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Abstract: The accurate prediction of adverse drug reactions (ADRs) is essential for comprehensive
drug safety evaluation. Pre-trained deep chemical language models have emerged as powerful tools
capable of automatically learning molecular structural features from large-scale datasets, showing
promising capabilities for the downstream prediction of molecular properties. However, the perfor-
mance of pre-trained chemical language models in predicting ADRs, especially idiosyncratic ADRs
induced by marketed drugs, remains largely unexplored. In this study, we propose MoLFormer-XL,
a pre-trained model for encoding molecular features from canonical SMILES, in conjunction with a
CNN-based model to predict drug-induced QT interval prolongation (DIQT), drug-induced terato-
genicity (DIT), and drug-induced rhabdomyolysis (DIR). Our results demonstrate that the proposed
model outperforms conventional models applied in previous studies for predicting DIQT, DIT, and
DIR. Notably, an analysis of the learned linear attention maps highlights amines, alcohol, ethers, and
aromatic halogen compounds as strongly associated with the three types of ADRs. These findings
hold promise for enhancing drug discovery pipelines and reducing the drug attrition rate due to
safety concerns.

Keywords: adverse drug reactions; drug safety evaluation; deep chemical language model; structural
alerts; deep learning

1. Introduction

Market drugs frequently lead to unexpected adverse drug reactions (ADRs) during
clinical use, presenting significant challenges to patient safety [1,2]. Among these, idiosyn-
cratic ADRs, such as drug-induced rhabdomyolysis, pose a particular risk due to their
life-threatening nature and intricate pathogenesis, compounded by their low incidence
rates [3–5]. Despite efforts to identify clinical biomarkers and monitoring modalities for
timely diagnosis during medication intake, the complexity of these ADRs and substantial
inter-individual variability among patients impede the diagnostic efficacy of these clinical
parameters [1,6,7]. Consequently, the accurate prediction of the risk associated with serious
ADRs induced by marketed drugs becomes imperative in drug safety evaluation. Such pre-
dictions not only facilitate the prompt adjustment of medication strategies to ensure patient
safety and efficacy but also serve as early detection mechanisms within the drug discovery
process. Structure–Activity Relationship (SAR) methodologies, which are based on the
chemical structures and properties of compounds, utilize various molecular descriptors as
features and leverage machine-learning techniques to predict or interpret the relationship
between the chemical structure of compounds and its biological activity or toxicological
characteristics [8]. These methodologies offer pivotal approaches to correlate the chemical
structure of drugs with their propensity for ADRs, representing indispensable tools for
predicting drug-induced adverse reactions [9,10]. Previous research has demonstrated
the utility of SAR models employing conventional machine-learning methods, including
Support Vector Machine (SVM) [11–14], Random Forest (RF) [15–17], and Decision Forest
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(DF) [18,19]. Notably, these models have exhibited promising performance in predicting
liver toxicity [15,18–20], cardiotoxicity [13,14,17,21], and other adverse reactions. In our
previous investigation, we constructed datasets encompassing three distinct ADRs based
on FDA-approved drug labeling information: the drug-induced QT prolongation atlas
(DIQTA) [22], drug-induced teratogenicity dataset (DITD) [12], and drug-induced rhab-
domyolysis atlas (DIRA) [23]. Leveraging conventional machine-learning algorithms in
conjunction with molecular descriptors, we predicted the risk associated with these three
types of ADRs [12,13,16].

Conventional machine-learning models, which utilize various types of molecular
descriptors as features, have exhibited limitations in predicting adverse drug reactions
(ADRs) [24,25]. The selection of molecular descriptors for prediction tends to be somewhat
arbitrary, typically relying on experiential knowledge or the incorporation of as many
descriptors as feasible, followed by an assessment of feature importance. Despite these
efforts, effectively translating these descriptors into structural alerts (SAs) for analyzing
structural features closely associated with ADRs during mechanistic interpretation remains
challenging. Furthermore, the reliability of these models may be compromised by limited
sample sizes, particularly for drugs that induce idiosyncratic ADRs. In recent years, several
studies have investigated the development of chemical language models employing deep
learning algorithms [26–30]. These models can be trained on extensive datasets of molecules
to learn structural information from molecular representations, such as the Simplified
Molecular Input Line Entry System (SMILES), and subsequently establish pre-trained
models for predicting molecular properties. Li et al. introduced SMILES Pair Encoding
(SPE) [31], which learns the vocabulary of high-frequency SMILES substrings from large
chemical datasets and then tokenizes SMILES. This approach has demonstrated promise in
molecular generation and Quantitative Structure–Activity Relationship (QSAR) prediction
tasks. Wu et al. employed the BiLSTM (Bidirectional Long Short-Term Memory) attention
network to extract key features from SMILES strings [32], achieving superior results across
eleven tasks related to absorption, distribution, toxicity, and others. Ucak et al. proposed
the atom in the SMILES tokenization scheme [33], which incorporates environmental
information and resolves ambiguities in the general nature of SMILES tokens. These
studies utilize deep learning algorithms to decipher the intricate chemical information
concealed within SMILES and underscore the significant impact of appropriate tokenization
on multiple chemical translation and molecular property prediction tasks. However,
the performance of pre-trained chemical language models combined with deep learning
methods in predicting ADRs, particularly idiosyncratic ADRs induced by marketed drugs,
remains largely unexplored.

In this study, we employ MoLFormer-XL [34], a pre-trained model trained on large-
scale molecular datasets, to encode molecules. This is coupled with convolutional neural
networks (CNNs) to predict the risk of drug-induced QT prolongation (DIQT), drug-
induced teratogenicity (DIT), and drug-induced rhabdomyolysis (DIR), exploring the
performance of deep chemical language models in predicting marketed drug-induced
adverse reactions. We compare the results with conventional machine-learning methods
employed in previous studies to evaluate the effectiveness of the model. Furthermore, by
scrutinizing the structures emphasized in the linear attention maps of drugs associated
with high-risk concerns, we discerned structural alerts, such as amines, alcohols, ethers,
and aromatic halogens, which may correlate with ADRs. In summary, our investigation
underscores that deep chemical language models effectively capture molecular structural
information, proving instrumental in predicting ADRs induced by marketed drugs. This
presents a viable alternative approach to bolstering drug safety evaluation and facilitating
the early detection of ADRs throughout the drug development process.
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2. Results
2.1. Model Performance on Three Curated Datasets

Three meticulously curated datasets, namely DIQTA, DITD, and DIRA, were em-
ployed to assess the performance of our proposed model, MoLFormer-XL-CNN. This
model combines a pre-trained deep chemical language model with CNN to predict ADRs
induced by marketed drugs. Performance metrics, including accuracy, recall rate, preci-
sion, Matthew’s correlation coefficient (MCC), balanced accuracy score (BACC), F1 score,
the area under the receiver operating characteristic curve (AUROC), the area under the
precision–recall curve (AUPRC), and specificity, achieved by our model in predicting the
risk of drug-induced QT prolongation, teratogenicity, and rhabdomyolysis, are listed in
Table 1. The MCCs and recall rates achieved on the three datasets are over 0.50 and 0.85,
respectively, indicating satisfactory performance in predicting these ADRs. Particularly
noteworthy are the high recall rates of 0.942 and 0.974 achieved on the DIQTA and DIRA
datasets, respectively, illustrating the model’s effectiveness in identifying positive samples
at risk of inducing QT interval prolongation and rhabdomyolysis. However, it is notewor-
thy that the specificity for the DIRA dataset is 0.432, indicating a higher false-positive rate
in predicting drug-induced rhabdomyolysis compared to the other two ADRs. We com-
pared the performance of our proposed MoLFormer-XL-CNN model with state-of-the-art
methods reported in previous studies (Figure 1). In previous studies, Wulin Long et al.
indicated that SVM achieved the highest MCC value and recall rate (mean MCC = 0.591,
mean recall rate = 0.870), predicting the high risk of inducing QT interval prolongation of
marketed drugs [13]. Liyuan Kang et al. indicated that SVM performed better in detecting
the marketed drugs with high teratogenic risk (mean MCC = 0.312) [12]. Yifan Zhou et al.
proposed that the RF model performed the best (mean MCC = 0.46) in predicting the
DIR severity of the marketed drugs [16]. The three previous studies all leveraged con-
ventional machine-learning algorithms in conjunction with molecular descriptors. The
results demonstrated the superior performance of our model in terms of both MCCs and
recall rates, highlighting the effectiveness of leveraging pre-trained deep chemical language
models for ADR prediction tasks. Significant improvements in MCCs, especially for the
DITD dataset, were observed where the MCC increased from 0.312 to 0.503. Additionally,
our model exhibited improved recall rates compared to the supervised baselines. These
results demonstrate that MoLFormer-XL effectively captures the molecular features of
drugs, thereby facilitating subsequent prediction tasks.

Table 1. Prediction results of MoLFormer-XL-CNN model for three datasets.

DIQTA DITD DIRA

Accuracy 0.859 ± 0.029 0.750 ± 0.037 0.866 ± 0.034
Recall rate 0.942 ± 0.027 0.862 ± 0.160 0.974 ± 0.027
Precision 0.845 ± 0.029 0.771 ± 0.010 0.872 ± 0.029

MCC 0.702 ± 0.062 0.503 ± 0.047 0.535 ± 0.095
BACC 0.835 ± 0.033 0.719 ± 0.058 0.703 ± 0.042

F1 score 0.891 ± 0.022 0.800 ± 0.052 0.920 ± 0.023
AUROC 0.829 ± 0.060 0.702 ± 0.048 0.703 ± 0.042
AUPRC 0.822 ± 0.079 0.742 ± 0.101 0.832 ± 0.062

Specificity 0.747 ± 0.036 0.576 ± 0.260 0.432 ± 0.088
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Figure 1. The comparison of the predictive results with three previous studies. SVMa:
Wulin Long et al. established an SVM model to predict DIQT based on the DIQTA dataset [13].
SVMb: Liyuan Kang et al. established an SVM model to predict DIT based on the DITD dataset [12].
RF: Yifan Zhou et al. established an RF model to predict DIR based on the DIRA dataset [16]. (a) The
comparison of the value of MCC. (b) Comparison of the value of recall rate.

2.2. Attention Analysis for Drugs with a High Risk of DIQT

MoLFormer-XL’s average-pooled attention metrics encode chemical information
within a molecule during the encoding of canonical SMILES, enabling the capture of
spatial relations between atoms. Higher values in the average-pooled attention metrics indi-
cate the importance of atoms or groups of atoms (structural fractions) in the prediction task.
By analyzing the average-pooled attention matrices, we extracted structural information
considered important by the predictive model for ADR predictions. Table 2 lists five drugs
identified as high risk for inducing QT interval prolongation by the Comprehensive in vitro
Proarrhythmia Assay (CiPA) initiative [35]. The structural subunits with high attention
values in the MoLFormer-XL framework were circled and compared with established
structural alerts (SAs) obtained from ToxAlert in the Online Chemical Database (OCHEM,
https://ochem.eu/home/show.do, accessed on 6 February 2024) [36,37]. Annotations with
complete attention maps are provided in Supplementary File S1. The table reveals that
MoLFormer-XL was used to report SAs associated with DIQT in previous studies, such as
amines, ethers, and aromatic halogens [13]. Furthermore, Aniline structures, such as pyri-
dine in disopyramide phosphate and the benzimidazole ring in quinidine gluconate and
vandetanib, were also identified as crucial structural features associated with DIQT [38–40].

Table 2. Attention analysis for drugs with a high risk of DIQT.

Generic/
Proper Name(s)

Canonical
SMILES

Structures Extracted by
Attention Map SAs*

Quinidine
gluconate

C=CC1CN2CCC1CC2C(O)
c1ccnc2ccc(OC)cc12
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Table 2. Cont.

Generic/
Proper Name(s)

Canonical
SMILES

Structures Extracted by
Attention Map SAs*

Vandetanib COc1cc2c(Nc3ccc(Br)cc3F)
ncnc2cc1OCC1CCN(C)CC1
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Table 3. Attention analysis for antiepileptic drugs with a high risk of DIT.

Generic/
Proper Name(s)

Canonical
SMILES

Structures Extracted by
Attention Map SAs*

Phenytoin C1=CC=C(C=C1)C2(C(=O)
NC(=O)N2)C3=CC=CC=C3
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are more likely to induce rhabdomyolysis [48,49]. In the DIRA dataset, all statin drugs
were categorized into the highest DIR concern level. Table 4 lists seven statin drugs in the
DIRA dataset with attended substructures and reported SAs. Annotations with complete
attention maps are provided in Supplementary File S3. The table reveals that nucleophilic
groups in the chemical structures of each drug, particularly alcohols and amines, were
attended by MoLFormer-XL. These functional groups can be converted into highly reactive
electrophilic metabolites, which can covalently bind to nucleophilic sites of biological
macromolecules, such as DNA, RNA, or proteins in cells, potentially leading to cell damage
and other toxic reactions [39,45,50]. Additionally, aromatic halogens [51] in the chemical
structures of fluvastatin, atorvastatin, rosuvastatin, and pitavastatin were also identified as
contributors to inducing rhabdomyolysis.
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Table 4. Cont.

Generic/
Proper Name(s)
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SMILES

Structures Extracted by
Attention Map SAs*

Pravastatin sodium CCC(C)C(=O)OC1CC(O)C=C2C=
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3. Discussion

Conventional QSAR methods predominantly rely on molecular descriptors, such as
physicochemical properties and structural fragments, to characterize chemical compounds
and correlate them with biological activities. However, deep chemical language models
represent a paradigmatic shift in ADR prediction by directly encoding molecular structures
from textual representations, such as SMILES strings. These models offer several advan-
tages over conventional QSAR models. Firstly, deep chemical language models provide a
more comprehensive representation of molecular structures, capturing intricate structural
features inherent in SMILES strings. By encoding the entire molecular structure, including
bond connectivity and spatial arrangement, these models can potentially capture subtle
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but important nuances that traditional descriptors might overlook. This comprehensive
representation enhances the model’s ability to discern complex relationships between
the molecular structure and ADRs. Secondly, deep chemical language models benefit
from pre-training on large-scale molecular datasets. Leveraging extensive chemical data,
these models can learn universal representations of molecular structures. Pre-training
allows the model to capture generalizable patterns and features across diverse chemical
compounds, facilitating transfer learning for downstream tasks such as ADR prediction.
Furthermore, deep chemical language models offer flexibility and scalability in model
architecture. Unlike QSAR methods, which typically rely on handcrafted features and fixed
model architectures, deep chemical language models can adapt their architectures to the
complexity of prediction tasks.

In this study, we introduced the MoLFormer-XL-CNN model, which combines the
deep chemical language model and CNNs for predicting drug-induced adverse reactions.
We utilized MoLFormer-XL to encode molecular structures, leveraging its ability to capture
intricate structural features. Subsequently, we employed CNNs to predict the risk of ad-
verse reactions. To evaluate the performance of our model, we conducted predictions on
three distinct datasets: DIQTA, DITD, and DIRA. Our results demonstrated significant im-
provements in predictive performance compared to conventional QSAR models in previous
studies. Specifically, the MoLFormer-XL-CNN model achieved MCCs of 0.702, 0.503, and
0.535 on the DIQTA, DITD, and DIRA datasets, respectively. These MCC values represent
substantial enhancements over the MCCs obtained by conventional QSAR methods in pre-
vious studies (MCCs = 0.591, 0.31, and 0.46, respectively) (Figure 1). Notably, the attention
mechanism embedded within the MoLFormer-XL framework provided valuable insights
into the chemical substructures associated with adverse reactions. By comparing these
identified substructures with established SAs, we confirmed their relevance to specific
adverse reactions. For instance, the model’s attention to amines, ethers, and aromatic
halogens corresponded to known SAs for drug-induced QT prolongation. Furthermore,
our model identified additional substructures, such as Aniline structures, which may serve
as novel SAs for adverse reactions. For drugs with teratogenic or rhabdomyolysis risks,
MoLFormer-XL also highlighted similar SAs identified in previous studies. For instance,
imine nitrogen and ethane-1,1-diyldibenzene were associated with teratogenicity, while
nucleophilic groups in chemical structures were linked to rhabdomyolysis.

Additionally, there are several caveats worth further discussion. Firstly, the stability
of the MoLFormer-XL-CNN model varied across datasets, as indicated by the standard
deviations of MCC and recall rates (Figure 1). Due to the small sample size of the datasets,
we applied data augmentation techniques to improve the model’s performance. Secondly,
while deep chemical language models can identify important substructures, further research
is needed to elucidate the specific associations between individual or combinations of
substructures and the mechanisms underlying adverse reactions. Thirdly, the severity
stratification of drugs in three distinct datasets is mainly based on the U.S. FDA-approved
drug labeling information. If drug labeling from other countries, such as European Union
(EU) countries, is used, differences in stratification may lead to differences in prediction
results and attended chemical substructures.

4. Materials and Methods
4.1. Study Design

In this study, we aim to investigate the effectiveness of pre-trained deep chemical
language models in predicting adverse drug reactions (ADRs) induced by marketed drugs.
MoLFormer-XL, a pre-trained model with an efficient linear attention mechanism, was
trained on a comprehensive dataset comprising 1.1 billion molecules. To construct the
predictive model, we employed MoLFormer-XL to encode canonical SMILES represen-
tations of drugs, in conjunction with convolutional neural networks (CNNs), to predict
the occurrence of drug-induced QT prolongation (DIQT), drug-induced teratogenicity
(DIT), and drug-induced rhabdomyolysis (DIR). We evaluated the performance of our
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model against previous studies and analyzed the average-pooled attention metrics within
the MoLFormer-XL framework. These metrics were instrumental in identifying chemical
substructures associated with the ADRs. By extracting the attended substructures from
the attention metrics and comparing them with reported structural alerts (SAs), we eluci-
date the model’s ability to discern relationships between molecular structures and ADR
propensity. An overview of our methodology is depicted in Figure 2.
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4.2. Data Preparation

We utilized three meticulously curated datasets as follows: the drug-induced QT
prolongation atlas (DIQTA, https://www.adratlas.com/DIQTA/download accessed on
6 February 2024) [22], the drug-induced teratogenicity dataset (DITD, https://www.
frontiersin.org/articles/10.3389/fphar.2022.747935/full#supplementary-material accessed
on 6 February 2024) [12], and the drug-induced rhabdomyolysis atlas (DIRA, https://www.
adratlas.com/DIRA/download accessed on 6 February 2024) [23] for model construction
and validation. All drugs in these datasets were classified into different concern levels
based on the severity outlined in their FDA-approved drug labeling.

Within the DIQTA dataset, QT-prolonging drugs were extracted by full-text searching
of the FDA-approved drug labeling with QT prolongation-related keywords. The severity
score was assigned based on predefined keywords, a priori knowledge, and DIQT concerns,
which were determined based on the severity scores. Marketed drugs were divided into
four concern levels: the most DIQT concerns, moderate DIQT concerns, ambiguous levels,
and no DIQT concerns. We selected 166 drugs from the most DIQT and moderate DIQT
concern levels as positive samples and 100 drugs from the no-DIQT concern level as
negative samples. Subsequently, we retrieved the SMILES from the DrugBank database via
the link (https://go.drugbank.com/releases/latest accessed on 6 February 2024, release
version 5.1.10) [52] using the DrugBank ID. The canonical SMILES were then generated
using RDKit packages in Python. Ultimately, we obtained canonical SMILES for a total of
255 drugs, comprising 156 positive samples and 99 negative samples.

In the DITD dataset, a drug was categorized into high teratogenic risk if it was
indicated in drug labeling that adequate and well-controlled studies or animal studies had
shown a teratogenic risk to the fetus, while a drug was categorized into low teratogenic
risk if both animal and human studies showed no risk to the fetus. Then, drugs were
categorized into high teratogenic risk and low teratogenic risk groups based on the FDA’s
pregnancy medication classification. We utilized 67 drugs from the high teratogenic risk
group as positive samples and 45 drugs from the low teratogenic risk group as negative
samples. Similar to the DIQTA dataset, SMILES were obtained from the DrugBank database
and converted to canonical SMILES using RDKit packages in Python. Consequently, we
acquired canonical SMILES for a total of 112 drugs, including 67 positive samples and
45 negative samples.

https://www.adratlas.com/DIQTA/download
https://www.frontiersin.org/articles/10.3389/fphar.2022.747935/full#supplementary-material
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Within the DIRA dataset, DIR drugs were extracted by full-text searching of the
FDA-approved drug labeling with the keyword ‘rhabdomyolysis’. The severity score
was assigned based on predefined keywords and a priori knowledge, and DIR concerns
were determined based on the severity scores. Marketed drugs were classified into four
concern levels: the most DIR concerns, moderate DIR concerns, less DIR concerns, and no
DIR concern drugs. We designated 173 drugs with DIR concerns as positive samples and
40 no-DIR concern drugs as negative samples. Similarly, SMILES was retrieved from the
DrugBank database and converted to canonical SMILES using RDKit packages in Python.
Finally, we obtained canonical SMILES for a total of 194 drugs, comprising 155 positive
samples and 39 negative samples.

4.3. Model Construction

MoLFormer is an efficient transformer encoder model that utilizes rotary positional
embeddings and the linear attention mechanism. Among various MoLFormer variants,
MoLFormer-XL exhibited superior performance. Constructed by training on 1.1 billion
unlabeled molecules from the PubChem and ZINC datasets, MoLFormer-XL aims to learn
meaningful and universal representations of chemical molecules from large-scale chemical
representation data, subsequently fine-tuning for various downstream molecular property
prediction tasks. In our study, we leveraged the pre-trained MoLFormer-XL to encode
molecules, enhancing the capture of molecular features of marketed drugs. Subsequently,
we employed CNN for further prediction tasks.

MoLFormer-XL encoded each canonical SMILES, with the resulting embedding serv-
ing as an input to the CNN model. Our CNN framework comprises two convolutional
layers and two fully connected layers. The first convolutional layer expands the dimension-
ality of the embedding threefold to capture richer information, utilizing a kernel size of
3 × 1 and padding of 1 to maintain the spatial dimensionality of features. The second con-
volutional layer compresses the feature space back to the original embedding dimension for
subsequent fully connected operations, with kernel size and padding remaining unchanged.
Both convolutional layers incorporate batch normalization, aiming to re-learn the original
encoded features at a deeper level, thereby enhancing subsequent classification and predic-
tive accuracy. In the two fully connected layers, we introduced a dropout layer to randomly
skip some neurons to prevent overfitting. Functions for optimizer, loss, activation, and
output were separately set to AdamW, CrossEntropyLoss, ReLU, and softmax.

To facilitate a comparison with the predictive outcomes in previous studies, our
model’s construction employed fivefold cross-validation. To enhance the model’s learning
capacity during training, we utilized the SMILES enumeration method [53], which gener-
ates multiple valid representations for chemical structures from a single SMILES string.
This approach enriches the diversity of structural representations and has been shown
in prior studies to assist in improving the accuracy of the model’s predictions for molec-
ular properties. The Python codes for the MoLFormer-XL-CNN model were uploaded
to GitHub (https://github.com/LiSH7450/MoLFormer-XL-CNN_model accessed on 6
February 2024).

4.4. Evaluation of Model Performance

To evaluate the performance of the model, we used nine performance metrics in this
study, including accuracy, recall rate, precision, Matthew’s correlation coefficient (MCC),
balanced accuracy score (BACC), F1 score, the area under the receiver operating character-
istic curve (AUROC), the area under the precision–recall curve (AUPRC) and specificity.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

recallrate =
TP

TP + FN
(2)

https://github.com/LiSH7450/MoLFormer-XL-CNN_model
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precision =
TP

TP + FP
(3)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

BACC =
(TPR + TNR)

2
(5)

F1score =
2 × (precision × recallrate)

precision + recallrate
(6)

AUROC =
∫ 1

x=0
TPR

(
FPR−1(x)

)
dx (7)

AUPRC =
∫ +∞

−∞
precision(x)dP[Y ≤ x] (8)

specificity =
TN

TN + FP
(9)

5. Conclusions

In conclusion, our study underscores the potential of deep chemical language models
to predict ADRs induced by marketed drugs. Our MoLFormer-XL-CNN model outper-
formed conventional QSAR approaches across multiple datasets, showcasing its efficacy in
ADR prediction with enhanced structural representation and predictive accuracy. These
findings emphasize the transformative impact of deep chemical language models, not only
in pharmacovigilance but also in facilitating early ADR detection during drug development.
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