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Abstract: Tumors of the head and neck, more specifically the squamous cell carcinoma, often show
upregulation of the Hedgehog signaling pathway. However, almost nothing is known about its role
in the sinonasal adenocarcinoma, either in intestinal or non-intestinal subtypes. In this work, we have
analyzed immunohistochemical staining of six Hedgehog pathway proteins, sonic Hedgehog (SHH),
Indian Hedgehog (IHH), Patched1 (PTCH1), Gli family zinc finger 1 (GLI1), Gli family zinc finger 2
(GLI2), and Gli family zinc finger 3 (GLI3), on 21 samples of sinonasal adenocarcinoma and compared
them with six colon adenocarcinoma and three salivary gland tumors, as well as with matching
healthy tissue, where available. We have detected GLI2 and PTCH1 in the majority of samples
and also GLI1 in a subset of samples, while GLI3 and the ligands SHH and IHH were generally
not detected. PTCH1 pattern of staining shows an interesting pattern, where healthy samples are
mostly positive in the stromal compartment, while the signal shifts to the tumor compartment in
tumors. This, taken together with a stronger signal of GLI2 in tumors compared to non-tumor tissues,
suggests that the Hedgehog pathway is indeed activated in sinonasal adenocarcinoma. As Hedgehog
pathway inhibitors are being tested in combination with other therapies for head and neck squamous
cell carcinoma, this could provide a therapeutic option for patients with sinonasal adenocarcinoma
as well.

Keywords: hedgehog; sinonasal adenocarcinoma; tumor–stroma interaction

1. Introduction

The Hedgehog signaling pathway regulates cell proliferation, differentiation, and
tissue polarity during embryonic development. The gradient of Hedgehog ligands is
involved in these processes at both short- and long distances [1]. Hedgehog signaling
regulates the development of various tissues in the craniofacial region, including teeth,
lips, palate, and salivary glands [2–4], and its dysregulation during development results
in craniofacial deformations, cleft lip and palate, holoprosencephaly, cyclopia, and tooth
dysplasia [5]. It is also crucial for the development of epithelial tissues, such as the
epidermis, touch domes, hair follicles, sebaceous glands, mammary glands, teeth, nails,
and gastric and intestinal epithelium [6]. In adult tissues, its activity is limited to somatic
stem cell maintenance and tissue repair [7] and is often upregulated in tumors, where
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it provides the same signals as during embryogenesis, guiding cell proliferation and
differentiation [8].

In humans, three ligands Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Desert
Hedgehog (DHH) act as pathway activation signals in a tissue-specific way. SHH is the most
widespread ligand, while DHH is specific for the reproductive system and IHH for bone,
cartilage, and digestive tract [9]. The ligands are released from the producing cells, and they
can stimulate either the cells that produced them (autocrine activation), the neighboring
cells (paracrine activation), or remote tissues if they are distributed long distances by lipid
vesicles or as a freely diffusible molecule [10]. This is crucial for the maintenance of the
tumor microenvironment, as tumor–stroma interactions can affect tumor cell survival and
response/resistance to therapy. The reception of the pathway is regulated by the PTCH1
protein, which is the main receptor for all three Hedgehog proteins. PTCH1 is a tumor
suppressor, it keeps control of the Hedgehog pathway through the autoregulative loop,
as it is the transcriptional target of the pathway itself. As long as the ligand is present,
PTCH1 will translocate from the primary cilia and enable translocation of SMO to the
ciliary tip, which will enable activation of GLI transcription factors (GLI1, GLI2, and GLI3).
However, when the ligand is not present, PTCH1 will stay localized in the cilia, preventing
the accumulation of SMO and therefore preventing the activation of GLI transcription
factors [11]. The presence of PTCH1 on the cell membrane signifies that the cell is in a ready
state to receive the Hedgehog ligand(s).

The Hedgehog pathway has been found upregulated in head and neck tumors in both
in vitro and in vivo models. We and others have identified overexpression of Hedgehog
pathway components in head and neck squamous cell carcinoma (HNSCC) [12,13]. Ac-
tivation of the pathway in HNSCC has been associated with invasion into the bone [14],
lymph node invasion [15], radioresistance [16], and worse overall survival [17]. Squamous
cell carcinomas are the most frequent tumor types in the upper aerodigestive tract, but
other neoplasms can also be found, such as salivary gland-type tumors and sinonasal
adenocarcinoma [18]. Sinonasal adenocarcinomas most frequently occur in the ethmoidal
sinus and nasal cavum. According to the recent WHO Classification of Tumors, sinonasal
adenocarcinomas are considered as tumors of epithelial origin and are classified into two
categories: intestinal type adenocarcinomas (ITACs) and non-intestinal type adenocarci-
nomas (non-ITACs). ITAC is the second most common type of sinonasal adenocarcinoma
(after squamous cell carcinoma), which usually has an aggressive clinical presentation,
invading the bone and surrounding tissues: orbit, anterior and middle cranial fossa, etc.
Non-ITACs are mostly of low-grade malignant potential, without bone destruction [19].
It is considered that ITAC is developed through the process of intestinal metaplasia of
sinonasal olfactory epithelium. ITAC histologically resembles colonic adenocarcinoma and
can occur in five histological subtypes: colonic, papillary, solid, mucinous, and mixed. Its
development is mostly connected with hard-wood dust exposure and leather manufactur-
ing. The incidence of ITAC among these individuals is 500–1000 times higher compared
to the non-exposed population [20,21]. Chronic exposure and irritation by organic dust
lead to chronic inflammation, which can stimulate tumor initiation [22,23]. Sinonasal ITAC
and “true” intestinal adenocarcinoma share similar immunohistochemical profiles. In both,
expressions of CK20, CDX-2, vilin, and MUC2 are present. On the other hand, these mark-
ers are not expressed in non-ITACs. Contrary to colorectal carcinoma, KRAS and BRAF
mutations are rare in ITAC. Expression of EGFR protein is stronger in patients with ITAC
exposed to wood dust than in those exposed to leather dust. In the subgroup of patients
who were not exposed to organic dust, EGFR expression is absent [20,21]. Metastatic spread
of intestinal adenocarcinomas to the sinonasal tract is rare [24]. Surgery is the primary
method of treatment for these tumors. Data considering survival vary depending on the
type of treatment, design of study cohorts, and methodology of adverse events calculation.
In the study by Cantu et al., the 5-year and 10-year cause-specific mortality for ITACs was
reported as 44% and 53%, respectively [25]. A population-based study of 848 patients with
ITAC revealed a 5-year relative survival rate of 63 ± 2.1% [26]. A study of 169 endoscopi-



Int. J. Mol. Sci. 2024, 25, 4630 3 of 13

cally treated patients revealed a 5-year overall survival of 68.9% and event-free survival
of 63.3% [27]. A recent study of 535 patients, including those treated by radiotherapy and
chemotherapy, reports a 5-year overall survival of 52% [28].

In this study, we investigated the expression of six Hedgehog pathway proteins
(PTCH1, GLI1, GLI2, GLI3, SHH, and IHH) on 21 formalin-fixed paraffin-embedded (FFPE)
samples of sinonasal adenocarcinoma: 18 ITAC and 3 non-ITACs. Six colon adenocarci-
noma samples were used as controls to compare to the ITAC subtype. As the Hedgehog
signaling pathway is also implicated in intestinal development, homeostasis, and colon ade-
nocarcinoma, and IHH is the Hedgehog ligand relevant for the colon adenoma formation,
this ligand was included in addition to the most prevalent SHH [29–31]. Additionally, three
samples of salivary tumors were used as an outlier subtype of upper aerodigestive tract
tumors, where involvement of the Hedgehog pathway has also been demonstrated [32].
To our knowledge, this is the first study to identify Hedgehog pathway upregulation in
sinonasal adenocarcinoma.

2. Results

In total, 30 FFPE samples were stained for Hedgehog pathway proteins GLI1, GLI2,
GLI3, PTCH1, SHH, and IHH. Immunohistochemical staining showed positive staining of
these signaling pathway proteins in sinonasal adenocarcinoma (Figure 1, Table 1).

Overall, the most frequently detected protein was GLI2; it was found in 90% of all
tumors, and 66.7% of tumor stromal tissues on average. It was also frequently detected
in healthy tissues, 88.3% on average. In all cases, GLI2 staining was detected in the
cytoplasm, and some samples also showed some nuclear staining. All three GLI proteins
are transcription factors, which can be detected in the cytoplasm when the ligand is not
present and in the nucleus when the binding of the ligand activates the signaling cascade.

The second most frequently detected protein was PTCH1, with 53.3% positive tumor
samples and 76.6% positive tumor stroma. Interestingly, in the healthy tissues, the stro-
mal compartment was more often positive for PTCH1 than the epithelial compartment
(p = 0.0025), while this was not the case when comparing the tumor and the tumor stroma
compartment (Figure 2). For GLI2 scores, there is no difference between healthy tissues,
while for the tumor samples, there is an increase in scores in the tumor tissues compared to
the tumor stroma compartment (p = 0.0009). Interestingly, in the salivary tumors, the ex-
pression pattern of PTCH1 differs from the other analyzed tumor types: Healthy epithelium
shows PTCH1 positivity, whereas none of the other tissues showed this pattern.

Some positivity was also detected for GLI1 protein, 16.7% of tumor samples on av-
erage, while other examined proteins of the Hedgehog signaling pathway were mostly
undetectable (Table 1). GLI1 was not detected in the colon adenocarcinoma, while some
positive samples were detected for the ITAC and non-ITAC and the salivary tumor. The
distribution of IHC scores for GLI1, GLI2, and PTCH1 for all samples and all tumor types
is presented in Supplementary Figure S1.

The focus of further analyses was on the two most abundant proteins, GLI2 and PTCH1.
First, the staining scores of ITAC and non-ITAC subtypes of sinonasal adenocarcinoma
were compared. As the non-ITAC subtype is very rare compared to the intestinal subtype,
only three samples of this type were collected in our cohort. The staining score of GLI2
in the non-ITAC subtype seems to be higher than the ITAC subtype, even though this
may be the consequence of the small number of non-ITAC samples and needs to be
verified on a larger cohort (p = 0.0049) (Figure 3A). This does not seem to be the case for
PTCH1 staining (Figure 3C). There were also no differences between the two subtypes in
the stromal compartment for these two proteins (Figure 3B,D). Therefore, in our further
analysis, we have grouped the ITAC and non-ITAC subtypes into a single group of sinonasal
adenocarcinoma.
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Figure 1. Examples of IHC staining for GLI2 and PTCH1 proteins in ITAC (cytoplasmatic staining 
in tumor cells), non-ITAC (cytoplasmatic and nuclear staining in tumor cells), salivary (cytoplas-
matic staining in stromal cells), and colon (cytoplasmatic staining in tumor cells) adenocarcinomas. 
Scale bar = 50 µm. 

Figure 1. Examples of IHC staining for GLI2 and PTCH1 proteins in ITAC (cytoplasmatic staining
in tumor cells), non-ITAC (cytoplasmatic and nuclear staining in tumor cells), salivary (cytoplas-
matic staining in stromal cells), and colon (cytoplasmatic staining in tumor cells) adenocarcinomas.
Scale bar = 50 µm.
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Table 1. Summary table of the number and percentage of samples with positive staining for the
HH-GLI pathway proteins GLI1, GLI2, GLI3, PTCH1, SHH, and IHH in four tumor types (colon
adenocarcinoma, sinonasal adenocarcinoma of the intestinal type, sinonasal adenocarcinoma of the
non-intestinal type, and salivary adenocarcinoma) for four different regions (tumor mass, tumor
stroma, healthy epithelium, and healthy stroma).

Protein Tumor Regions Total n All Colon (n = 6) Intestinal (n = 18) Non-Intestinal
(n = 3) Salivary (n = 3)

GLI1 Tumor 30 5 (16.7%) 0 (0%) 4 (22.2%) 1 (33.3%) 0 (0%)
Tumor stroma 30 5 (16.7%) 0 (0%) 4 (22.2%) 1 (33.3%) 0 (0%)

GLI2 Tumor 30 27 (90%) 5 (83.3%) 16 (88.9%) 3 (100%) 3 (100%)

Tumor stroma 30 20
(66.7%) 4 (66.7%) 14 (77.8%) 1 (33.3%) 1 (33.3%)

GLI3 Tumor 30 1 (3.3%) 0 (0%) 1 (5.5%) 0 (0%) 0 (0%)
Tumor stroma 30 1 (3.3%) 0 (0%) 0 (0%) 0 (0%) 1 (33.3%)

PTCH1 Tumor 30 16
(53.3%) 4 (66.7%) 8 (44.4%) 2 (66.7%) 2 (66.7%)

Tumor stroma 30 23
(76.7%) 5 (83.3%) 14 (77.8%) 2 (66.7%) 2 (66.7%)

SHH Tumor 30 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Tumor stroma 30 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

IHH Tumor 30 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Tumor stroma 30 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Healthy Regions Total n All Colon (n = 6) Intestinal (n = 9) Non-Intestinal
(n = 1) Salivary (n = 2)

GLI1 Healthy
epithelium 18 1 (5.5%) 0 (0%) 0 (0%) 0 (0%) 1 (50%)

Healthy stroma 18 2 (11.4%) 0 (0%) 2 (22.2%) 0 (0%) 0 (0%)

GLI2 Healthy
epithelium 18 15

(83.3%) 6 (100%) 7 (77.8%) 1 (100%) 1 (50%)

Healthy stroma 18 15
(83.3%) 6 (100%) 7 (77.8%) 1 (100%) 1 (50%)

GLI3 Healthy
epithelium 18 1 (5.5%) 0 (0%) 0 (0%) 0 (0%) 1 (50%)

Healthy stroma 18 1 (5.5%) 0 (0%) 1 (11.1%) 0 (0%) 0 (0%)

PTCH1 Healthy
epithelium 18 6 (33.3%) 2 (33.3%) 2 (22.2%) 0 (0%) 2 (100%)

Healthy stroma 18 16
(88.9%) 5 (83.3%) 9 (100%) 1 (100%) 1 (50%)

SHH Healthy
epithelium 18 3 (16.7%) 0 (0%) 2 (22.2%) 0 (0%) 1 (50%)

Healthy stroma 18 3 (16.7%) 0 (0%) 2 (22.2%) 0 (0%) 1 (50%)

IHH Healthy
epithelium 18 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Healthy stroma 18 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

When analyzing staining scores of sinonasal adenocarcinoma with the two control
groups, the colon adenocarcinoma and the salivary adenocarcinoma, no differences in
distribution were found between the three tumor subtypes regarding PTCH1 and GLI2
staining scores (Supplementary Figure S1).

The involvement of the tumor stroma compartment in tumor biology was further
examined on the sinonasal adenocarcinoma subgroup, as other groups were used as referent
groups, and had too few samples for a meaningful statistical analysis. The trend seen in
all samples is again seen here in the sinonasal adenocarcinoma subgroup, with PTCH1
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expression significantly different between the healthy epithelium and healthy stroma
(p < 0.0001), and GLI2 expression significantly different between the tumor and tumor
stroma (p = 0.030) (Figure 4).
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Figure 2. Staining scores of PTCH1 and GLI2 in healthy tissues and tumor tissues for all analyzed
samples. PTCH1 staining differs in the healthy tissues, where the stromal compartment shows
stronger staining compared to the epithelial compartment (p = 0.0001). GLI2 staining differs in the
tumor samples, where the tumor tissues show stronger staining compared to the tumor stromal
compartment (p = 0.0052). (A): PTCH1 staining in healthy tissues, (B): PTCH1 staining in tumor
tissues, (C): GLI2 staining in healthy tissues, (D): GLI2 staining in tumor tissues.

The absence of either ligand suggests that the pathway is not activated by an autocrine
mechanism in these tumor samples. Rather, the presence of PTCH1 and GLI proteins
may signify a ready state to receive the ligand signal from remote tissues. Alternatively, it
may suggest that their expression is the result of non-canonical activation of the pathway
resulting in the expression of the two known downstream targets, PTCH1 and GLI2.

Based on the analysis of the different sample regions, it can be deduced that the
PTCH1 protein is preferentially expressed in the stromal compartment of both sinonasal
and referent colon adenocarcinoma. This supports the paracrine signaling model in these
tumor types, where the stromal cells express HH-GLI pathway receptors and activate
downstream signaling, while the activation signal does not originate in the stroma but
rather in the tumor (not the case here) or in remote tissues. It is likely that the stromal cells
can, upon reception of the signal, activate the pathway and produce various growth factors
and cytokines that can support tumor growth. This analysis, however, is beyond the scope
of this work.
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Figure 3. Comparison of the GLI2 and PTCH1 staining scores for the intestinal and non-intestinal
subtypes of sinonasal adenocarcinoma. GLI2 score is slightly higher in the non-intestinal tumors
compared to the intestinal ones (p = 0.0049), while for PTCH1, there are no differences in staining
between the two subtypes. (A): GLI2 staining in the tumor tissue for ITAC and non-ITAC, (B): GLI2
staining in the stroma for ITAC and non-ITAC, (C): PTCH1 staining in the tumor tissue for ITAC and
non-ITAC, (D): PTCH1 staining in the stroma for ITAC and non-ITAC.
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Figure 4. IHC scores for PTCH1 and GLI2 proteins in sinonasal adenocarcinoma. PTCH1 expression
is the highest in the healthy stromal cells, and it is downregulated in the tumor stroma (p = 0.0077). On
the other hand, healthy epithelium shows very weak or no expression of PTCH1, which is increased
in tumor tissue (p = 0.0298). GLI2 expression is mostly uniform throughout the groups, with stronger
staining of tumor tissue compared to its stromal compartment.
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3. Discussion

As the Hedgehog signaling pathway regulates the development of the craniofacial
structures and epithelium, it is not surprising that its aberrant activation can be detected
in tumors developing from these tissues. The involvement of Hedgehog signaling in
squamous cell carcinoma of the head and neck region has been well-documented [33]. The
Hedgehog signaling pathway has been implicated in salivary gland neoplasms. Vidal
et al. have demonstrated positive SHH and GLI1 staining of salivary glands and their
neoplasms [32]. In our study, we did not detect SHH in the salivary glands or salivary
tumors, but we did detect both GLI2 and PTCH1, which Vidal et al. did not include in
their study, confirming the activation of the Hedgehog pathway in the salivary gland
tumors. Olfactory neuroblastoma (ONB), another rare tumor of the epithelium in the nasal
cavity, also showed activation of the Hedgehog pathway (IHC staining of PTCH1, GLI1,
and GLI2), as well as inhibition by Hedgehog pathway inhibitor cyclopamine in vitro on
two ONB cell lines [34]. However, there is no information on sinonasal adenocarcinoma.
As sinonasal adenocarcinoma is most frequently of the ITAC subtype, which resembles
colorectal tumors, we included six colon adenocarcinoma samples to compare to the ITAC.

The activation of the Hedgehog pathway in colon adenocarcinoma epithelial cells has
been demonstrated 15 years ago [35]. At the same time, it has been demonstrated that
Hedgehog signaling is also involved in the differentiation and renewal of colon epithelial
lining as PTCH1, GLI1, and GLI2 were detected in the crypts [36]. In our study, the results
were similar, with GLI2 detected in both healthy colon and tumors. However, Alinger
et al. also detected SHH and DHH expression in the epithelium of their samples, while
we did not. As the Hedgehog pathway is often activated in wound healing and tissues
that require constant renewal, such as colon and oral epithelium, it is not surprising to
detect its expression in healthy tissues [37]. Another possible explanation for the presence
of pathway proteins is the sampling of the control tissues, which were taken from the same
individual, and may therefore be affected by unseen processes during field cancerization,
which is very common in tumors of the head and neck [38]. Mazumdar et al. have tested
two Hedgehog pathway inhibitors on colon cancer cell lines and concluded that inhibition
works better at the level of GLI proteins rather than at the level of membrane component
SMO, suggesting that GLI activation, possibly through non-canonical pathways, is the
contributing factor in colon carcinogenesis [39].

Tumor–stroma communication is extremely important in the maintenance of the
favorable microenvironment for cancer progression. For example, in the healthy intestine,
the ligand IHH is produced in the epithelial cells and received by the mesenchymal cells [29].
In the mouse model, downstream components of the signaling pathway are confined to
the stromal compartment. Furthermore, the same study showed that the expression of
downstream components GLI1, GLI2, and GLI3 is disconnected from the expression of
the ligands and receptors. Activation of Hedgehog signaling in the stromal compartment
resulted in the induction of epithelial differentiation markers and restriction of colonic
stem cell markers [40]. In oral squamous cell carcinoma, SHH and GLI1 are both found
in the stromal compartment and could be the source of the ligand for both paracrine and
autocrine activation in the tumor cells [41]. In fact, SHH can contribute to therapeutic
resistance in HNSCC and is a predictor of shorter overall survival and disease-free survival
in patients treated with cisplatin [42]. Hypopharyngeal squamous cell carcinoma cell line
FaDu can be inhibited by Hedgehog inhibitor JK184 when cells are implanted into the
maxillary sinus of nude mice [43]. This, however, does not reflect the potential biology of
the sinonasal cavity, but rather the HNSCC cell line itself, and it has been demonstrated
that these cells respond to Hedgehog pathway inhibition [44].

When comparing the literature data and the staining patterns of sinonasal adenocarci-
noma in our study to the colon and HNSCC tumors, sinonasal adenocarcinoma shows more
similarities to the colon than to the HNSCC, primarily due to the lack of co-localization of
the upstream and downstream components of the signaling pathway. This makes Hedge-
hog signaling pathway activation in the sinonasal adenocarcinoma more similar to the
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paracrine model seen in colon adenocarcinoma than to the autocrine or mixed autocrine
plus paracrine model seen in HNSCC. What is especially interesting is the shift of PTCH1
expression, which changes from the healthy stroma to the tumor compartment, and this is
matched with the stronger GLI2 staining in the tumor as well. This may indicate that the
tumor cells become the receiving cells for the outside signal, resulting in their proliferation.

Sinonasal adenocarcinoma, when inoperable, is often subjected to radiotherapy as part
of the treatment protocol. However, radiotherapy can result in unforeseen effects. When
HNSCCs are irradiated, there is the activation of GLI1 in the stroma, which contributes
to the repopulation of the tumor after therapy and radioresistance [16]. The same is true
for colon cancer cells, where SHH and GLI1 expression are increased after irradiation and
contribute to tumor repopulation after radiotherapy [45]. Hedgehog pathway inhibitor
vismodegib can sensitize HNSCC cell lines to radiation therapy [46]. In the salivary gland,
irradiation induces cellular senescence, leading to impaired salivary gland function and dry
mouth. It has been demonstrated in both mouse and pig models that the re-introduction
of SHH can preserve salivary gland function [47,48]. Therefore, an investigation into
Hedgehog pathway expression pre- and post-irradiation would be very informative for
these tumors, and it may reflect on patient quality of life and survival. This should be
investigated in a separate study with a larger cohort.

The GLI transcription factors were in most cases detected in the cytoplasm of the cells,
with occasional nuclear staining, which may signify that the pathway is not activated, but
rather poised and ready for activation. This is supported by the fact that ligands required
to activate the pathway (SHH and IHH) were not detected in our samples; therefore, there
is no signal for translocation of the transcription factors to the nucleus. It is surprising
that the Hedgehog ligands, SHH and IHH, have not been detected in our samples. The
question remains whether SHH ligand can be delivered from a remote tissue, and if such
SHH-expressing cells exist in this region. According to some recent studies, SHH can
be detected in the nasal mucus and is decreased in patients with hyposmia [49]. The
same was demonstrated by the same group for the parotid saliva and patients with taste
dysfunction [50]. Maurya et al. hypothesize that the SHH protein present in the nasal
mucus is necessary for the activation of the Hedgehog pathway in the olfactory cilia, as
they have demonstrated that the Hedgehog pathway is required for olfactory perception in
a mouse model [51]. Therefore, it is possible that this can also be the source of the ligands
for the sinonasal adenocarcinoma, but this needs to be investigated further.

4. Materials and Methods

In this pilot retrospective study, archival samples of 18 intestinal adenocarcinoma of
the sinus, 3 non-intestinal adenocarcinoma of the sinus, 3 salivary gland tumors, and 6 colon
adenocarcinoma FFPE samples were collected from the Department of Otorynolaryngology
and Head and Neck Surgery, Clinical Hospital Centre Zagreb and the Department of
Oral and Maxillofacial Surgery, Clinical Hospital Osijek. For 18 samples, accompanying
healthy tissue controls from the same patient were also available. Ethical approval was
granted by the Ethical Committee of the Clinical Hospital Centre Zagreb (no. 02/21 AG) on
25 November 2019. Due to the retrospective nature of the study, patient consent was
not required.

4.1. Immunohistochemical Staining

FFPE slides (thickness 4–5 µm) were deparaffinized in Bioclear (Biognost, Zagreb,
Croatia), rehydrated in 100%, 90%, and 70% ethanol, and finally in water. Rehydrated
slides were warmed to 100 ◦C in citrate Target retrieval solution pH 6 (Agilent, Santa Clara,
CA, USA) and left to cool to room temperature before proceeding with blocking of the
endogenous peroxidase activity by 3% hydrogen peroxide in methanol (Kemika, Zagreb,
Croatia). Slides were washed in TBST buffer and blocked with serum-free Protein block
(Agilent, Santa Clara, CA, USA), followed by incubation with the following antibodies
overnight at 4 ◦C: anti-PTCH1 (1:100, 1750-1-AP, ProteinTech, Planegg-Martinsried, Ger-
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many), anti-GLI1 (1:100, NB600-600, Novus Biologicals, Centennial, CO, USA), anti-GLI2
(1:100, sc-271786, Santa Cruz Biotechnology, Dallas, TX, USA), anti-GLI3 (1:200, GTX104362,
GeneTex, Irvine, CA, USA), anti-SHH (1:100, sc-365112, Santa Cruz Biotechnology, Dallas,
TX, USA), and anti-IHH (1:100, sc-271101, Santa Cruz Biotechnology, Dallas, TX, USA).
For negative control, the primary antibody was replaced with 2%BSA/TBST. Following
incubation, the detection was performed using the LSAB2 universal kit (Agilent, Santa
Clara, CA, USA), the signal was visualized with DAB (Agilent, Santa Clara, CA, USA),
and the slides were counterstained with hematoxylin (Biognost, Zagreb, Croatia). Slides
were dehydrated using 70%, 90%, and 100% ethanol solutions and Bioclear and fixed in the
Biomount medium (Biognost, Zagreb, Croatia).

4.2. Slide Analysis

Slides were examined by an expert pathologist and scored by assessing the signal
intensity (0–3) and percentage of positive cells (0–100%) for both the tumor mass and
the tumor stroma. Additionally, where available, the accompanying healthy tissues were
scored in the same way, examining the healthy epithelium and healthy stroma. Final
scores were generated by multiplying the staining intensity with the percentage of positive
cells for each of the four examined regions separately. Images were taken using the
Olympus BX51 microscope with OLYMPUS stream Essentials 2.4 licensed software. The
data were analyzed in MedCalc for Windows (v.22-021) using the Kruskal–Wallis test for
multiple group comparison, paired samples t-test for comparisons between scores between
two regions within the sample, and independent samples t-test for comparisons of scores
between tumor types.

5. Conclusions

Based on our preliminary results on a small cohort of sinonasal adenocarcinoma
samples, we conclude that Hedgehog pathway activation can be detected in these samples.
The most frequently detected proteins were PTCH1, the pathway receptor, and GLI2, which
seems to be the dominant pathway activator among the three GLI proteins. GLI1 expression
can also be detected in a smaller fraction of samples. No expression of ligands, SHH and
IHH, was detected, suggesting that the ligands are not produced in these tissues but rather
delivered from remote tissues, possibly the nasal mucus. The signal detected in the stromal
compartment suggests that the mode of Hedgehog signal transduction is paracrine in
sinonasal adenocarcinoma. Based on these findings, the sinonasal adenocarcinoma shows
more similarities to the colon adenocarcinoma than the HNSCC or salivary gland tumors,
which concurs with analyses of other markers by other authors. This may be relevant for
the development of future therapies, as upstream inhibitors of Hedgehog signaling might
be less effective than those targeting downstream components.
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