has been reported that cuproptosis is predomi-
nantly caused by the irregular accumulation of lipid-acylated proteins and the depletion of
iron–sulfur cluster proteins. Combining copper ions with the lipid-acylated components
of the tricarboxylic acid cycle triggers a toxic stress response to the proteins, leading to
cell death [8,9]. It was demonstrated that inhibition of cuproptosis could increase HNSCC
cell viability in patients with oral squamous cell carcinoma [8]. Recent research has sug-
gested an underlying connection between ferroptosis and cuproptosis. For example, in
hepatocellular carcinoma, the ferroptosis inducers sorafenib and erastin augmented copper
death induced by copper ion carriers in cancer by upregulating protein lipid acylation
and inhibiting intracellular glutathione (GSH) synthesis [10]. In lung cancer, Bennett, W.D.
et al. constructed a diagnostic model based on copper apoptosis/ferroptosis genes that can
be used to identify lung adenocarcinoma (LUAD) patients suitable for immunotherapy
and predict sensitivity to chemotherapeutic agents. Similarly [11], Garcia Morillo et al.
screened for copper and ferroptosis genes that can predict the survival of breast cancer
(BRCA) patients by using bioinformatics and constructed a risk regression model, which
can effectively predict the prognosis of breast cancer patients and enable the personal-
ized treatment of patients [12]. Yet, the relationship between cuproptosis combined with
ferroptosis-related genes and the prognosis of HNSCC is not fully understood.

Recent evidence suggests that combining the two predictive signatures improves the
accuracy of the predictive model and provides new ideas for constructing clinical prognos-
tic tools for various cancers [13]. For instance, such a novel model based on genes related
to cuproptosis and ferroptosis possessed excellent potential for predicting prognosis in
lung adenocarcinoma [14], ovarian cancer [15], and hepatocellular carcinoma [16]. Cuprop-
tosis and ferroptosis have a notable impact on the prognosis of HNSCC. However, few
studies have focused on the prognostic signatures associated with cuproptosis and ferrop-
tosis in HNSCC. Therefore, this study aims to construct a prognostic model for HNSCC
based on cuproptosis- and ferroptosis-related genes, predicting the prognosis, immune
characteristics, and potential drugs for HNSCC.

In this study, we aimed to construct a predictive prognostic model based on cuproptosis-
associated ferroptosis genes in HNSCC. We found that, of the cuproptosis-associated fer-
roptosis genes modeled, aurora kinase A (AURKA) was upregulated in HNSCC patients
with tumor suppressor p53 (TP53) mutations and human papillomavirus uninfected (HPV),
and could be associated with poor prognosis [17]. Therefore, we investigated the potential
prognostic value of AURKA by using functional assays. Our study’s results may help
improve individualized treatment and prognostic assessment of HNSCC.

2. Results
2.1. Construction of the Prognostic Model in HNSCC

To investigate cuproptosis-associated ferroptosis genes in HNSCC, we first explored
the correlation network of cuproptosis genes themselves (Figure 1A). The results revealed
significant correlations between dihydrolipoamide s-acetyltransferase (DLAT), dialectical
behavior therapy (DBT), metal regulatory transcription factor 1 (MTF1), nonalcoholic fatty
liver disease (NFE2L2), and developmental language disorder (DLD). This suggests that
cuproptosis plays an essential role in HNSCC. Next, through the Pearson correlation analysis,
cuproptosis-associated ferroptosis genes in HNSCC were obtained (Supplementary Table S1).
We then performed cluster analysis on the expression of these cuproptosis-associated
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ferroptosis genes in HNSCC patients (Figure 1B). Through univariate Cox proportional
hazards (COX) regression analysis, we screened 30 cuproptosis-associated ferroptosis genes
with prognostic significance (Figure 1C). Predictive features based on prognostic-related
genes were further analyzed using LASSO, Cox regression to minimize possible overfitting
issues and identify optimal criteria. Twelve cuproptosis-associated ferroptosis genes were
screened out on the basis of the optimal penalty parameter λ determined by tenfold cross-
validation following the minimum criteria. They were used to construct the prognostic
model, which can be used to identify the most effective predictive signature and generate
prognostic indicators to predict clinical outcomes (Figure 1D,E).
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Figure 1. Construction of the risk model based on cuproptosis-associated ferroptosis genes in
HNSCC. (A) Correlation networks explain the interactions between cuproptosis genes in HNSCC:
red represents positive correlations; blue represents negative correlations. (B) Clustered heatmap of
the expression of 150 cuproptosis-associated ferroptosis genes in HNSCC. (C) One-way regression
analysis of cuproptosis-associated ferroptosis genes in HNSCC. (D,E) LASSO regression analysis
with cuproptosis-associated ferroptosis genes in HNSCC. Coefficient profiles were drawn based on
(log λ) sequences and the value of lambda. Min was defined based on 10-fold cross-validation, where
the optimal λ yielded 12 cuproptosis-associated ferroptosis genes.
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We constructed the risk prognosis model for HNSCC to assess the predictive risk
of patients based on the 12 cuproptosis-associated ferroptosis genes. HNSCC samples
were classified into high- and low-risk groups, using the median risk values as a predictive
signature. The risk class distribution, expression levels of cuproptosis-associated ferroptosis
genes, patient survival status, and time pattern results of The Cancer Genome Atlas
(TCGA) training set are shown in Figure 2A,B. In addition, we assessed the overall survival
of patients in the HNSCC training set by Kaplan–Meier (KM) analysis and found that
individuals in the high-risk category had a considerably worse prognosis compared to
those in the low-risk group (Figure 2C). Figure 2D demonstrates the receiver operating
characteristic (ROC) prediction performance of our constructed risk prognostic model, and
it can be found that our model can successfully predict the 1-, 3-, and 5-year survival of
patients with statistical significance. Figure 2E demonstrates the heatmap of the expression
of the 12 cuproptosis-associated ferroptosis genes in the training set. Furthermore, we
explored the ability of the prognostic model to differentiate patients using a principal
component analysis (PCA) approach with the 12 cuproptosis-associated ferroptosis genes
as indicators. The results showed that the risk prognostic model we constructed was able
to accurately differentiate patients into two groups, high-risk and low-risk (Figure 2F).
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Figure 2. The risk model was constructed based on the TCGA training set. (A) The plot of the
distribution of patient risk rating points in the TCGA training population. The red curve represents
those in the high-risk group and the green represents those in the low-risk group in the TCGA
testing population. (B) The scatterplot of patient survival status in the TCGA training population.
(C) The Kaplan–Meier survival plots for patients in the TCGA training set population. (D) The ROC
curve analysis of predictive performance of assessment risk prognostic model in the TCGA training
set population. (E) The clustered heatmap of the expression of the twelve cuproptosis-associated
ferroptosis genes modeled in two groups of people at high and low risk. (F) In the TCGA training set,
PCA analyses assess the discriminatory ability of our constructed prognostic model.

2.2. Evaluation and Validation of the Prognostic Model in HNSCC

To evaluate the risk prediction model constructed based on the cuproptosis-associated
ferroptosis genes, we plotted the distribution of risk scores, overall patient survival, and
ROC results for patients in the TCGA training set. Figure 3A,B show the risk class distribu-
tion of patients in the TCGA validation set and the KM analysis, and the results suggest that
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the higher the risk score of the patient, the higher the mortality rate. The ROC curve results
suggest that the 1-year, 3-year, and 5-year predictions of this prognostic model are accurate
and stable in the training set (Figure 3C). To validate the robustness and reliability of our
constructed model in an independent cohort, we downloaded data for external validation
from the GSE41613 dataset (platform: GPL570) uploaded previously by Lohavanichbutr,
P. et al., which contains expression profiles and clinical information of 97 HPV-negative
OSCCs [18]. We categorized the patients in the validation cohort into low-risk and high-risk
groups based on the median risk score (Figure 3D). The Kaplan–Meier analysis results
shown in Figure 3E affirm the continued statistical significance of the risk prognostic model
within the GEO dataset. The ROC curves in Figure 3F confirm that the prognostic model
performs well in assessing this prognosis of patients at 1, 2 and 3 years (all greater than
0.7). In conclusion, the above findings military confirm that the risk prognostic model we
constructed is a good independent prognostic factor in HNSCC.
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To further assess and validate whether the risk prognostic model we constructed is 
likely to be an independent prognostic factor, we further investigated the predictive value 

Figure 3. Validation of the risk model in HNSCC. (A) The plot of the distribution of patient risk rating
points in the TCGA testing population. The red curve represents those in the high-risk group and the
green represents those in the low-risk group in the TCGA testing population. (B) The Kaplan–Meier
survival plots for patients in the TCGA testing set population. (C) The ROC curves analysis of
predictive performance of assessment risk prognostic model in the TCGA testing set population.
(D) The plot of the distribution of patient risk rating points in the GEO validation database. The red
curve represents those in the high-risk group and the blue represents those in the low-risk group in
the GEO validation database. (E) The Kaplan–Meier survival plots for patients in the GEO validation
database. (F) The ROC curves analysis of predictive performance of assessment risk prognostic model
in the GEO validation database.

To further assess and validate whether the risk prognostic model we constructed is
likely to be an independent prognostic factor, we further investigated the predictive value
of this prognostic model using univariate and multivariate Cox regression analyses. The
univariate COX analysis showed a hazard ratio (HR) of 2.3283 (95% confidence interval
[CI]: 1.6957–3.1969, p < 0.001), and the multivariate analysis showed an HR of 2.1766 (95%
CI: 1.5836–2.9917, p < 0.001, Figure 4A,B). These results suggested that the prognostic model
may be an excellent independent prognostic factor for HNSCC patients. Additionally, we
used the prognostic model to construct nomogram calibration plots to assess the 1-, 3-, and
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5-year survival rates of HNSCC patients. The results suggest that the model is a reliable
predictor of survival at one, three, and five years (Figure 4C,D).
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Figure 4. Validation of the predictive performance of our risk prognostic model constructed on the
basis of 12 cuproptosis-associated ferroptosis genes in HNSCC. (A) One-way regression analyses
were performed to validate the predictive performance of the risk prognostic model we constructed.
(B) Multifactorial regression analyses were performed to validate the predictive performance of the
risk prognostic model we constructed. (C) The prognostic nomogram graph for a given patient was
assessed using the risk prognostic model we constructed (** p-value < 0.01, *** p-value < 0.001). The
red numbers in the column line graph represent the overall score and predicted 1-year survival,
3-year survival, and 5-year survival for a given patient, respectively. (D) The calibration plot for a
given patient was assessed using the risk prognostic model we constructed.

2.3. The Relationship between Clinical Characteristics and the Prognostic Model

To investigate the prognostic significance of our constructed risk model under different
clinicopathological characteristics, we randomly divided the patients into two subgroups
according to clinical factors such as TNM staging, grading, age and gender. The findings in
Figure 5A reveal that age, gender, and tumor stage were not independent prognostic factors.
Still, the pathological stage was a reliable, independent prognostic factor in univariate
and multifactorial COX regression analyses. The risk score did not statistically correlate
with age, gender, and tumor stage, but it did exhibit some correlation with the TNM stage.
Specifically, patients with T3/T4 tumors had higher risk scores than those with T1/T2
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tumors, and patients with the N2/3 stage had higher risk scores than those with the N0/1
stage (Figure 5B). Using KM analysis, we evaluated the survival rates of high- and low-
risk populations based on clinical characteristics and found that the survival rate of the
high-risk group was significantly lower than that of the low-risk group. Female patients in
the high-risk group had significantly lower survival rates than those in the low-risk group.
Patients with stage IIIIV cancer had significantly lower survival rates than those in the
low-risk group. Patients with N-stage 2/3 had significantly lower survival rates than those
in the low-risk group. Patients with M0 stage had significantly lower survival rates than
those in the low-risk group (Figure 5C).
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Figure 5. The correlation between the risk model and clinical characteristics. (A) Heatmap depicting
the relationship between risk model and clinical characteristics. The risk prognostic model correlates
with TNM staging. (B) T-staging characteristics of the risk prognostic model. (C) Risk score grouping
characteristics of the risk prognostic model. (D) Tumor N grading characteristics of the risk prognostic
model. (E) Kaplan–Meier survival curve analysis of female patients. (F) Kaplan–Meier survival curve
analysis of patients with stage N-stage 2–3. (G) Kaplan–Meier survival curve analysis of patients
with tumor stage 3–4. (H) Kaplan–Meier survival curve analysis of patients with tumor T-stage
1–2. (I) Kaplan–Meier survival curve analysis of patients with tumor T-stage 3–4. (J) Kaplan–Meier
survival curve analysis of M0 patients. * p-value < 0.05.

2.4. Immunological Characteristics of the Prognostic Model

To further explore the immune characteristics of the population in our constructed
risk prognostic model, we analyzed Tumor Immune Estimation Resource (TIMER) 2.0 and
Translational Medicine Integrated Database (TISIDB) to determine whether tumor infil-
trating immune cells (TIICs) and tumor-infiltrating lymphocytes (TILs) differed between
the high-risk and low-risk groups to investigate the correlation between the prognostic
model and immune infiltration [19,20]. As shown in Figure 6A, the infiltration of immune
cells was different between the high-risk group and the low-risk group. Based on the
genetic expression profile of tumor samples, along with the confirmed marker genes of
several immune cells through studies, the single sample gene set enrichment analysis
(ssGSEA) algorithm detected differences in some immune cells across different samples.
Research has indicated that the immune cell infiltration of B cells and pulp cells plays a
crucial synergistic role in inhibiting tumor development. Synergy promotes anti-tumor T
cell immunity through its unique antigen, showing improved prognosis for patients [21].
Figure 6B shows that the activated CD8+ T cells and activated B cells of the lower risk group
were higher than those of the higher risk group, which explains that the prognosis of the
patients in the lower risk group was better than that of the patients in the higher risk group.
Studies have shown that higher mesenchymal and immunological values in patients were
associated with a good prognosis [21,22]. An immune checkpoint is a signal that regulates
antigen recognition by T cell receptors during the immune response, and it may play an
important role in carcinogenesis by promoting tumor immunosuppression. We explored
the differential expression of immune checkpoints in the high- and low-risk groups, as
shown in in Figure 6C–H. The results show that the expression of CD40 ligand (CD40LG)
was significantly higher in the low-risk group than in the high-risk group (Figure 6C).
The natural killer cell receptor 2B4 (CD244) was significantly higher in the low-risk group
population than in the high-risk group population (Figure 6D). Benzodiazepine long-term
administration (BLTA) was significantly higher in the low-risk group than in the high-risk
group (Figure 6E). The cluster of differentiation 44 (CD44) was significantly lower in the
low-risk group population than in the high-risk group population (Figure 6F). The expres-
sion of ADORO2A was significantly higher in the low-risk group than in the high-risk
group (Figure 6G). The cluster of differentiation 27 (CD27) expression was significantly
higher in the low-risk group than in the high-risk group (Figure 6H).
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Figure 6. The correlation between the risk model and immunological characteristics. (A) The
histograms of the immunological function analysis of the two populations in the high-risk and low-
risk groups. (B) The histograms of the immune cell analysis of the two populations in the high-risk
and low-risk groups. (C) The results of the analysis of the difference in the immune checkpoint
“CD40LG” between the high-risk and low-risk groups. (D) The results of the analysis of the difference
in the immune checkpoint “BLTA” between the high-risk and low-risk groups. (E) The results of the
analysis of the difference in the immune checkpoint “ADORO2A” between the high-risk and low-risk
groups. (F) The results of the difference analysis of immune checkpoint “CD244” between the high-
risk and low-risk groups. (G) The results of the difference analysis of immune checkpoint “CD44”
between the high-risk and low-risk groups. (H) The results of the difference analysis of immune
checkpoint “CD27” between the high-risk and low-risk groups. * p-value < 0.05, ** p-value < 0.01,
*** p-value < 0.001, **** p-value < 0.0001, ns: not significant.

Furthermore, we used seven algorithms (TIMER, cell type identification by estimating
relative subsets of RNA transcripts (CIBERSORT), CIBERSORTABS, QUANTISEQ, mi-
croenvironment cell populations-counter (MCPCOUNTER), XCELL, and the European
prospective investigation into cancer and nutrition (EPIC)) to assess the immune function
of the high- and low-risk groups. Our findings suggest that CD4+ T cells, B cells, and CD8+

T cells were functionally active in the low-risk group (Figure 7A). Our findings indicate
that the high-risk cohort records lower scores compared to the low-risk cohort, suggesting
that the high-risk group may receive an advantage from immunotherapy (Figure 7B). In
addition, tumor mutational burden (TMB) is a commonly used biomarker to predict the
immune checkpoint response in patients. Figure 7C,D shows the 15 genes commonly
mutated in the high- and low-risk groups, with the 5 most frequently mutated genes in
the high-risk populations being TP53, titin (TTN), FAT atypical cadherin 1 (FAT1), and
cyclin-dependent kinase inhibitor 2A (CDKN2A). Additionally, we examined the immune
infiltration function of the 12 cuproptosis-associated ferroptosis genes individually. We
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found that the expression of genes such as AURKA and glucose6phosphate dehydrogenase
(G6PD) was negatively correlated with B cell and CD8+ T cell immune infiltration and
positively correlated with tumor purity and CD4+ T cells (Figures S1–S4). We further
analyzed the TMB survival analyses of the high- and low-risk groups, as well as the sur-
vival differences between the high- and low-TMB and the high- and low-risk combination
groups, and the results are shown in Figure 7E,F, where overall survival period (OS) was
significantly better in the high-TMB group than in the low-TMB group (p < 0.05).
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Figure 7. The correlation between the risk model and immunological characteristics. (A) Immune
infiltration characteristics of the population in the high- and low-risk groups were calculated based
on seven algorithms. (B) TIDE scores of people in the high- and low-risk groups. (C) Characteristics
of the first 15 TMB mutations in the population of the high-risk group. (D) Characteristics of the first
15 TMB mutations in the population of the low-risk group. (E) Results of KM survival analyses for
populations with different TMB scores. (F) Results of KM survival analysis for different scores in
different subgroup populations. *** p-value < 0.001.
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2.5. Functional Enrichment Analysis of the Prognostic Model

Enrichment analysis of genes from the high-risk and low-risk populations using the
Gene ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) allowed for
exploring risk-related biological functions and pathways. To further identify functional
signaling pathways that might be enriched in the risk prediction model we constructed,
we performed GO, KEGG, and Gene set enrichment analysis (GSEA) analyses. The results
of the GO analysis indicated that biological processes (BPs) were mainly associated with
the cellular response to chemical stress, response to oxidative stress, cellular response
to oxidative stress, response to starvation, response to extracellular stimulus, cellular
response to chemical stress, and response to starvation. The molecular functions (MFs) were
mainly related to ubiquitin protein ligase binding, ubiquitin-like protein ligase binding,
DNA-binding transcription factor binding, protein serine/threonine kinase activity, and
oxidoreductase activity acting on nicotinamide adenine dinucleotide phosphate (NADPH).
The cellular components (CCs) were mainly associated with the phagophore assembly
site, autophagosome, phagophore assembly site membrane, protein kinase complex, and
mitochondrial outer membrane (Figure 8A,B). The KEGG results suggest these genes are
mainly enriched in autophagy, lipid and atherosclerosis, chemical carcinogenesis reactive
oxygen species, FoxO signaling pathway, ferroptosis, central carbon metabolism in cancer,
mitophagy, central carbon metabolism in cancer, Kaposi sarcoma-associated herpesvirus
infection, and Kaposi sarcoma-associated pathways (Figure 8C,D, Supplementary Table S2).
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enrichment analysis results for the at-risk population.

The GSEA results suggested that ascorbate and alternate metabolism, pentose and
glucuronate interconversions, drug metabolism, other enzymes, porphyrin metabolism,
and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) inter-
actions in vesicular transport pathways, were active in the high-risk population. In contrast,
in the low-risk population, ATP-binding cassette (ABC) transporters, collecting duct acid
secretion, fatty acid biosynthesis and degradation, thiamine metabolism pathways, and
other pathways were active (Figure 8E,F).

2.6. Drug Sensitivity of the Prognostic Model

To investigate the potential dosing risks in the high-risk and low-risk populations, a
selection of drugs was utilized to assess drug sensitivity. Figure S5 shows that the Tivozanib,
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Vinorelbine, Tipifarnib, Thapsigargin, Talazoparib, Sorafenib, Salubrinal, Roscovitine, AKT
inhibitor VIII, and other drugs had lower sensitivity in the high-risk population, whereas
WZ184, THZ21021, and THZ249 had higher drug sensitivity in the high-risk population.
These results confirm that cuproptosis-associated ferroptosis genes in HNSCC are correlated
with drug sensitivity.

2.7. Identification of Potential Biomarkers in Constructed Model

To further validate the accuracy of the prognostic model and to explore potential
biomarkers in the 12 genes in our constructed model, we further explored the expression of
these genes in clinical samples. We know from the analysis of the results that among these
12 genes, 3 genes, AURKA, CAV1, and CDKN2A, have the most significant differential
expression in HNSCC patients (p < 0.0001, Figure 9). Therefore, we selected these three
genes to further explore their protein expression levels between HNSCC and normal sub-
jects from the HPA database. Analysis of the results of the immunohistochemistry showed
that the protein expression levels of AURKA, CAV1, and CDKN2A were all significantly
different in HNSCC patients than in the normal group, which corroborated the results
of the aforementioned RNA studies (Figure 9). All of the above findings further support
our conclusion that the risk prognostic model we constructed may be an independent
prognostic factor. Next, from other studies in the literature, we found that among these
three genes, AURKA may be associated with poor prognosis in patients with a variety of
cancers. The regulation of AUKRA may affect multiple signaling pathways in tumors, such
as PI3K/Akt, mTOR, β-catenin/Wnt, and NF-κB pathways, and so on. However, studies
on the prognostic mechanism of AURKA in HNSCC are unclear. Therefore, we selected the
function of AUKRA in multiple HNSCC cells for further validation.
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2.8. Inhibition of AURKA Suppresses the Proliferation and Migration of HNSCC Cells

To investigate the biological function of AURKA in HNSCC, we transfected two small
interfering RNAs (siRNAs) to knock down their expression using Lipofectamine 2000
(Invitrogen, Waltham, MA, USA) and performed subsequent cell function experiments. The
real-time reverse transcriptase polymerase chain reaction (RT-qPCR) results showed that
siAURKA1 and siAURKA2 successfully reduced AURKA expression in CNE2 and Cal27
cells (Figure 10A,B). The Cell Counting Kit8 (CCK8) experiment (Yeasen Biotechnology,
Shanghai, China) results showed that the inhibition of AURKA expression could inhibit
the proliferative ability of Cal27 and CNE2 cells, with Cal27 cells exhibiting more signifi-
cant inhibition (Figure 10C,D). Cell scratching experiments showed that the inhibition of
AURKA significantly inhibited the migratory ability of HNSCC cells (Cal27 and CNE2 cell
lines). The results demonstrate that the inhibition of AURKA expression can significantly
inhibit the proliferation and migratory ability of HNSCC cells (Figure 10E,F).
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3. Discussion

Currently, the primary treatment options for HNSCC include surgery, chemotherapy,
radiotherapy, and CRAT. However, despite these treatments, 50% of patients experience
a poor prognosis, particularly at advanced stages [23,24]. Emerging research suggests
that cuproptosis and ferroptosis, two distinct forms of cell death, play crucial roles in the
prognosis of HNSCC and hold potential as effective therapies for various cancers in the
future [25,26]. Yet, there is a notable gap in prognostic studies exploring genes associated
with cuproptosis and ferroptosis in HNSCC. Therefore, focusing on the potential prognostic
studies based on the connections of cuproptosis and ferroptosis in HNSCC is crucial.

Although the critical roles of cuproptosis and ferroptosis in the development of HN-
SCC are well established, few studies have investigated the role of genes co-associated
with both in HNSCC prognosis. In this study, we identified 12 prognostic genes (the
NAD(P)H: quinone oxidoreductase 1 (NQO1), peroxiredoxin 6 (PRDX6), heat shock protein
family A member 5 (HSPA5), voltage-dependent anion channel 2 (VDAC2), GABA type A
receptor-associated protein-like protein 2 (GABARAPL2), ATP5MC3, autophagy-related
gene 5 (ATG5), G6PD, AURKA, CDKN2A, mitogen-activated protein kinase (MAPK9), and
Caveolin1 (CAV1)) associated with both cuproptosis and ferroptosis in HNSCC. NQO1
was found to be associated with lower overall survival in HNSCC patients [27]. Consistent
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with our results, HSPA5 was confirmed through COX regression analysis to be linked
to poor prognosis in HNSCC patients [28]. GABARAPL2 and MAPK9 were associated
with autophagy and showed promise as prognostic markers for HNSCC patients [29,30].
Additionally, high levels of ATG5 expression may be associated with low OS in HNSCC
patients [29]. In total, 105 patients with HNSCC had high expression of G6PD, which may
correlate with lymphatic metastasis and prognosis [21]. CDKN2A deletion mutation is
related to the TMB of HNSCC [22]. Immunohistochemical results from 173 HNSCC patients
suggest that the overexpression of CAV1 may contribute to local recurrence after radio-
therapy through the CAV1/Epiregulin (EREG)/yes-associated protein (YAP) pathway [31].
The relationship between several other genes (PRDX6, VDAC2, GABARAPL2, ATP5MC3)
and HNSCC has yet to be elucidated and requires further exploration. Figure S6 shows the
RNA expression profiles of genes for which we constructed risk prognostic models.

We developed a risk-predictive model utilizing the 12 cuproptosis-associated ferropto-
sis genes in HNSCC. Through single-factor COX regression, multifactor COX regression,
and validation using ROC and PCA analysis, our findings indicated that the model was
independent of clinical factors and held promise as a prognostic factor in HNSCC. External
validation conducted using the GSE41613 dataset further validated the efficacy of our prog-
nostic model in distinguishing between high- and low-risk HNSCC patients. Additionally,
we utilized nomogram plots to predict patients’ 1-, 3-, and 5-year survival rates, revealing
the robust predictive performance of the model. These results underscore the potential of a
prognostic model incorporating genes associated with cuproptosis and ferroptosis to serve
as a valuable tool for prognosis, diagnosis, and treatment planning in HNSCC.

In addition, we explored the immune characteristics, biological functions, and drug
sensitivity of the prognostic model. In previous studies, it has been demonstrated that
patients with high levels of CD8+ T cell infiltration may portend a good prognosis [32]. Our
findings correspond with them, with high levels of CD8+ T cell infiltration in the low-risk
group population [33]. The tumor immune dysfunction and rejection (TIDE) is consistent
with a tumor immune escape profile and may predict the efficacy of immunosuppressive
therapy. Our study is consistent with the results of several studies that showed lower TIDE
scores in the high-risk group population, which may be suggestive of the immune escape
of tumor cells and lead to poor prognosis. However, there are also some studies that are
contrary to our results. For example, one study found that both low TIDE scores and the
immune infiltration of CD8+ T cells were associated with a better ICB response [34]. Our
study corroborates the results of other parts of the studies, and the relationship between
the three is complex enough to warrant further investigation in subsequent studies. In
conclusion, we simply observed that patients in the high-risk group had lower TIDE
scores and lower CD8+ T cell infiltration [35–37]. The drug sensitivity results suggest
that Tivozanib, Vinorelbine, Tipifarnib, Thapsigargin, Talazoparib, Sorafenib, Salubrinal,
Roscovitine and WZ184, THZ21021, and THZ249 may be potential agents for the treatment
of patient populations at high and low risk of HNSCC, respectively. However, more in-
depth clinical outcomes must be explored and validated.

Among the 12 cuproptosis-associated ferroptosis genes, AURKA belongs to the aurora
family of kinases and plays a crucial role in mitosis, spindle assembly, and cytoplasmic
division of cells, and is a driver of several cancers [38]. In cancer, abnormal expression or
mutations of the AURKA gene are closely associated with the occurrence and development
of various cancers, including breast cancer, ovarian cancer, gastric cancer, and others [39].
Therefore, AURKA has garnered widespread attention as a potential target for cancer
treatment. Several drugs, such as Alisertib, Barasertib, and Danusertib, have been designed
to inhibit the activity of the aurora A kinase, with the hope of achieving efficacy in cancer
therapy [40]. Recent studies have also revealed that AURKA is a marker protein regulating
ferroptosis in tumors. The regulation of AUKRA may affect multiple signaling pathways in
tumors, such as the PI3K/Akt, mTOR, β-catenin/Wnt, and NF-κB pathways, and so on [38].
For example, in breast cancer cell lines, the inhibition of AURKA expression increases drug
sensitivity to PI3K pathway inhibitors, which in turn induces apoptosis [41]. In gliomas,
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the knockdown of AUKRA may destabilize β-catenin, a key factor in the regulation of the
Wnt signaling pathway, which in turn inhibits cancer development [42]. In gastric cancer
cells, selective inhibition using AUKRA significantly reduced NF-κB activity in human
gastric cancer samples and mouse epithelial cells, which in turn inhibited the activation of
inflammatory signaling pathways in cancer [43]. In addition, studies by Huimou Chen and
others have reported that AURKA induces apoptosis and ferroptosis in Ewing’s sarcoma
cells through the NPM1/YAP1 axis [44]. Ophiopogonin B can induce ferroptosis in NSCLC
by modulating AURKA [45]. AURKA is also identified as a prognostic ferroptosis-related
gene signature in adrenal cortical carcinoma [46,47]. In addition, it has been demonstrated
that the upregulation of AURKA expression in patients with HNSCC containing TP53
mutations and HPV is associated with poor prognosis and cisplatin resistance in patients.
Using an AURKA inhibitor (Alisertib) may result in spindle defects, G2/M arrest, inhibition
of cyclin-dependent kinase 1 phosphorylation, and cell proliferation capacity in FaDu and
UNC7 cells [17]. However, few studies related to AURKA in HNSCC have been conducted.
Our study revealed that AURKA might be a useful biomarker in HNSCC based on Pearson
correlation and COX and LASSO analysis. AURKA may be associated with cuproptosis
genes, such as DBT, dihydrolipoamide S-succinyl transferase (DLST), lipoic acid synthase
(LIAS), and pyruvate dehydrogenase E1 alpha (PDHA1) in HSNCC, and the potential
mechanism of their interactions still needs to be further explored. To further explore the
function of AURKA in HNSCC, we designed two siRNAs and transfected them into two
HNSCC cells (Cal27 and CNE2). We validated the siRNAs by RT-qPCR and performed
subsequent cellular function assays to explore the effects. The study demonstrated that the
suppression of AURKA markedly decreased the proliferation and migration capability of
Cal27 and CNE2 cells. Our findings suggest that AURKA may be a promising prognostic
marker and therapeutic target associated with cuproptosis and ferroptosis in HNSCC.

Our study has several limitations: first, our sample size is relatively small, although
we used the sample size in TCGA as well as the GEO database for external validation.
However, due to the imperfect sequencing platform and the lack of clinical information on
some of the samples, we still lack a large-scale cohort for in-depth validation of our model.
This may cause us to have missed some of the potential biomarkers. The relatively small
sample size may not be fully representative of the entire HNSCC population. Therefore, in
a follow-up study, we will collect a larger clinical sample to validate the generalizability of
the prognostic model we constructed. Second, although our study validated the function
of AURKA in HNSCC by RT-qPCR and functional assays, its precise molecular regulatory
mechanism still needs to be confirmed by further studies. We need more clinical samples
to corroborate our findings. Moreover, the regulatory mechanisms of copper death and
iron death are very complex. Although we found that AURKA, as a ferroptosis-related
gene, may be associated with cuproptosis-related genes such as DBT, DLST, LIAS, and
PDHA1, how they interact with each other to influence cancer development needs to
be investigated in depth. We hope to construct stable cell lines knocking down and
overexpressing these genes, respectively, in our subsequent studies, and to explore and
validate the results obtained by molecular biology experiments such as RT-qPCR, Western
blotting, co-immunoprecipitation, and dual-luciferase reporter genes at the cellular and
animal levels, respectively, which will be carried out in our lengthy subsequent studies. In
addition, we need to investigate the relationship between copper death, iron death, and
the therapeutic strategy and prognostic assessment of HNSCC in more depth in our future
studies. In the future, we will conduct more experimental validation and clinical studies
to further elucidate the biological functions and potential regulatory mechanisms of the
12 genes we identified in HNSCC.

In summary, our study presents the inaugural creation of a prognostic model for
HNSCC founded on cuproptosis-associated ferroptosis genes. Univariate COX regression
analysis, multifactor COX regression analysis, Kaplan–Meier, and ROC in both the TCGA
and GEO databases indicated that the prognostic model serves as an independent prog-
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nostic predictor. Among the 12 genes utilized in the model, AURKA exhibits promising
potential as both a predictor and therapeutic target in HNSCC.

4. Materials and Methods
4.1. Data Acquisition

For this study, we collected RNA transcript data and clinical information from the
TCGA database. We obtained RNA transcript data for 546 patients, including 44 normal
samples and 502 tumor samples. After merging and removing duplicates and normal
samples, 502 samples were finally included for analysis. For external validation of the risk
prognostic model we constructed, we retrieved clinical and transcriptional data from the
GSE41613 (GPL570 platform) from the Gene Expression Omnibus (GEO) database, which
comprises 97 OSCC samples.

4.2. Identification of Cuproptosis-Associated Ferroptosis Genes in HNSCC

To identify the cuproptosis and ferroptosis genes associated with each other in HNSCC,
we collected 19 cuproptosis genes from the published literature and acquired ferroptosis
genes from the Ferroptosis Database (FerrDb) database (http://www.zhounan.org/ferrdb/
legacy/index.html, accessed on 2 January 2023). We conducted Pearson correlation analysis
between the two gene sets, using |Pearson| > 0.3 and p-value < 0.001.

4.3. Construction of a Predictive Model for HNSCC Based on Cuproptosis-Associated
Ferroptosis Genes

To identify prognostic genes associated with ferroptosis and cuproptosis in HNSCC,
we performed univariate Cox proportional hazard regression analysis using the survival
package (p < 0.05). Using the glmnet R package (version 4.3.2-64bit), the predictive signature
based on prognosis-related genes was subsequently identified by least absolute shrinkage
and selection operator (LASSO) Cox regression analysis. Finally, 12 cuproptosis-associated
ferroptosis genes were screened out on the basis of the optimal penalty parameter λ

determined by tenfold cross-validation following the minimum criteria. The TCGA dataset
was partitioned into sets for training and validation purposes (8:2). The training set
constructed the predictive model for cuproptosis-associated ferroptosis genes, and the
testing set was used to verify and optimize the predictive model. The risk score can be
calculated by the following equation [48]:

risk scores =
n

∑
i=1

coe f (Expression i)× expr(Expression i) (1)

coef and expr denote the coefficients and the expression of cuproptosis-associated
ferroptosis genes, and coef is β in the multivariate Cox regression analysis formula. In the
multivariate Cox regression analysis model, β is the regression coefficient. For genes with a
high β value, the danger (risk of death) is higher, so the prognosis is worse.

h(t) = h0(t)eβ1x1+···...+βnxn (2)

Based on median risk scores, all patients with HNSCC were divided into high-risk
and low-risk groups. We then validated the ability of the prognostic model to discriminate
between the two groups using PCA and risk score correlation analysis. The ROC curves
objectively evaluated the accuracy of the prognostic model.

Furthermore, a Kaplan–Meier analysis was performed using the survival and survminer
software (version 4.3.2-64bit) suites to investigate the potential use of the risk score as a
clinical prognosis independent predictor via a comparison of high- and low-risk groups. To
assess the prognostic significance of the prognostic model for various clinical characteristics,
univariate and multivariate Cox regression analyses were performed. Finally, we created a
line plot representing the risk column for HNSCC.

http://www.zhounan.org/ferrdb/legacy/index.html
http://www.zhounan.org/ferrdb/legacy/index.html
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4.4. Immune Characteristics and Functional Analysis

Expression data (ESTIMATE) are utilized to estimate the quantity of stromal and
immune cells in malignant tumor tissue, thereby evaluating tumor purity [49,50]. The
presence of immune cells in high- and low-risk patients is evaluated through the use of
the following seven algorithms: TIMER, CIBERSORT, quanTIseq, xCell, MCP-counter, and
EPIC [51–55]. In addition, patients’ immune response was evaluated using TISIDB, tumor
mutational load (TMB), and TIDE [56,57].

4.5. Biological Functional Enrichment Analysis and Drug Sensitivity Analysis

To investigate the biological functional differences between high- and low-risk pop-
ulations for HNSCC, we conducted functional enrichment analysis of various subtypes
using the GSEA and cluster profile packages. KEGG enrichment mainly uses the follow-
ing web pages: (www.genome.jp/kegg/, accessed on 2 January 2023). Pathways with
a p-value < 0.05 were considered statistically significant signal pathways. Furthermore,
to explore potential drugs for high-risk populations, we assessed the drug sensitivity
of cuproptosis-associated ferroptosis genes in HNSCC using the pRRophetic package
(version 4.3.2-64bit).

4.6. Cell Culture

We obtained two HNSCC cell lines, Cal27 and CNE2, from the Cell Bank of the Institute
of Biological Sciences, Chinese Academy of Sciences. The CNE2 cells were cultured in
Roswell Park Memorial Institute (RPIM) 1640 medium supplemented with 10% Fetal Bovine
Serum (FBS) (Gibco, CA, USA), while the Cal27 cells were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM) medium (Yeasen Biotechnology, Shanghai, China) supplemented
with 10% FBS. Both cell lines were grown in a 5% CO2 incubator at a temperature of 37 ◦C.
The media were changed every two days.

4.7. siRNA Transfection

The functionality was confirmed through the siRNA knockdown of AURKA. The
siRNA was synthesized by Beijing Dyna Science Biologicals, and cells were plated and trans-
fected with siRNA-NC and two siRNA-AURKA using lip2000 (Invitrogen, Waltham, MA,
USA), according to the manufacturer’s instructions. RT-qPCR and subsequent functional
validation were performed 24, 48, or 72 h post-transfection.

4.8. RT-qPCR

Total RNA was extracted from the cells employing the Trizol method (Takara, Shiga,
Japan). The extracted total RNA was reverse transcribed and subsequently quantified
by real-time fluorescence using the Takara RT reagent (Yeasen Biotechnology, Shanghai,
China), following the manufacturer’s instructions. The upstream and downstream primer
sequences for AURKA are as follows: AURKA(F): GAAGCAATTGCAGGCAACCA; AU-
RKA(R): GAGGGCGACCAATTTCAAAG; GAPDH(F): ACCCAGAAGACTGTGGATGG;
and GAPDH(R): TTCAGCTCAGGGATGACCTT. All the results were calculated using
the 2−∆∆CT method after normalizing to GAPDH. All the experiments were repeated
three times.

4.9. Cell Counting Kit8 Experiment

Cell viability was assessed through the use of the CCK8 (Yeasen Biotechnology, Shang-
hai, China) experiment. After siRNA transient transfection (including the control), the
CNE2 and Cal27 cells were plated into a 96-well plate with approximately 3000 cells in each
well, and incubation was continued for 0, 24, 48, 72, and 96 h. Next, each well was seeded
with 10 µL CCK8 solution. Subsequently, the incubation time was approximately 12 h. The
optical density (OD) was assessed utilizing a microplate reader at a wavelength of 450 nm,
following the kit’s guidelines. Each experiment was independently repeated in triplicate.

www.genome.jp/kegg/
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4.10. Wound Healing

After efficient centrifugation, the CNE2 and Cal27 cells (including the control) were
seeded into a 24-well plate. Once the cells reached 100% confluence, sterile pipette tips
created cell scratch wounds. Cell cultures were incubated in a serum-free medium for 0, 24
and 48 h. All the experiments were performed with triplicate samples. Images were taken
using an inverted microscope. The migration distance of the wound was calculated using
Image J software (version 1.53).

4.11. Statistical Analysis

The statistical analysis was carried out using GraphPad Prism 9. The two sets of data
were compared using t-tests. All the presented data are represented by mean values with
standard errors of the means. p < 0.05 was statistically significant.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms25084372/s1.
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