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Abstract: Cellular hypoxia, detectable in up to 80% of non-small cell lung carcinoma (NSCLC)
tumors, is a known cause of radioresistance. High linear energy transfer (LET) particle radiation
might be effective in the treatment of hypoxic solid tumors, including NSCLC. Cellular hypoxia can
activate nuclear factor κB (NF-κB), which can modulate radioresistance by influencing cancer cell
survival. The effect of high-LET radiation on NF-κB activation in hypoxic NSCLC cells is unclear.
Therefore, we compared the effect of low (X-rays)- and high (12C)-LET radiation on NF-κB responsive
genes’ upregulation, as well as its target cytokines’ synthesis in normoxic and hypoxic A549 NSCLC
cells. The cells were incubated under normoxia (20% O2) or hypoxia (1% O2) for 48 h, followed by
irradiation with 8 Gy X-rays or 12C ions, maintaining the oxygen conditions until fixation or lysis.
Regulation of NF-κB responsive genes was evaluated by mRNA sequencing. Secretion of NF-κB
target cytokines, IL-6 and IL-8, was quantified by ELISA. A greater fold change increase in expression
of NF-κB target genes in A549 cells following exposure to 12C ions compared to X-rays was observed,
regardless of oxygenation status. These genes regulate cell migration, cell cycle, and cell survival.
A greater number of NF-κB target genes was activated under hypoxia, regardless of irradiation
status. These genes regulate cell migration, survival, proliferation, and inflammation. X-ray exposure
under hypoxia additionally upregulated NF-κB target genes modulating immunosurveillance and
epithelial-mesenchymal transition (EMT). Increased IL-6 and IL-8 secretion under hypoxia confirmed
NF-κB-mediated expression of pro-inflammatory genes. Therefore, radiotherapy, particularly with
X-rays, may increase tumor invasiveness in surviving hypoxic A549 cells.

Keywords: A549; NF-κB; hypoxia-induced radioresistance; high-LET radiation; 12C ions; tumor
hypoxia; p65 (RelA) nuclear localization; IL-6/IL-8 secretion

1. Introduction

Lung cancer is the second most diagnosed solid malignancy and the leading cause
of cancer mortality, accounting for 25% of all cancer deaths annually. About 85% of all
lung cancers have an epithelial cell of origin and are classified as non-small cell lung cancer
(NSCLC). Almost two-thirds of lung cancer patients receive radiotherapy [1]. However,
local control following conventional irradiation techniques is dismal, with a 5-year overall
survival of up to 30% [2]. Cellular hypoxia within tumors is a well-established cause of
radioresistance and has been demonstrated to be present in up to 80% of NSCLC tumors
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through multiple positron emission tomography (PET) studies utilizing hypoxia-specific
tracers [3–7]. Molecular adaptations to tumor hypoxia have been correlated with treatment
resistance in NSCLC in at least three meta-analyses [8–10]. Nonetheless, attempts so far to
target hypoxia in NSCLC or otherwise have met only limited success [11].

There is a growing interest in improving radiotherapy outcomes in NSCLC using
particle therapy, including high linear energy transfer (LET) charged particles to improve
survival and local control and reduce side effects [12,13]. This is because, as opposed
to photons, which deliver radiation doses diffusely throughout their course, high-LET
charged particles, such as carbon (12C) ions, deposit the radiation dose densely along a
very narrow range, allowing for dose escalation to the tumor, all the while sparing the
surrounding normal tissue [14]. High-LET particle radiation has the added advantage of
being oxygen-independent in its cytotoxic effect [15], which makes it more effective against
hypoxic cancer cells. This has also been demonstrated in vitro in several tumors, including
at least one study on NSCLC [16,17]. However, simply ascribing lower tumor resistance
against high-LET radiation to its relative physical independence from oxygen for causing
cytotoxicity is an oversimplification. In fact, chronic hypoxia is known to induce various
cellular adaptations that may enhance radioresistance through modulation of cellular
proliferation and survival, as well as tumor invasiveness and metastatic potential [18]. In
this regard, the cellular pathways governing hypoxia-induced radioresistance to high-LET
radiation such as carbon ions require greater understanding.

Nuclear factor κB (NF-κB) signaling is the primary inflammatory pathway in mam-
malian cells and is known to be activated by ionizing radiation [19–21], as well as cellular
hypoxia [22–26]. The NF-κB transcription factor exists in an inactive state in the cytoplasm,
sequestered to an inhibitory protein, IκBα. Appropriate stimuli phosphorylate IκBα leading
to its degradation, freeing the NF-κB dimer to translocate into the nucleus, thereby activat-
ing NF-κB-induced transcription. Ionizing radiation is known to activate NF-κB via the
“genotoxic stress-induced pathway” triggered by radiation-induced DNA double-strand
breaks (DSBs) [27]. Additionally, cellular stressors such as irradiation and hypoxia can
activate NF-κB via the “canonical pathway”, triggered by the release of cytokines such as
tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) or of damage-associated molecular
patterns (DAMPs) [19,24]. Both pathways ultimately converge to translocate activated
NF-κB heterodimers from the cytoplasm into the nucleus comprising of the subunit p65
(RelA) bound to the p50 subunit. The p65 subunit contains the main transactivating domain
responsible for the function of NF-κB as a transcription factor. Over 200 genes are respon-
sive to the p65:p50 heterodimer, generating a pro-inflammatory response to radiation and
hypoxia [28].

Depending upon the cell type, the NF-κB pathway can regulate tumor radioresis-
tance by modulating apoptosis, proliferation, invasion, angiogenesis, and immune surveil-
lance [29,30]. It may be particularly relevant to high-LET irradiation, as NF-κB activation
by ionizing radiation is described as dose- and LET-dependent, generally requiring doses
above 7 Gy of low-LET radiation but much lower doses of high-LET radiation [31,32]. A
LET of 100–300 keV/µm has been reported to have a nine-times higher potential of activat-
ing NF-κB in normal human cells compared to low-LET X-rays [19]. With regard to tumor
hypoxia, knowledge about the impact of high-LET particle radiation on the NF-κB-signaling
pathway is very limited [33]. A tumor-promoting NF-κB-dependent inflammatory response
has been reported in breast, pancreatic, rectal, and colon cancer cells [34,35].

However, not much is known about the role of the NF-κB pathway in the response of
NSCLC to radiation exposure, particularly after irradiation with high-LET particle radiation
and especially in the presence of tumor hypoxia. A greater understanding of the NF-κB-
dependent transcriptional response and target protein synthesis in an NSCLC cell line
following exposure to clinically relevant high-LET radiation in chronically hypoxic cells
may contribute toward the optimization of radiotherapy options in NSCLC. The A549 cell
line is a highly used model cell line to study NSCLC. A549 cells are p53 wildtype, carry a
Kirsten rat sarcoma viral oncogene homolog (KRAS) missense mutation (KRAS-G12S), and
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are histologically characterized as adenocarcinoma [36]. KRAS belongs to the significantly
mutated oncogenes in NSCLC, as they account for 30% of lung adenocarcinomas in Western
countries and for 10–15% of cases in Asia [37–39]. As A549 cells carry a relevant KRAS
driver mutation and their NF-κB activation is well-characterized [40–43], we chose this
NSCLC cell line for this study, which aimed to compare the effect of high- (carbon ions)
and low-LET radiation (X-rays) under hypoxia (1% O2) and normoxia (20% O2) on the
transcriptional response of p65 target genes, as well as p65 target cytokines.

2. Results
2.1. Expression of NF-κB Target Genes in A549 Cells after Exposure to X-rays or Carbon Ions
under Normoxia and Hypoxia

A search was made for NF-κB target genes listed in ChIP-X enrichment analysis
(CHEA) and ENCORE databases (Section 4.3) among the statistically significant differen-
tially upregulated genes observed in our study four hours after irradiation (using X-rays
and 12C ions) in comparison to unirradiated controls under normoxia and hypoxia in our
experiments (Figure 1a). The same was done for differentially upregulated genes observed
in irradiated and unirradiated hypoxic cells compared to irradiated and unirradiated
normoxic controls, respectively (Figure 1b).
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(FAS) and Cyclin-dependent kinase 1A (CDKN1A) showed the highest upregulation in 
comparison to unirradiated controls. Log2 fold change for FAS was highest, while that of 
CDKN1A was lowest following carbon ions exposure under hypoxia (Table 1). In compar-
ison to unirradiated controls, four genes were exclusively upregulated following carbon 
ion exposure under hypoxia. Of these, arachidonate 5-lipoxygenase (ALOX5) exhibited 
the highest log2 fold change of 2.49 (Table 1). Two genes were exclusively upregulated 
following X-ray irradiation under hypoxia (Figure 1a) compared to unirradiated controls, 

Figure 1. Venn diagrams of differentially upregulated NF-κB target genes in A549 cells after exposure
to X-rays or 12C ions; (a) effect of hypoxia in irradiated and unirradiated cells; (b) effect of irradiation
in hypoxic and normoxic cells. * H0, A549 cells exposed to 0 Gy X-rays or 12C ions under hypoxia;
N0, A549 cells exposed to 0 Gy X-rays or 12C ions under normoxia; H8, A549 cells exposed to 8 Gy
X-rays or 12C ions under hypoxia; N8, A549 cells exposed to 8 Gy X-rays or 12C ions under normoxia.
n = 4.

Five NF-κB target genes were upregulated following irradiation, irrespective of oxy-
genation status or type of radiation (Figure 1a), of which FAS cell surface death receptor
(FAS) and Cyclin-dependent kinase 1A (CDKN1A) showed the highest upregulation in
comparison to unirradiated controls. Log2 fold change for FAS was highest, while that of
CDKN1A was lowest following carbon ions exposure under hypoxia (Table 1). In compari-
son to unirradiated controls, four genes were exclusively upregulated following carbon
ion exposure under hypoxia. Of these, arachidonate 5-lipoxygenase (ALOX5) exhibited
the highest log2 fold change of 2.49 (Table 1). Two genes were exclusively upregulated
following X-ray irradiation under hypoxia (Figure 1a) compared to unirradiated controls,
with platelet-activating factor receptor (PTAFR) showing the greatest log2 fold change of
1.15. In contrast, under normoxia, two genes were exclusively upregulated after carbon
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ions exposure when compared to corresponding unirradiated controls (Figure 1a). Of
these, empty spiracles homeobox 1 (EMX1) showed the greatest log2 fold change of 3.10
(Table 1); only one gene was exclusively upregulated after X-ray exposure under normoxia
(Figure 1a) compared to corresponding unirradiated controls, namely, growth arrest and
DNA damage-inducible alpha (GADD45A) with a log2 fold change of 1.11 (Table 1). Over-
all, carbon ion irradiation led to differential upregulation of a greater number of NF-κB
target genes compared to X-ray exposure under both normoxia (10 vs. 8, respectively) and
hypoxia (13 vs. 8, respectively).

Table 1. Differentially regulated NF-κB responsive genes in A549 cells after exposure to X-rays or 12C ions.

Regulated DEGs
(Gene Name

Abbreviation)

Gene Expression Based on p-Adjusted log2 Fold Changes

Irradiated vs. Unirradiated Hypoxic vs. Normoxic

X-rays 12C Ions
Controls

(H0 vs. N0)
X-rays

(H8 vs. N8)
12C Ions

(H8 vs. N8)Normoxia
(N8 a vs. N0)

Hypoxia
(H8 vs. H0)

Normoxia
(N8 vs. N0)

Hypoxia
(H8 vs. H0)

FAS 2.06 2.75 2.31 2.85 −0.71 −0.02 −0.17
NTN1 1.36 1.93 2.19 2.29 −0.03 0.54 0.07

CDKN1A 2.63 2.62 2.61 2.38 −0.19 −0.21 −0.42
KITLG 1.01 1.38 1.36 1.46 −1.10 −0.73 −1.00
PLK3 1.28 1.14 1.13 1.16 −0.26 −0.40 −0.23
IL1A 1.37 1.54 0.43 1.26 2.63 2.81 3.46
EBI3 0.60 0.81 1.04 1.45 −0.29 −0.08 0.12
TFEC 2.49 N/A b 2.95 2.87 N/A N/A N/A

REV3L 0.78 1.08 0.79 0.89 −0.43 −0.13 −0.33
PTAFR 0.83 1.15 0.72 0.97 −0.55 −0.23 −0.29
GAD1 0.70 0.76 0.69 1.32 −0.63 −0.57 0.00
BAX 0.58 0.83 0.74 1.01 −0.27 −0.03 0.00
MX1 0.22 0.18 0.12 1.16 −0.31 −0.35 0.73

ALOX5 1.16 1.35 1.43 2.49 0.48 0.68 1.54
GADD45A 1.11 0.95 0.77 0.55 0.18 0.02 −0.04

CCR7 0.76 0.49 1.02 0.62 0.00 −0.27 −0.40
EMX1 1.33 0.48 3.10 2.55 −0.71 −1.56 N/A

KCTD11 0.26 −0.02 0.16 0.34 1.96 1.67 2.14
ADAM19 −0.19 −0.04 −0.15 −0.02 1.46 1.60 1.58
INHBA 0.15 0.28 0.05 0.19 1.41 1.55 1.55
MMP9 0.26 0.81 −0.45 −0.75 1.87 2.43 1.58
PDGFB −0.17 0.15 −0.21 −0.08 1.63 1.95 1.75

F3 −0.05 −0.02 −0.62 0.03 2.00 2.02 2.65
CXCL8 −0.15 0.03 0.01 0.10 1.31 1.49 1.41

SERPINE1 0.37 0.57 0.09 0.36 1.64 1.84 1.91
IL6 0.37 0.32 0.65 0.70 1.23 1.18 1.28

CARD11 0.00 0.14 −0.17 0.20 1.05 1.18 1.42
BCL2A1 0.54 0.58 0.19 −0.17 1.54 1.59 1.18

JUNB −0.18 −0.03 −0.10 0.09 1.21 1.36 1.40
EGOT 0.73 1.03 −1.68 0.65 1.94 2.24 N/A
IL1B 0.56 1.33 1.94 0.19 1.80 2.58 0.05

SOX9 −0.57 −0.11 0.12 −0.11 1.01 1.47 0.79
CCL28 0.83 −0.19 −0.34 0.26 1.49 0.47 2.09
CD274 −0.26 −0.06 −0.26 −0.11 0.91 1.11 1.05
TRAF1 0.16 0.51 0.19 −0.21 0.98 1.32 0.58
SNAI1 −0.68 0.25 −0.52 −0.21 0.32 1.24 0.63
CCL20 −1.45 −0.02 0.63 −0.10 0.62 2.05 −0.11
LIPG −0.28 0.66 −0.09 0.21 0.53 1.47 0.83
ENO2 0.06 −0.20 −0.29 −0.02 0.82 0.56 1.08
CCL2 0.16 0.27 −0.02 0.25 0.89 1.00 1.17
PGK1 0.24 0.03 −0.49 0.08 0.92 0.70 1.49
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Table 1. Cont.

Regulated DEGs
(Gene Name

Abbreviation)

Gene Expression Based on p-Adjusted log2 Fold Changes

Irradiated vs. Unirradiated Hypoxic vs. Normoxic

X-rays 12C Ions
Controls

(H0 vs. N0)
X-rays

(H8 vs. N8)
12C Ions

(H8 vs. N8)Normoxia
(N8 a vs. N0)

Hypoxia
(H8 vs. H0)

Normoxia
(N8 vs. N0)

Hypoxia
(H8 vs. H0)

AGT 0.39 −0.38 −1.30 1.56 0.02 −0.75 2.88
ICAM1 0.19 0.45 −0.23 0.33 0.52 0.78 1.09

GADD45B 0.07 0.01 −0.03 0.16 0.99 0.93 1.19
a N8, A549 cells exposed to 8 Gy X-rays or 12C ions under normoxia; N0, A549 cells exposed to 0 Gy X-rays or 12C
ions under normoxia; H8, A549 cells exposed to 8 Gy X-rays or 12C ions under hypoxia; H0, A549 cells exposed to
0 Gy X-rays or 12C ions under hypoxia; b N/A, used if log2 Fold Change values were missing in RNA sequencing
data. Statistically significant DEGs are given in bold. Cells were preincubated for 48 h before irradiation and RNA
was extracted 4 h after irradiation.

There was an overlap of 13 NF-κB responsive genes that were upregulated by hypoxia,
independent of irradiation status (Figure 1b). Seven genes were exclusively upregulated
under hypoxia compared to normoxia after exposure to carbon ions (Figure 1b), of which
angiotensinogen (AGT) and phosphoglycerate kinase 1 (PGK1) showed the highest log2
fold change increase (2.88 and 1.49, respectively; Table 1).

Similarly, X-ray exposure of hypoxic cells led to four genes being exclusively upregu-
lated (Figure 1b), of which C-C motif chemokine ligand 20 (CCL20) and Lipase G (LIPG)
expressed the highest log2 fold change increase (2.05 and 1.47, respectively; Table 1). The
only gene that was commonly upregulated under hypoxia following either X-rays or carbon
ion exposure (Figure 1b; Table 1) was the CD274 molecule (CD274). Overall, hypoxia led
to differential upregulation of 17 NF-κB target genes in comparison to normoxia, while
irradiation under hypoxia using carbon ions and X-ray exposure upregulated a similar
number of genes (22 vs. 21, respectively) compared to irradiation under normoxia.

2.2. Secretion of the Cytokines IL-6 and IL-8 by A549 Cells after Exposure to X-rays or Carbon Ions
under Normoxia and Hypoxia

Since the genes for both IL-6 (IL6) and IL-8 (CXCL8) are NF-κB responsive and were
found to be upregulated under hypoxia compared to normoxia, both in the absence and
presence of radiation exposure using either X-rays or 12C ions (Table 1), IL-6 and IL-8 levels
were measured by ELISA. To account for differences in the cell number under hypoxia and
normoxia, and after irradiation due to different proliferation and cell death, the amount of
the cytokine in the supernatants was normalized to one million cells for each sample.

Chronic hypoxia increased IL-6 and IL-8 secretion by A549 cells, independently of
irradiation (Figure 2). Twenty-four hours after a medium change in the absence of radiation,
both IL-6 (Figure 2a,c) and IL-8 levels (Figure 2b,d) were significantly greater in cell culture
media when cells were incubated under hypoxia compared to normoxia. Additionally, IL-6
levels in media were significantly higher under hypoxia compared to normoxia, even 6 h
after a medium change in the absence of radiation.

Furthermore, irradiation of A549 cells increased IL-6 and IL-8 secretion, indepen-
dently of oxygenation status. There was no significant difference in cytokine secretion
between X-rays and 12C ion exposure. This increase in IL-6 secretion was statistically
significant 6 h after irradiation, while that of IL-8 secretion was statistically significant 24 h
after irradiation.
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Significance was tested using two-way ANOVA and Sidak multiple comparison tests with ** p < 
0.01, *** p < 0.001, **** p < 0.0001. 
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3. Discussion
3.1. Irradiation Upregulates NF-κB Target Genes Influencing Apoptosis, Cell Cycle, and Cell
Migration in A549 Cells

Five NF-κB responsive genes were identified as being upregulated following irradia-
tion, irrespective of radiation quality and oxygen conditions (Table 1). FAS cell surface death
receptor (FAS) positively regulates the extrinsic pathway of apoptosis and its overexpres-
sion may therefore reduce the survival of A549 cells [44]; however, FAS overexpression has
also been linked to cancer stem cell promotion [45]. Cyclin-dependent kinase 1A (CDKN1A),
and Polo-like kinase 3 (PLK3) are cell cycle inhibitors, but CDKN1A overexpression has
also been associated with increased cell migration and cancer stem cell promotion [46].
KIT Ligand (KITLG) and Netrin 1 (NTN1) influence cell migration. Their overexpression
has been reported previously in several cancers, including NSCLC, and is associated with
increased cancer cell proliferation and invasiveness [47–49].

Therefore, while X-rays and particle therapy are vital for the effective treatment of
many solid malignancies such as NSCLC, their use may increase tumor invasiveness in
surviving cells. The issue has gained popularity in the last decade [50] and has been
reported more recently in NSCLC A549 cells as well, but not in the context of NF-κB target
gene overexpression [51].

3.2. High-LET Radiation Enhances NF-κB Target Genes Expression in A549 Cells Compared to
Low-LET Radiation

Of the five NF-κB responsive genes that were upregulated after irradiation regardless
of oxygenation status and radiation quality, four showed greater fold change following 12C
ion exposure in comparison to X-rays under hypoxia and three under normoxia (Table 1).
Quantitatively stronger NF-κB target gene expression to high-LET radiation has been
reported previously in HEK cells [33]. High-LET irradiation of normal tissue has been
reported to increase oncogenic transformation in comparison to X-rays [52]; therefore, it
would be interesting to investigate whether greater fold change response of the five genes
mentioned in Section 4.2 would contribute to a greater potential of cancer progression
following 12C ion exposure of NSCLC cells compared to irradiation with X-rays.

The qualitative influence of radiation type on NF-κB target gene expression appeared
minimal, with only two genes found to be upregulated after 12C ion exposure, regardless
of oxygenation status, that were not upregulated after X-ray irradiation (Table 1). Both
genes appear to be involved in the modulation of an inflammatory response to radiation.
Transcription factor EC (TFEC) regulates a variety of cytokines capable of cancer stem cell
promotion [53–55], while the pro-cancer or anti-cancer role of Epstein-Barr virus-induced
gene 3 (EBI3) is less clearly understood [56].

3.3. Chronic Hypoxia Upregulates NF-κB Target Genes Influencing Cell Survival and Cell
Migration in A549 Cells

Without irradiation, 17 NF-κB responsive genes were upregulated under chronic
hypoxia (1% O2) compared to normoxia (Table 1). Seven of these encoded cytokines are
interleukin 1A and B (IL1A & IL1B), interleukin 6 (IL6), C-X-C motif chemokine ligand
8 (CXCL8), platelet-derived growth factor subunit B (PDGFB), tissue factor (F3) and CC
motif chemokine ligand 28 (CCL28), all of which are known to promote tumor growth and
metastasis through modulation of cell proliferation, cell migration, immunosuppression,
and oncogenic transformation. IL1A and IL1B, as well as IL6, may additionally inhibit
apoptosis [57,58]. IL-6 has been described as a potential therapeutic target for NSCLC
immunotherapy [59,60]. CXCL8 overexpression has also been described in NSCLC as
a cause of tumor invasiveness [61] and has been highlighted as a potential therapeutic
target in different cancers [62]. Interestingly, the products of the above-mentioned genes,
IL-1α, IL-1β, and IL-6, may also harm A549 survival, as they have been reported to induce
apoptosis and necroptosis in many cell lines [63–68].
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As an antiapoptotic protein, BCL-2-related protein A1 (BCL2A1) may counter-oppose
the pro-apoptotic effects of IL-1α, IL-1β, and IL-6, as well as those of caspase recruitment
domain family member 11 (CARD11) and potassium channel tetramerization domain
containing 11 (KCTD11) on induction of apoptosis. KCTD11 overexpression in NSCLC has
recently been reported to inhibit cancer progression [69].

Two metalloproteinases, ADAM metallopeptidase domain 19 (ADAM19) and matrix
metallopeptidase 9 (MMP9), upregulated under hypoxia, are also associated with cancer
progression, mainly through modulation of cell adhesion and migration in several cancers,
including NSCLC [70–73]. Inhibin subunit beta A (INHBA) and SRY-box transcription factor
9 (SOX9) are known to influence cell differentiation and have been reported to increase
tumor aggressiveness in NSCLC through induction of epithelial-mesenchymal transition
(EMT) [74–77].

JUNB proto-oncogene (JUNB) and eosinophil granule ontogeny transcript (EGOT)
are understood to mainly inhibit cell proliferation and survival. JUNB, as a component of
activator protein-1 (AP-1), inhibits the cell cycle and induces senescence [78,79], thereby
acting as a tumor suppressor in a variety of cancers. However, its overexpression was
found to cause tumor progression in NSCLC [80]. EGOT encodes for a long noncoding
RNA that has been reported to inhibit cell migration and proliferation in breast and renal
cell carcinoma [81,82], but its role in NSCLC is unclear [83].

In summary, except for KCTD11, all other NF-κB target genes upregulated in A549
cells due to chronic hypoxia promote cancer progression. None of these 17 genes, except
IL1A, was found to be regulated by irradiation when compared with their corresponding
unirradiated controls, regardless of oxygen concentration.

3.4. NF-κB Target Genes’ Activation Signature Following Irradiation May Promote Cancer
Progression under Hypoxia, Especially after X-ray Exposure

Following irradiation of hypoxic cells, the NF-κB target genes’ activation signature
remained similar to the one observed in hypoxic cells in the absence of irradiation. In
comparison to irradiated normoxic controls, of the 17 genes upregulated because of chronic
hypoxia (Section 3.3), 13 were found to be regulated following 12C ion exposure and 16
following X-ray exposure.

However, irradiation under hypoxia did upregulate the NF-κB responsive gene CD274
antigen (CD274) in comparison to irradiated normoxic controls. CD274 antigen, also
called programmed death ligand 1 (PD-L1), is crucial for the escape of tumor cells from
immunosurveillance [84]. Its upregulation was greater following X-ray exposure than 12C
ion exposure, indicating a potential benefit of using 12C ions over X-rays in treating hypoxic
NSCLC. Cellular hypoxia is being increasingly reported to promote an immunosuppressive
tumor microenvironment that promotes cancer propagation [85]. PD-L1 overexpression
in NSCLC is well-characterized [86,87] and is currently being targeted clinically, with and
without radiotherapy [88–90]. X-ray exposure of hypoxic A549 cells also upregulated the
expression of an EMT transcription factor gene, specifically snail family transcriptional
repressor 1 (SNAI1), which was recently reported to be associated with tumor progression
and aggressiveness in NSCLC [51,91,92]. This may indicate another justification in favor of
12C ions treatment over X-rays in targeting hypoxic NSCLC. X-ray exposure under hypoxia
compared to that under normoxia also upregulated platelet-activating factor receptor
(PTAFR), which has been reported to enhance cancer progression in certain tumors [93].

On the other hand, 12C ion irradiation of hypoxic cells also led to the upregulation of
NF-κB target genes promoting cancer progression in comparison to irradiated normoxic con-
trols. These included phosphoglycerate kinase 1 (PGK1) and arachidonate 5-lipoxygenase
(ALOX5). PGK1 has been reported to promote cancer cell proliferation and migration in
NSCLC through the downstream ERK/MCM4 pathway [94]. ALOX5 is generally down-
regulated in NSCLC [95], and its overexpression has been reported to be associated with
tumor progression in gliomas [96].
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Recently, we correlated pro-EMT gene expression signature in hypoxic A549 cells fol-
lowing X-ray exposure in comparison to carbon ion irradiation with greater radioresistance
to X-rays in this cell line [97]. To establish whether X-rays exposure may lead to greater cell
survival in NSCLC cells than 12C ions irradiation via EMT enhancement and even immune
escape requires functional (e.g., migration) tests and animal experiments.

3.5. Chronic Hypoxia Results in an Inflammatory Response in A549 Cells Distinct from Normoxia,
Irrespective of Irradiation Status

IL-6 and IL-8 cytokine secretion by A549 cells under the influence of different oxygen
concentrations and radiation qualities was determined to confirm that upregulation of NF-
κB target genes manifested into relevant protein synthesis. These cytokines were selected
because their secretion is influenced by NF-κB activation and they were linked to cancer
cell propagation and survival [24,98–100]. Furthermore, their secretion in A549 cells is well-
characterized and their serum levels can be used as biomarkers of progression in lung cancer
patients [101–103]. Recently, many studies tie the release of pro-inflammatory cytokines
such as IL-6 and IL-8 with the activation of the cGAS-STING pathway in response to DNA
double-strand breaks such as those induced by ionizing radiation [104–107]. However, our
RNA sequencing data showed no differential upregulation of genes encoding key proteins
constituting the type 1 interferon response, such as interferons α or β. Furthermore, most
studies report IL-6 and IL-8 secretion in response to cGAS-STING pathway activation only
as a secondary effect of NF-κB activation through the action of TANK-binding kinase 1
(TBK1) [108–110].

Importantly, in our study, secretion of both IL-6 and IL-8 was found to be increased
under the influence of chronic hypoxia, as well as that of irradiation, regardless of radiation
quality (Figure 2). This aligned perfectly with NF-κB target gene expression data for IL6
and CXCL8 genes and may be extrapolated to assume similar changes in cytokine levels
because of other upregulated NF-κB responsive genes encoding pro-inflammatory proteins.

The secretion was greatest under the combined effect of both hypoxia and irradiation
6 h after irradiation in the case of IL-6, and 24 h after irradiation in the case of IL-8. Since
both IL-6 and IL-8 were shown to positively impact tumor propagation by enhancing im-
mune evasion, angiogenesis, and metastatic potential [60,61,101,111], our findings indicate
that both low- and high-LET radiation can augment the tumor-promoting attributes of
chronic hypoxia. While cytokine-mediated inflammation is established as an important
component of cellular responses to both irradiation and cellular hypoxia in normal and
tumor cells [112–116], there was no direct comparison of NF-κB-induced cytokine secretion
by cancer cells under normoxia and hypoxia following exposure to high- and low-LET
radiation to the best of our knowledge up to now. In a holistic view of the tumor response
to the different radiation qualities, the impact on survival has to be considered in addition
to radio-induced inflammation, which is higher for carbon ions compared to X-rays, with
relative biological effectiveness (RBE) above 2.3 in normoxic and hypoxic A549 cells, as we
recently described [97]. Such a higher killing efficiency of carbon ions could counteract the
tumor-supporting effects of the hypoxic milieu.

4. Materials and Methods
4.1. Cell Line and Cultivation

A549 cells (human, male, lung adenocarcinoma, KRAS mutated, p53 wildtype [117])
were purchased from LGC Genomics (Berlin, Germany) and cultured in 25 cm2 or 80 cm2

cell culture flasks (Labsolute, Th. Geyer GmbH, Renningen, Germany) at a density of
5000 cells/cm2, using Alpha-Minimally Essential Medium (α-MEM; PAN Biotech, Aiden-
bach, Germany) containing 10% (v/v) dialyzed Fetal Bovine Serum (FBS; PAN Biotech), 2%
(v/v) sterile glucose solution (0.94 mol/L), 1% (v/v) Penicillin (10,000 U/mL)/Streptomycin
(10 mg/mL) (PAN Biotech), 1% (v/v) Neomycin/Bacitracin (Biochrom AG, Berlin, Ger-
many), and 1% (v/v) Amphotericin (250 µg/mL) (PAN Biotech). The cells were regularly
tested for mycoplasma contamination by polymerase chain reaction of supernatants at



Int. J. Mol. Sci. 2024, 25, 4495 10 of 17

the Leibniz-Institut DSMZ- Deutsche Sammlung von Mikroorganismen und Zellkulturen
GmbH (Braunschweig, Germany) and were mycoplasma-free.

The cells were incubated at 37 ◦C and saturated humidity, either under normoxia
(20% O2) in a CO2 incubator (5% CO2; Heraeus HERAcell 150, Thermo Fisher Scientific,
Karlsruhe, Germany) or under hypoxia (1% O2) in an InvivO2 400 hypoxia workstation
(Baker Ruskinn, South Wales, UK) flushed with 5% CO2, 1% O2, and 94% N2. The incu-
bation time in culture under normoxia or hypoxia before irradiation was 48 h to allow
cells to enter the exponential growth phase. Medium change, fixation, or lysis of hypoxic
cells were performed in the hypoxia workstation. Medium and reagents used for the
purpose were degassed by warming them to 25 ◦C in the Sonorex Digiplus ultrasonic water
bath (Bandelin, Berlin, Germany) for 40 min, followed by placing them in the hypoxia
workstation for another 40 min with loosened bottle caps before use.

4.2. Irradiation

After 48 h of incubation, A549 cells were irradiated with either X-rays or 12C ions. The
caps of the culture flasks were tightened before transferring them for irradiation. The flasks
housing hypoxic cells were shifted for irradiation in air-tight boxes before exporting them
out of the hypoxia workstation. They were only taken out from the air-tight boxes for the
brief minutes of actual irradiation, following which they were returned to the air-tight boxes
for their transport back. Several oxygen readings were taken before actual experiments
using the Seven2go dissolved oxygen meter S9 (Mettler Toledo, Giessen, Germany) to
ensure that this method did not lead to a significant change in oxygen concentration within
the medium of the flasks housing the hypoxic cells.

X-ray exposure (LET: 0.3–3.0 KeV/µm) was performed at the Institute of Aerospace
Medicine, DLR, Germany, in an RS 225 X-ray chamber (X-strahl, Ratingen, Germany) at a
stable dose rate of 1.0 Gy/min, which was ensured by keeping the distance of the sample
from the X-ray source to 450 mm. Low-energy X-rays were eliminated using a copper (Cu)
filter with a thickness of 0.5 mm. Cells were irradiated either in cell culture flasks (25 cm2

or 80 cm2) or in cell culture dishes (∅ 3 cm or 6 cm), depending on the specific experiments
performed. The dose and dose rate were monitored using the UNIDOSwebline dosimeter
with the ionization chamber TM30013 (PTW, Freiburg, Germany).

Carbon ion exposure was carried out at the heavy ion accelerator “Grand Accélérateur
National de Ions Lourds” (GANIL) in Caen, France, at a dose rate of 1 Gy/min. During
carbon ion exposure, cells were placed in the plateau region of the Bragg curve, resulting
in constant LET over the thickness of the cells. To attain a LET (in water) relevant for
clinical settings (~75 keV/µm), the carbon ion beam energy was reduced from 95 MeV/n
to 35 MeV/n by placing a polymethyl methacrylate (PMMA, thickness 16.9 mm) energy
degrader in the beam. The energy was further reduced by the polystyrene bottom of the
cell culture flask, resulting in an energy of 25.7 MeV/n and a calculated LET in water of
73 keV/µm. The remaining range of the ions in water was 2550 µm, indicating that the
cells were exposed in the plateau region of the Bragg curve. The fluence for heavy ions
(P/cm2) was used to calculate radiation dose (Gy) [97].

Since the cell culture flasks had to be kept upright during carbon ion exposure due
to the horizontal beam setup, the flasks were filled to the neck with a culture medium to
prevent desiccation of the cells during exposure.

After irradiation, cells underwent a medium change and were then incubated further,
either at 20% O2 (normoxia) or 1% O2 (hypoxia), for variable periods, depending on the
specific experiments.

4.3. Gene Expression Analysis

To determine the global transcription profile of cells irradiated under normoxia and
hypoxia with 8 Gy of X-rays or 12C ions, the culture medium was removed 4 h after
irradiation, and cells were lysed using RLT buffer (Qiagen, Hilden, Germany) containing
β-mercaptoethanol (1:100, Sigma Aldrich, St. Louis, MO, USA). RNA was isolated with
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the RNeasy Mini Kit (Qiagen). RNA concentration and integrity were determined using
the RNA 6000 Nano Assay (Agilent Technologies, Böblingen, Germany) in the Bioanalyzer
(Agilent Technologies). There was 3 µg total RNA per sample (4 biological replicates per
condition), with RNA Integrity Numbers (RIN) above 9.0 being sent on dry ice to GENEWIZ
(Leipzig, Germany) for mRNA sequencing in the same run after Poly(A) selection using the
Illumina NovaSeq6000 platform (configuration: 2 × 150 bp, 350 M read pairs). GENEWIZ
mapped the reads onto the Homo sapiens GRCh38 reference genome and calculated unique
gene hit counts falling within exon regions. Then, the DESeq2 package in R [118] was
utilized for differential gene expression analysis. Gene Set Enrichment Analysis (GSEA)
was performed using the expression data [119]. Genes with an adjusted p-value < 0.05 and
absolute log2 fold change > 1 were considered as differentially expressed genes for each
group comparison. We searched for NF-κB responsive genes among the DEGs using CHEA
and ENCORE databases as references, with the help of the online tool Harmonizome [120].

4.4. Quantification of Cytokines

Cytokine secretion by A549 cells under normoxia and hypoxia with and without
irradiation with X-rays and 12C ions was assessed by ELISA. Human IL-6 and IL-8 uncoated
ELISA Kits (Invitrogen, Thermo Fisher Scientific, Karlsruhe, Germany) were used for IL-6
and IL-8 detection in sample supernatants.

At the defined time points (6 and 24 h), the supernatants (3 mL) were collected
in Eppendorf tubes and stored at −80 ◦C until subsequent handling. The cells on the
other hand were trypsinized and counted with the LUNA automated cell counter for
normalization of cytokine production to the cell number.

Ninety-six-well plates (CorningTM CostarTM 9018 ELISA plate, Kaiserslautern, Ger-
many) were coated with the primary capture antibodies (100 µL) provided with the kits
diluted 1:250 in PBS and the plates were incubated at 4 ◦C overnight. Afterward, the wells
were blocked for nonspecific antibody binding using diluent (200 µL), which was also
provided with the kits, diluted (1:5) in deionized water. The plates were again incubated at
4 ◦C overnight after loading the wells with the samples (100 µL), as well as several different
known dilutions of the provided standard. On the next day, the detection antibody (100 µL
per well) provided with the kits was diluted (1:250) in PBS and added to the wells. The well
plates were then incubated for 1 h at room temperature. This was followed by incubation
at room temperature for 30 min after the addition of Streptavidin-HRP (100 µL), diluted
1:100 for IL-6, or by the addition of Avidin-HRP (100 µL), diluted 1:250 for IL-8. Finally, the
plates were incubated for 15 min at room temperature after the addition of TMB substrate
(100 µL) to the wells, after which the enzyme reaction was stopped by adding 2 N H2SO4
(100 µL) to the wells. All incubation steps were carried out on a shaker with 3 to 5 washings
in between with wash buffer (PBS with 0.05% Tween).

Plates were read in a Multiskan FC microplate reader (Thermo Fischer Scientific,
Waltham, MA, USA) at 450 and 570 nm at 21 ◦C. Wavelength subtraction (Absorbance A
(450 nm)–B (570 nm)) was done via the SkanIt Software (ver. 6.1.1.7, Thermo Fischer Scien-
tific) and displayed in an exportable table for further statistical analyses using Microsoft
Excel to plot the standard curves and use them to derive actual cytokine concentrations
from the absorbance values.

4.5. Statistical Analysis

Three independent biological experiments with three technical replicates for each
experimental condition were conducted for the experiments described in Sections 4.2–4.4.
Arithmetical means, standard deviations, and standard errors of means (SE) were calculated
using Microsoft® Excel® 2019 MSO software version 16.0.10409.20028 64-Bit (Microsoft
corporation, Redmond, WA, USA). Graphs were plotted and tests of significance were
performed using GraphPad Prism 9 (Dotmatics, Boston, MA, USA). Significance was tested
using one-way analysis of variance (ANOVA) test to evaluate cell metabolism studies and
multiple two-way unpaired t-tests were used to evaluate cell cycle distribution data and
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doubling times. Growth curves were plotted using Sigma Plot 15 (Systat Software Inc.,
Palo Alto, CA, USA). For the RNA sequencing, 4 independent biological experiments were
conducted, and a batch analysis of the results was performed.

5. Conclusions

Irradiation of hypoxic A549 NSCLC cells using both low- and high-LET radiation
leads to an increase in NF-κB-mediated mRNA transcription and cytokine release that
may increase cancer cell survival and propagation. The transcriptional response of NF-
κB target genes upregulated by both X-rays and 12C ions is greater following 12C ion
exposure. However, X-ray irradiation upregulates a greater number of NF-κB responsive
genes involved in inducing oncogenic transformation and enhancing cancer cell survival.
Whether this contributes in a major way toward hypoxia-induced radioresistance to X-rays
requires further investigation using several NF-κB reporters and knock-down of NF-κB
target genes in several NSCLC cell lines to perform functional assays especially related to
cell survival and cell migration. Such experiments may be of crucial importance to be able
to fully exploit the use of high-LET particle therapy in cancer treatment and to overcome
tumor hypoxia-induced radioresistance.
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