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Abstract: This two-sample Mendelian randomization (MR) study was conducted to investigate the
causal associations between type 2 diabetes mellitus (T2DM) and the risk of pancreatic cancer (PaCa),
as this causal relationship remains inconclusive in existing MR studies. The selection of instrumental
variables for T2DM was based on two genome-wide association study (GWAS) meta-analyses from
European cohorts. Summary-level data for PaCa were extracted from the FinnGen and UK Biobank
databases. Inverse variance weighted (IVW) and four other robust methods were employed in our
MR analysis. Various sensitivity analyses and multivariable MR approaches were also performed
to enhance the robustness of our findings. In the IVW and Mendelian Randomization Pleiotropy
RESidual Sum and Outlier (MR-PRESSO) analyses, the odds ratios (ORs) for each 1-unit increase in
genetically predicted log odds of T2DM were approximately 1.13 for PaCa. The sensitivity tests and
multivariable MR supported the causal link between T2DM and PaCa without pleiotropic effects.
Therefore, our analyses suggest a causal relationship between T2DM and PaCa, shedding light on the
potential pathophysiological mechanisms of T2DM’s impact on PaCa. This finding underscores the
importance of T2DM prevention as a strategy to reduce the risk of PaCa.

Keywords: two-sample Mendelian randomization; type 2 diabetes mellitus; pancreatic cancer;
FinnGen; UK Biobank

1. Introduction

Pancreatic cancer (PaCa) ranks as the 12th most common cancer and is the 6th leading
cause of cancer-related mortality worldwide [1,2]. Although there have been advancements
in the treatment of PaCa recently, the 5-year survival rate remains low, at approximately
9% in 2018 [3]. The low survival rate of PaCa can largely be attributed to the majority of
diagnoses occurring at locally advanced stages or once metastasis has happened. Diag-
nosing PaCa at an early stage is challenging, especially in patients who exhibit no specific
symptoms. According to Global Cancer Observatory (GLOBOCAN) estimations [1,4], a
trend towards an increase in PaCa incidence (+78.3% with 399,571 new cases) and mortality
(+81.9% with 382,260 deaths) is projected from 2022 to 2045. Due to the high incidence
rate and persistently low survival rate of PaCa, compounded by the absence of a screening
program for PaCa, preventing PaCa by the noted risk factors becomes crucial.

Previous literature reviews [3,5–9] have summarized numerous potential risk fac-
tors for PaCa, including cigarette smoking, heavy alcohol consumption, obesity, chronic
pancreatitis, type 2 diabetes mellitus (T2DM), hepatitis B, cholecystectomy, periodontal
disease, aging, male gender, African American ethnicity, non-O blood type, family history,
certain hereditary syndromes, and germline mutation. Among these risk factors, T2DM
stands out as a growing global health crisis, with an increasingly higher prevalence and
disease burden being reported [10–12]. In 2017, the global prevalence rate of T2DM was
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6059 cases per 100,000 individuals [10]. In our previous UK Biobank cohort study [13,14], a
history of diabetes mellitus (DM) was found to at least double the risk of PaCa compared
to participants without a DM history [13,14]. Additionally, by calculating the population
attributable fraction (PAF), it was revealed that 6% of PaCa cases could be eliminated by
avoiding DM [13] in the UK Biobank cohort. Notably, T2DM represents around 90% to 95%
of all identified DM cases [15]. Therefore, the ongoing rise in T2DM prevalence worldwide
is expected to contribute to an increase in the incidence rate of PaCa.

Despite numerous observational studies [13,15–18] revealing an association between
T2DM and an increased risk of PaCa, the causal relationship between T2DM and PaCa
remains controversial in Mendelian randomization (MR) studies. MR studies are important
for investigating causal relationships, and T2DM was suggested to be causally associated
with PaCa in some two-sample Mendelian randomization (2SMR) studies [19,20]. However,
other 2SMR studies [21,22] did not observe a causal relationship between T2DM and the risk
of PaCa. The null results may be caused by the limited number of instrumental variables
(IVs), which could attenuate the statistical power. On the other hand, in studies observing
causal relationships, the potential for overestimation still needs to be considered, as some
included SNPs may exert pleiotropic effects on BMI, and some results may be influenced
by linkage disequilibrium (LD). Therefore, in this study, we attempt to use comprehensive
IVs, avoid SNPs located near genes reported to be associated with BMI, and also check for
LD in the IV selection process to enhance the robustness of the results.

MR is one of the epidemiological approaches that adopt genetic variants as IVs to
explore causal relationships between exposures and outcomes [23–25]. The advantage of
MR over traditional observational studies lies in the genetic variants randomly assorted
at conception [23–25]; however, there are three critical assumptions [26]. These include
IVs that are robustly associated with the exposure (relevance assumption [26]), are not
linked with any confounders (independence assumption [26]), and influence the outcome
solely through the exposure (exclusion restriction assumption [26]). Consequently, MR has
the capability to minimize confounding and reduce bias from reverse causation, offering
insights comparable to those obtained from randomized controlled trials [23–25]. 2SMR is
a variation in the MR approach [27,28]. Unlike traditional MR studies, which often require
individual-level data on both genetic variants related to the exposure and outcome traits
from the same participant dataset, 2SMR can utilize summary-level data from separate
genome-wide association studies (GWAS) for both the exposure and the outcome [27,28].

To further explore the underlying mechanisms of PaCa and to elevate awareness of
prevention education in public health strategies, understanding the causal relationship
between T2DM and PaCa is important. The consistency regarding whether the genetic
liability to T2DM is causally related to PaCa remains absent in previous studies [19–22].
Consequently, we conducted a 2SMR study to comprehensively utilize the most up-to-date
GWAS summary data and two large population-based datasets, including FinnGen and
UK Biobank, to investigate the associations of genetic liability to T2DM with PaCa.

2. Results
2.1. Selection of Instrumental Variables

According to the IV selection criteria mentioned in Section 4.2, 414, 423, and 423 SNPs
were chosen from the FinnGen, UKBB, and combined FinnGen and UKBB GWAS summary
data in the comprehensive model analysis. The details of all selected IVs are provided in
Supplementary Tables S1–S3. In this study, the proportion of variance explained (PVE) or
R2 by IVs used in the FinnGen, UKBB, and combined FinnGen and UKBB studies were
39.16%, 40.18%, and 40.31%, respectively. The F-statistics for these IVs were 933.97, 958.92,
and 961.29. Two SNPs near the FTO gene (rs78020297 and rs1421085) were removed in the
restricted model analysis.
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2.2. MR Analysis

In our 2SMR analysis, the inverse variance weighted (IVW) method was designated as
the principal method due to its higher statistical efficacy. Additionally, four robust methods,
including the Mendelian randomization-Egger (MR-Egger), the weighted median (WM),
the weighted mode (WMO), and the Mendelian Randomization Pleiotropy RESidual Sum
and Outlier (MR-PRESSO), were employed as complementary approaches to evaluate the
genetic causal associations between T2DM and PaCa risk.

In the FinnGen dataset, a causal association between T2DM and PaCa risk was indi-
cated by both the IVW (p = 0.033) and MR-PRESSO (p = 0.029) methods (Table 1). For a
one-unit increase in the log-transformed odds of T2DM, the OR of PaCa risk was estimated
at 1.102 (95% CI = 1.008–1.204) by the IVW method and 1.097 (95% CI = 1.010–1.191) by the
MR-PRESSO method, respectively (Table 1). The MR-PRESSO global test identified two out-
lier SNPs; consequently, these outliers were corrected in our MR-PRESSO analysis. After
eliminating two SNPs near the FTO gene in the restricted model, the causal link between
T2DM and PaCa risk remained significant in both the IVW (p = 0.046) and MR-PRESSO
(p = 0.031) methods (Table 1) in the FinnGen dataset. With each unit increment in the
log-transformed odds of T2DM, the OR for PaCa risk was 1.095 (95% CI = 1.001–1.198) and
1.094 (95% CI = 1.008–1.187) using the IVW method and MR-PRESSO method, respectively.
Five outlier SNPs were detected in the MR-PRESSO global test; therefore, these outliers
were removed in our MR-PRESSO analysis.

Within the UKBB dataset, the WM (p = 0.022), IVW (p = 0.001), and MR-PRESSO
(p = 0.005) methods revealed a causal relationship between T2DM and PaCa risk (Table 1).
These methods indicated a 23.7% increase (OR = 1.237, 95% CI = 1.031–1.482) for WM,
an 18.5% increase in the odds of PaCa risk (OR = 1.185, 95% CI = 1.068–1.315) for IVW,
and a 16.2% increase (OR = 1.162, 95% CI = 1.048–1.288) for MR-PRESSO, per one-unit
increase in the log-transformed odds of T2DM (Table 1). After eliminating two SNPs near
the FTO gene in the restricted model, the WM (p = 0.041), IVW (p = 0.002), and MR-PRESSO
(p = 0.007) methods persistently demonstrated a causal link between T2DM and PaCa risk,
as shown in Table 1. A one-unit rise in the log-transformed odds of T2DM correlated with
a 23% increase (OR = 1.23, 95% CI = 1.008–1.501) in the WM method, an 18% elevation in
PaCa risk odds (OR = 1.179, 95% CI = 1.061–1.310) in the IVW method, and a 15.6% rise
(OR = 1.156, 95% CI = 1.042–1.284) in the MR-PRESSO method (Table 1).

For the combined FinnGen and UKBB dataset, the causal effect of T2DM on PaCa risk
was demonstrated significantly using the WM (p = 0.017), IVW (p = 0.001), and MR-PRESSO
(p < 0.001) approaches (Table 1). With a one-unit increase in the log-transformed odds
of T2DM, the OR of PaCa risk was elevated by 15.1% (OR = 1.151, 95% CI = 1.025–1.293)
in the WM approach, 13.1% (OR = 1.131, 95% CI = 1.052–1.216) in the IVW method,
and 12.7% (OR = 1.127, 95% CI = 1.056–1.204) in the MR-PRESSO method (Table 1).
Two outlier SNPs were detected in the MR-PRESSO global test; therefore, these outliers
were removed in our MR-PRESSO analysis. After the two SNPs were removed in the
restricted model, the IVW (p = 0.002) and MR-PRESSO (p = 0.001) methods still signif-
icantly highlighted the causal effect of T2DM on PaCa risk, as shown in Table 1. For
each unit increase in the log-transformed odds of T2DM, there was a 12.5% increase in
PaCa risk odds (OR = 1.125, 95% CI = 1.046–1.211) according to the IVW method, and a
12.4% rise (OR = 1.124, 95% CI = 1.053–1.201) using the MR-PRESSO method. The MR-
PRESSO global test detected five outlier SNPs; hence, these outliers were eliminated in our
MR-PRESSO analysis.
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Table 1. The two-sample Mendelian randomization (MR) analysis results from the comprehensive
and restricted models.

Two-Sample Mendelian Randomization Analysis in the Comprehensive Model
PaCa Outcome Source MR Method nsnp OR p-Value Forest Plot 95% CI 
FinnGen

MR-Egger 414 1.072 0.461 0.891–1.291
WM 414 1.100 0.230 0.942–1.285
IVW 414 1.102 0.033 1.008–1.204
WMO 414 1.135 0.274 0.905–1.425
MR-PRESSO after outlier-corrected 412 1.097 0.029 1.010–1.191

UKBB
MR-Egger 423 1.079 0.498 0.866–1.345
WM 423 1.237 0.022 1.031–1.482
IVW 423 1.185 0.001 1.068–1.315
WMO 423 1.241 0.114 0.950–1.620
MR-PRESSO 423 1.162 0.005 1.048–1.288

FinnGen+UKBB
MR-Egger 423 1.074 0.359 0.922–1.250
WM 423 1.151 0.017 1.025–1.293
IVW 423 1.131 0.001 1.052–1.216
WMO 423 1.108 0.202 0.947–1.298
MR-PRESSO after outlier-corrected 421 1.127 <0.001 1.056–1.204

Two-sample Mendelian randomization analysis in the restricted model
PaCa outcome source MR Method nsnp OR p-val Forest plot 95% CI
FinnGen

MR-Egger 412 1.053 0.593 0.872–1.270
WM 412 1.100 0.242 0.938–1.290
IVW 412 1.095 0.046 1.001–1.198
WMO 412 1.112 0.317 0.903–1.369
MR-PRESSO after outlier-corrected 407 1.094 0.031 1.008–1.187

UKBB
MR-Egger 421 1.064 0.589 0.850–1.330
WM 421 1.230 0.041 1.008–1.501
IVW 421 1.179 0.002 1.061–1.310
WMO 421 1.213 0.163 0.925–1.589
MR- PRESSO 421 1.156 0.007 1.042–1.284

FinnGen+UKBB
MR-Egger 421 1.056 0.491 0.905–1.232
WM 421 1.122 0.063 0.994–1.266
IVW 421 1.125 0.002 1.046–1.211
WMO 421 1.108 0.183 0.953–1.287
MR-PRESSO after outlier-corrected 416 1.124 0.001 1.053–1.201

PaCa: pancreatic cancer; MR: Mendelian randomization; nsnp: number of single nucleotide polymorphisms;
OR: odds ratio; 95% CI: 95% confidence interval; UKBB: UK Biobank; MR-Egger: Mendelian randomization-Egger;
WM: weighted median; IVW: inverse variance weighted; WMO: weighted mode; MR-PRESSO: Mendelian Ran-
domization Pleiotropy RESidual Sum and Outlier. A bold font indicates statistical significance—a p-value < 0.05.
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In the scatter plot (Figure 1), the direction of the causal effect of T2DM on PaCa risk
was consistently depicted across all MR analysis approaches in the FinnGen, UKBB, and
combined FinnGen and UKBB datasets, both in the comprehensive and restricted models.
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cording to the leave-one-out analysis, the sequential removal of each IV did not impact 
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the MR Steiger directionality test, the variance explained in the outcome is less than that 
in the exposure, confirming the correct causal direction to be true (Supplementary Table S11). 

Figure 1. Scatter plots for two-sample Mendelian randomization analyses of the causal effect of
type 2 diabetes mellitus on pancreatic cancer. (A) Comprehensive model of the FinnGen dataset.
(B) Comprehensive model of the UK Biobank dataset. (C) Comprehensive model of the FinnGen
and UK Biobank combined dataset. (D) Restricted model of the FinnGen dataset. (E) Restricted
model of the UK Biobank dataset. (F) Restricted model of the FinnGen and UK Biobank com-
bined dataset. MR: Mendelian randomization; SNP: single nucleotide polymorphism; IVW: in-
verse variance weighted; MR-Egger: Mendelian randomization-Egger; WM: weighted median;
WMO: weighted mode.

2.3. Sensitivity Analysis

The MR-Egger regression intercept analysis revealed no horizontal pleiotropy in the
FinnGen, UKBB, and combined FinnGen and UKBB datasets, both in the comprehensive
and restricted models (Supplementary Table S4). Furthermore, in our funnel plot visu-
alization (Figure 2), general symmetry suggests the absence of horizontal pleiotropy. In
Cochran’s Q test for IVW, heterogeneity (p < 0.05) was observed in the analyses of the
FinnGen and the combined FinnGen and UKBB datasets (Supplementary Table S4). Ac-
cording to the leave-one-out analysis, the sequential removal of each IV did not impact the
causal relationship between T2DM and PaCa, nor did it affect the OR. Furthermore, the
leave-one-out test did not reveal any potential outliers or evidence of horizontal pleiotropy.
The details of the leave-one-out test are listed in Supplementary Tables S5–S10. In the MR
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Steiger directionality test, the variance explained in the outcome is less than that in the
exposure, confirming the correct causal direction to be true (Supplementary Table S11).
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Figure 2. Funnel plot for two-sample Mendelian randomization analyses of the causal effect of
type 2 diabetes mellitus on pancreatic cancer. (A) Comprehensive model of the FinnGen dataset.
(B) Comprehensive model of the UK Biobank dataset. (C) Comprehensive model of the FinnGen and
UK Biobank combined dataset. (D) Restricted model of the FinnGen dataset. (E) Restricted model of
the UK Biobank dataset. (F) Restricted model of the FinnGen and UK Biobank combined dataset. MR:
Mendelian randomization; βIV: beta coefficient of each instrumental variable, which indicates the
estimated effect of each SNP on the exposure variable; 1/SEIV: the inverse of the standard error of
the βIV estimation, which indicates the precision or uncertainty of these estimates.

2.4. Multivariable Mendelian Randomization (MR)

In the multivariable MR analysis, the observed association between T2DM and PaCa
remained significant after adjusting for body mass index (BMI) and waist circumference
(OR = 1.485, p < 0.001, 95%CI = 1.228–1.796) (Table 2).
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Table 2. The multivariable Mendelian randomization analysis for type 2 diabetes mellitus adjusted
by body mass index and waist circumference.

Multivariable MR
Exposure nsnp OR p-Value 95% Lower CI 95% Upper CI

BMI 43 2.753 0.395 0.267 28.365
T2DM 43 1.485 <0.001 1.228 1.796
Waist circumference 43 0.190 0.266 0.010 3.545

MR: Mendelian randomization; nsnp: number of single nucleotide polymorphisms; OR: odds ratio; CI: confidence
interval; BMI: body mass index; T2DM: type 2 diabetes mellitus. A bold font indicates statistical significance—a
p-value < 0.05.

3. Discussion

To explore the causal relationship between T2DM and PaCa, we performed a 2SMR
analysis using two large T2DM genome-wide association meta-analyses [29,30] and PaCa
cases from the FinnGen and UK Biobank datasets. The IVW method, along with four other
robust methods, were utilized in the MR analysis. Sensitivity analyses, the MR Steiger
directionality test, and multivariable MR were conducted to strengthen our results. Our
findings revealed that genetic liability to T2DM was associated with a higher PaCa risk.
Our 2SMR results provided evidence of causal associations between T2DM and PaCa.

The previous two MR studies [21,22] did not observe a causal relationship between
genetic liability to T2DM and the risk of PaCa. In the study by Carreras-Torres et al. [21],
44 IVs for T2DM were identified from the previous genetic fine-mapping studies [31,32].
PaCa cases were obtained from the Pancreatic Cancer Cohort Consortium (PanScan) and the
Pancreatic Cancer Case-Control Consortium (PanC4). The limited number of IVs, possibly
due to the reliance on non-current T2DM GWAS meta-analyses, may have led to reduced
statistical power, making it difficult to detect a genuine causal effect. In another study
by Chen et al. [22], 231 SNPs associated with T2DM were selected from a genome-wide
association meta-analysis [30], with PaCa cases identified from FinnGen, UK Biobank, and
PanScan. Despite observing no significant association between genetic liability to T2DM
and PaCa in their primary IVW approach, a multivariable MR analysis adjusted for BMI
showed that T2DM was associated with a higher OR of 1.19 (95% CI = 1.01–1.40) in the
UK Biobank dataset. Given these inconsistent results, further examination is required to
investigate whether genetic liability to T2DM is linked to PaCa.

Our results align with two previous 2SMR studies [19,20], indicating a causal associa-
tion between T2DM and PaCa. In the 2SMR study [19], 83 IVs were selected from the 2018
GWAS meta-analysis [33]. The PaCa cases were obtained from the PanScan and the PanC4.
The IVW approach revealed a borderline association between T2DM and PaCa with an OR
of 1.09 (95% CI = 1.00–1.19, p-value = 0.05) in their restricted MR model. The other 2SMR
study [20] used 295 IVs from the DIAGRAM [29] consortium and excluded SNPs in or near
the FTO gene region. PaCa cases were identified within the UK Biobank. Their results
suggested a causal association between genetic liability to T2DM and PaCa, with an OR
of 1.12 (95% CI = 1.03–1.21) using IVW methods. An umbrella review [34] that included
only three studies [19–21] also indicated potential causal associations between genetically
predicted T2DM and PaCa. However, the potential for overstated strength and pleiotropic
bias in the studies [19,20] still needs to be addressed. For instance, the selected IVs in the
prior study [19] included SNPs related to the FTO gene, and linkage disequilibrium was
not accounted for during the IV selection process in the latter study [20]. In our study,
our results are likely to be more robust and well-substantiated by circumventing potential
overestimation and pleiotropic effects during the IV selection process.

Our findings from the 2SMR study strengthen the evidence for a causal association be-
tween T2DM and PaCa and further support previous observational studies [13,14,17,18,35].
In our two previous UK Biobank cohort studies [13,14], the OR of PaCa was 2.08 and
2.57 in participants with a history of DM compared to controls without a history of DM.
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Additionally, both new-onset and long-term DM have been reported to approximately
double the risk of PaCa [17,18,35]. An umbrella review [34] also revealed a pooled OR of
roughly 2 for PaCa risk among patients with T2DM compared to controls.

The pathophysiological mechanisms linking T2DM to PaCa are complex and multi-
faceted, encompassing insulin resistance and hyperinsulinemia [16,36–38], persistent hy-
perglycemia [39–42], chronic inflammation [16,43,44], alterations in gut microbiota [45–49],
and dysregulated adipokine secretion [16,50–54]. Insulin resistance in T2DM leads to
hyperinsulinemia, potentially promoting tumor growth directly by acting on insulin re-
ceptors or indirectly by increasing levels of insulin-like growth factor-1 (IGF-1), both of
which can stimulate cell proliferation and inhibit apoptosis to enhance cell proliferation
pathways [36–38]. Additionally, hyperglycemia provides an energy-rich environment for
cancer cells, inducing oxidative stress and leading to DNA damage [39–42]. Concurrently,
chronic inflammation associated with T2DM creates a pro-inflammatory environment con-
ducive to pancreatic carcinogenesis [43,44]. Some inflammatory mediators or cytokines,
such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), can promote tumor
growth and metastasis [43,44]. Changes in the gut microbiota related to T2DM may influ-
ence systemic inflammation and metabolic profiles, which may affect cancer development
through alterations in bile acid metabolism and the release of metabolites that may have
carcinogenic properties [45–49]. Moreover, altered adipokine secretion, characterized by
increased leptin and decreased adiponectin levels due to adiposity in T2DM, may facilitate
cancer progression through pro-inflammatory and anti-apoptotic effects [50–54]. These
interconnected pathways underscore the complex relationship between T2DM and PaCa.

On the other hand, DM may also be a consequence of PaCa [16,55]. For instance, type
3c diabetes (T3cDM), defined as diabetes secondary to pancreatic exocrine disease [16,55],
includes cases resulting from PaCa. Therefore, examining the potential for reverse causa-
tion is also crucial. In this study, the results of the MR Steiger directionality test verified
the correct direction of causality between T2DM and PaCa, thereby enhancing confidence
in our causal inference result. Obesity has been widely recognized as a significant risk
factor for T2DM [56,57]. To mitigate the confounding bias, SNPs in the FTO gene, which
are strongly associated with obesity [58], were excluded from the restricted model. Addi-
tionally, multivariable MR analyses were conducted with adjustments for BMI and waist
circumference. The results from the restricted model 2SMR and multivariable MR robustly
support our causal inference, demonstrating that it is not influenced by the confounding
factor of obesity.

Recognizing the causal link between T2DM and PaCa can raise awareness about
targeting T2DM for pancreatic cancer prevention. Understanding these pathophysiologi-
cal mechanisms could potentially pave the way for developing targeted prevention and
treatment strategies.

This study possesses several strengths. Our 2SMR study design effectively mitigates
biases due to confounding, pleiotropy, and reverse causality. Firstly, the IVs for T2DM were
obtained from two large European GWAS meta-analyses, enabling us to identify the latest
and most comprehensive SNPs related to T2DM and ensuring sufficient statistical power.
Additionally, focusing on the European population helped avoid population structure
bias in our results. Secondly, the total and average instrument strengths in this study
were assessed using the PVE and the F-statistic, which diminished the bias from weak
instruments. Furthermore, power calculations for our 2SMR study indicated a robust power
estimation. Thirdly, our IVs selection process was high quality and stringent, ensuring all
chosen SNPs met the genome-wide significance threshold, were independent of LD, had
harmonized strand orientation, and did not include any ambiguous palindromic SNPs.
Fourthly, in addition to the main IVW approach, we employed WM, WMO, MR-Egger,
and MR-PRESSO as robust methods to minimize potential biases, including pleiotropy,
weak instrument bias, and other sources of analytical distortion, thereby enhancing the
reliability and validity of the causal inferences drawn from our study. Fifthly, our sensitivity
analyses, including the MR-Egger regression intercept test, funnel plots, and leave-one-out
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test, all confirmed the absence of significant horizontal pleiotropy. Sixthly, the MR Steiger
directionality test was performed to ensure the causality direction from T2DM to PaCa
was correctly identified. Last but not least, to mitigate the potential pleiotropy associated
with obesity, SNPs near the FTO gene were excluded from our restricted model. Moreover,
multivariable MR analyses were conducted, confirming the causal association between
T2DM and PaCa by adjusting for BMI and waist circumference.

Nonetheless, some limitations still need to be considered in this study. Firstly, both
the IVs and the outcome data were obtained from European population-based datasets.
Hence, this limits our findings from being generalized to other populations. Secondly,
heterogeneity among IVs was detected in some FinnGen analyses using Cochran’s Q test
for the IVW method. However, the MR-Egger test and other sensitivity analyses did
not indicate pleiotropy. In the MR-PRESSO test, causal inference remained significant
even after correcting for outliers. Additionally, in the comprehensive model, the WM
approach also revealed a significant effect in the combined FinnGen and UK Biobank
analysis. Therefore, the likelihood of bias in the results due to pleiotropic effects or invalid
IVs is reduced. Lastly, although disease diagnoses are defined by ICD codes and electronic
healthcare records, there still exists the possibility of detection bias among T2DM and PaCa
cases. Nevertheless, our results are derived from two large GWAS meta-analyses and two
extensive population-based datasets, which may overcome individual errors or biases in
disease identification.

4. Materials and Methods
4.1. Study Design

The 2SMR study was used to investigate the causal relationship between T2DM
and PaCa. We utilized publicly available summary data from genome-wide association
studies (GWAS), including the FinnGen, the UKBB, and two genome-wide association meta-
analyses [29,30]. Our research adhered to the three critical assumptions of MR [59]: (1) a
strong association between the genetic instruments and T2DM; (2) no association of these in-
struments with confounding variables; and (3) the exclusive influence of these instruments
on PaCa through T2DM.

4.2. Genetic Instrument Selection

The selection of IVs for T2DM in this study was based on two genome-wide association
meta-analyses [29,30]. The first, known as the DIAGRAM consortium by Mahajan et al. [29],
encompassed 74,124 T2DM cases and 824,006 controls of European descent. Second, a
genome-wide association meta-analysis by Vujkovic et al. [30] involved 228,499 T2DM
cases and 1,178,783 controls of multi-ancestry. The following criteria were applied for
the selection of IVs: (1) Initially, we identified single nucleotide polymorphisms (SNPs)
from the genome-wide association meta-analyses conducted by Mahajan et al. [29] and
Vujkovic et al. [30]. SNPs identified as replication variants were selected for possessing
a smaller p-value (n = 899). (2) SNPs that met the genome-wide statistical significance
threshold (p < 5 × 10−8) were selected as instrumental variables for T2DM (n = 589). (3) The
clumping threshold for linkage disequilibrium (LD) was set at r2 = 0.2 within a 250 kb
window [60], using the 1000 Genomes European Panel as the reference. Based on this
threshold, 436 SNPs were confirmed as independent. (4) A total of 430 SNPs, 434 SNPs,
and 435 SNPs were available in the FinnGen, UKBB, and a combination of FinnGen and
UKBB datasets, respectively. (5) To mitigate issues related to the orientation of strands,
we flipped the reverse strand to the forward strand, harmonized the effect of SNPs on
exposure and outcome, and dealt with the palindromic SNPs. Ambiguous palindromic
SNPs that exhibited a minor allele frequency (MAF) greater than 0.42 were discarded [61].
Finally, 414 SNPs in the FinnGen dataset, 423 SNPs in the UKBB dataset, and 423 SNPs in a
combined FinnGen and UKBB dataset were selected for comprehensive model analysis.
(6) Genetic variants near the FTO gene were reported to be associated with BMI [58].
Therefore, to mitigate potential pleiotropic effects, SNPs in the vicinity of the FTO gene
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were excluded from our restricted model analysis (n = 412 (FinnGen), n = 421 (UKBB), and
n = 421 (FinnGen + UKBB)). The flowchart of the IV selection is shown in Figure 3.
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4.3. Outcome Data Source

The GWAS summary data for PaCa used in our study were sourced from the R10 re-
lease of the FinnGen Consortium [62,63], including both the FinnGen and UK Biobank GWAS
summary data. For detailed information on the web browser, please refer to: https://public-
metaresults-fg-ukbb.finngen.fi/ (accessed on 5 January 2024). In the search browser [63], the
phenotype “Malignant neoplasm of pancreas (excluding all other cancers in controls)” was
used, including 1626 cases and 314,193 controls in FinnGen and 936 cases and 400,294 con-
trols in the UK Biobank. In the FinnGen dataset, PaCa cases were identified using codes
from ICD-8, ICD-9, and ICD-10, as well as surgery codes and medication purchase codes. In
the UK Biobank, PaCa cases were diagnosed using codes from ICD-9 and ICD-10, surgery
records, and self-reported information.

4.4. The Strength of the Selection of Instrumental Variables and Power Calculations

To avoid bias from weak instruments in this study, we adopted the proportion of
variance explained (PVE) known as R2 for assessing total strength [64] and the F-statistic

https://public-metaresults-fg-ukbb.finngen.fi/
https://public-metaresults-fg-ukbb.finngen.fi/
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for measuring average instrument strength [64]. The PVE in the exposure is explained
by the selected genetic variants. Generally, a higher PVE is preferable, as it significantly
enhances the effectiveness of an MR analysis [64]. The F-statistic was proposed to assess
IV strength [65,66]. A commonly used cutoff value is 10 [65,66]; an F-statistic less than
10 indicates weak instruments. The formulas we adopted for the PVE [67] and the F-
statistic [67,68] are as follows:

PVE = 2 × EAF × (1 − EAF)× β2 (1)

F-statistic =
PVE × (N − K − 1)
(1 − PVE)× (K)

(2)

where β denotes the beta coefficient for the exposure of the SNP according to the GWAS
summary data, EAF represents the effect allele frequency of the SNP, N refers to the total
number of samples, and K is the number of IVs.

In this study, the PVE of 436 SNPs after LD clumping was 41.4%, and the F-statistic
was 986.35. Both the total and average instrument strengths are considered good.

The power calculation for two-sample MR analysis was conducted using an online
tool (https://shiny.cnsgenomics.com/mRnd/ (accessed on 5 January 2024)) [69,70], and
the outcomes are presented in Supplementary Table S12. The variance explained by the
genetic instruments associated with T2DM adopted in FinnGen, UKBB, and combined
FinnGen and UKBB studies was 39.16%, 40.18%, and 40.31%, respectively.

4.5. Two-Sample Mendelian Randomization (2SMR) Analysis

Numerous MR methods were applied in our 2SMR analysis, including IVW [71] and
four other robust methods: the MR-Egger method [72], the WM [73] method, the WMO
method [74], and the MR-PRESSO method [75]. The most widely used method is the IVW
method, which aggregates Wald estimates of each SNP to derive a comprehensive overall
effect estimate [71]. This approach hinges on a crucial prerequisite: the IVs employed
in the analysis must be valid and satisfy the three assumptions of MR [71]. Due to its
efficiency with valid IVs, the IVW method is often recommended as the primary method for
analysis [61]. Nonetheless, to detect potential pleiotropic effects, other robust MR methods
should also be performed [61].

The MR-Egger method calculates the causal effect by using the average pleiotropic
effect as the intercept [61]. However, its accuracy relies on the indirect effects being
unrelated to the exposure, a concept referred to as the Instrument Strength Independent of
Direct Effect (InSIDE) [72]. In the WM method, it is assumed that a majority of the variants
used are valid instruments (known as the majority valid assumption) [73]. The effect
estimate of each genetic variant on the outcome is weighted according to its association
with the exposure. The median is then determined. The advantage of the WM method
lies in its ability to handle invalid IVs and outliers [61]. Regarding the WMO method,
it operates under the assumption that more variants estimate the true causal effect than
any other quantity (known as the plurality valid assumption) [61]. Similar to the WM
method, weights are assigned to each variant. However, the WMO method utilizes the
mode rather than the median. The benefit of the WMO method is its ability to withstand
invalid IVs and outliers [74]. MR-PRESSO builds upon the IVW method and includes a
global test, an outlier test, and a distortion test [75]. The MR-PRESSO global test is capable
of identifying horizontal pleiotropy [61]. If horizontal pleiotropy is detected, it is corrected
through outlier removal. Additionally, the distortion test is used to assess whether there
are notable disparities in effects before and after the outlier correction process [75].

Hence, in our study, the IVW method was designated as the primary approach,
while the other four robust methods were employed as complementary methods. We first
performed MR analysis with all the above-selected IVs. If the MR-PRESSO global test
identified horizontal pleiotropy, the outliers would be eliminated, and the MR-PRESSO
analysis would be repeated. In addition, sensitivity analyses were performed. The MR-

https://shiny.cnsgenomics.com/mRnd/
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Egger regression intercept analysis was conducted to examine horizontal pleiotropy, with
a p-value < 0.05 considered as evidence of horizontal pleiotropy. Funnel plots were also
created for pleiotropy direction detection, where an asymmetrical or skewed pattern may
indicate horizontal pleiotropy is present [72]. Furthermore, heterogeneity was assessed
through Cochrane’s Q test, where a p-value < 0.05 would be considered an indication of
heterogeneity. Moreover, a leave-one-out test was executed, systematically removing each
SNP to mitigate the potential heterogeneity and consolidate the stability of the estimated
causal effect in our study. Ultimately, the MR Steiger directionality test [76] was employed
to ascertain the direction of causality by assessing whether the variance explained in the
outcome is less than that in the exposure. Our 2SMR analysis was in accordance with the
recommendations provided in the STROBE-MR statement [77]. Detailed information is
listed in Supplementary Table S13. The flowchart of the 2SMR analysis process is shown in
Figure 4.
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4.6. Multivariable Mendelian Randomization (MR)

To mitigate the effects of pleiotropy and reduce bias due to confounding from obesity,
we also conducted multivariable Mendelian randomization (MR). Multivariable MR [78]
can assess the influence of multiple exposures on the same outcome. Thus, we utilized
multivariable MR to explore the causal relationship between T2DM and PaCa by adjusting
for BMI and waist circumference. Initially, the 436 T2DM IVs through LD clumping were
searched on the PhenoScanner [79,80] website. Of these, 45 SNPs were found to have
overlapping traits with “Body Mass Index” and “Waist Circumference”. After harmonizing
the SNPs, 43 SNPs were ultimately selected as IVs for our multivariable MR analysis.

4.7. Statistical Analysis

A significance level below 0.05 was considered statistically significant, with statisti-
cal significance determined by 95% confidence intervals (95% CI) not including one. In
this study, the statistical analyses were conducted using R software [81] (version 4.3.2,
R Development Core Team, Vienna, Austria). The TwoSampleMR R package [27] and
MR-PRESSO R package [82] were employed for all 2SMR analyses, utilizing functions such
as harmonise_data, mr, mr_presso, mr_heterogeneity, mr_pleiotropy_test, mr_singlesnp,
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mr_leaveoneout, mr_scatter_plot, mr_forest_plot, mr_funnel_plot, mv_multiple, and direc-
tionality_test [83].

4.8. Ethics

All data analyzed in this study were obtained from publicly available GWAS summary
datasets. The original GWAS had received approval from the relevant ethics committee.
This study did not collect any new data; hence, further ethical approval was not necessary.

5. Conclusions

Our findings indicate that a causal relationship between T2DM and PaCa has been
established in the 2SMR and multivariable MR studies. This discovery should therefore
be used to enhance awareness and the implementation of early prevention and detection
strategies for PaCa. These strategies include managing diabetes as a preventive measure
against PaCa and emphasizing the importance of controlling blood sugar levels and other
metabolic risk factors. Additionally, increasing public awareness of the causal link between
T2DM and PaCa could underscore the significance of lifestyle interventions, such as diet
habits, physical activity, and weight management, not only for diabetes management but
also for reducing the risk of PaCa. Furthermore, understanding the causal pathways could
lead to discovering biomarkers and developing pharmacological strategies to improve
treatment outcomes and enable more personalized treatment plans. Therefore, further
studies are necessary to elucidate the precise pathophysiological mechanisms involved.
Ultimately, all these efforts aim to reduce the incidence and mortality associated with PaCa,
highlighting the role of T2DM in the development of PaCa and the potential approaches to
preventing this disease.
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