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Abstract: This study explores the impact of defecation frequency on the gut microbiome struc-
ture by analyzing fecal samples from individuals categorized by defecation frequency: infrequent
(1–3 times/week, n = 4), mid-frequent (4–6 times/week, n = 7), and frequent (daily, n = 9). Utilizing
16S rRNA gene-based sequencing and LC-MS/MS metabolome profiling, significant differences in
microbial diversity and community structures among the groups were observed. The infrequent
group showed higher microbial diversity, with community structures significantly varying with
defecation frequency, a pattern consistent across all sampling time points. The Ruminococcus genus
was predominant in the infrequent group, but decreased with more frequent defecation, while the
Bacteroides genus was more common in the frequent group, decreasing as defecation frequency less-
ened. The infrequent group demonstrated enriched biosynthesis genes for aromatic amino acids
and branched-chain amino acids (BCAAs), in contrast to the frequent group, which had a higher
prevalence of genes for BCAA catabolism. Metabolome analysis revealed higher levels of metabolites
derived from aromatic amino acids and BCAA metabolism in the infrequent group, and lower levels
of BCAA-derived metabolites in the frequent group, consistent with their predicted metagenomic
functions. These findings underscore the importance of considering stool consistency/frequency in
understanding the factors influencing the gut microbiome.

Keywords: stool defecation; defecation frequency; gut microbiome; gut metabolome

1. Introduction

The gut microbiome, which comprises 10–100 trillion microorganisms, plays a cru-
cial role in contributing to human health through individual or collective functions of
these microbiota [1–3]. Human gut microbiota varies significantly among individuals,
based on host properties, such as age, nationality, gender, or body mass index (BMI) [4].
These properties have become obstacles to studying the relationships between the human
microbiome and health. To overcome this challenge, recent studies have introduced en-
terotyping, which stratifies multi-dimensional human gut microbial communities into three
distinct enterotypes by the predominance of specific genera: Bacteroides (enterotype 1),
Prevotella (enterotype 2), and Ruminococcus (enterotype 3) [4–7]. These enterotypes represent
densely populated areas of community composition in a multi-dimensional space, aiming
to simplify the complexity of the gut microbiota by reducing individual variation [4]. This
approach has enabled the identification of the relationships and/or connections between the
human microbiome and various diseases or diets, including the development of diagnostics
for cancer and implications for weight loss, as well as the introduction of personalized
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nutrition in obesity management [8–11]. Previous reports have demonstrated that Koreans
are clustered into two enterotypes, dominated by either Bacteroides or Prevotella [12,13].

A variety of factors associated with bowel movements, including the colonic transit
time [14], and stool consistency [15], have been reported to affect the gut microbiome.
Previous studies have shown that defecation frequency is considered as one of the factors
that can affect the gut microbial community and the more frequent the defecation, the
lower the diversity of the gut microbiota [16,17]. Given that previous studies have only
considered single timepoint fecal samples and lacked a multi-omics approach, we aimed to
comprehensively investigate the correlation between defecation frequency and the structure
of the gut microbiome. We achieved this by incorporating bioinformatics data from a single
participant, analyzed through longitudinal observations, along with metabolomic profiles.

In this study, we recruited 27 Korean volunteers, analyzing six longitudinal fecal sam-
ples from each subject to investigate the relationship between defecation frequency and gut
microbial profiles. Consistent with previous reports, we observed that a higher defecation
frequency was associated with a reduction in microbial diversity, and the predicted func-
tional genes and the gut microbial structure varied depending on the defecation frequency.

2. Results
2.1. General Characteristics of the Subjects

Twenty adults, aged 22–31, with a body mass index (BMI) ranging from 18.42 to
27.47 kg/m2, were enrolled in this study. All subjects had not been prescribed antibi-
otics for one month prior to the experiment and were stratified into three groups based
on their natural defecation frequency, as determined through a questionnaire: Group 1
(1–3 times/week, n = 4), Group 2 (4–6 times/week, n = 7), and Group 3 (everyday, n = 9).
The defecation frequency remained consistent among all the subjects throughout the study
period, which lasted up to 23 days. The sampling schedules are detailed in Supplementary
Figure S1. It should be noted that the stool collection interval varied among the subjects.
However, our primary aim was to capture stable characteristics of the gut microbiome
associated with defecation frequency over one month, rather than to track short-term fluc-
tuations. Consequently, no statistical difference in the gut microbial structure was observed
at any sampling timepoints within each defecation frequency group, as reflected by the
intergroup distance (Supplementary Figure S2). No significant differences were found in
regard to age (one-way ANOVA test; p-value = 0.540) and BMI (p-value = 0.836), according
to the defecation frequency groups. The general characteristics of all the participants are
listed in Table 1.

Table 1. General characteristics of subjects included in this study (age, sex, BMI).

1–3 Times a Week 4–6 Times a Week Everyday p Value

Total no. of subjects n = 4 n = 14 n = 14 -

No. of enrolled subjects n = 4 n = 7 n = 9 -

Sex
Male, n (%) 2 (50.0) 1 (14.3) 5 (55.6) -

Female, n (%) 2 (50.0) 6 (85.7) 4 (44.4) -

Age, average ± SD 24.0 ± 1.2 24.7 ± 1.7 23.9 ± 1.2 0.540

BMI, average ± SD 22.1 ± 1.5 21.3 ± 3.0 21.4 ± 1.1 0.836
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2.2. Identification of Enterotypes among All Subjects

A total of 2,596,610 sequence reads were obtained from the fecal samples, with an aver-
age of over 20,000 sequence reads per sample. These reads were binned into 870 amplicon
sequence variants (ASVs) (Table 2).

Table 2. Reads and ASV counts for each group.

Defecation Frequency 1–3 Times 4–6 Times Everyday Total

No. of samples 24 38 54 116
No. of sequences 507,975 865,445 1,223,190 2,596,610

Average sequence ± SD 21,166 ± 4922 22,775 ± 5060 22,652 ± 3901 22,385 ± 4569
No. of features (ASVs) 459 486 532 870

Average features (ASVs) ± SD 124 ± 23 102 ± 17 94 ± 21 103 ± 23

To stratify the population for a better understanding of the complexity of the gut mi-
crobiota by minimizing the impact of individual variability, the enterotype of the subjects
was determined using baseline samples. The samples were clustered based on the relative
abundance at the genus level using the Jensen–Shannon divergence (JSD) distance and the
partitioning around medoids (PAM) clustering algorithm. The optimal number of clusters
was estimated using the Calinski–Harabasz (CH) index (Figure 1A). The structures of the
microbiota from all the samples were separated into two distinct clusters (Figure 1B; 27 sub-
jects with a Bacteroides-dominant type and five subjects with a Prevotella-dominant type). To
further corroborate the clustering across all the subjects based on their enterotypes, we also
employed the Bray–Curtis distance metric. All the subjects were separated by their Bray–
Curtis distance and marked with their respective enterotypes for the principal coordinates
analysis (PCoA). Consistent with the JSD index shown in Figure 1B, a similar separation
in the PCoA plot was observed (shown in PC1, 15.4% variance) using the Bray–Curtis
index (Figure 1C). Considering that Prevotella-dominant and Bacteroides-dominant types
uniquely feature a predominance of either Prevotella or Bacteroides, respectively, we ex-
pected a distinct Bacteroides and Prevotella ratio (PB ratio, Prevotella/Prevotella + Bacteroides)
based on their enterotype classification. Accordingly, we calculated the PB ratio for each
participant. While most subjects generally clustered into two distinct groups, several in the
Bacteroides-dominant cluster (e.g., Sub. 083, 094, 107, and 109) showed ambiguous PB ratio
values that set them apart from others in same cluster (Figure 1D). Considering that hu-
man gut microbiota varies greatly across individuals depending on host properties, which
could skew data analysis, we decided to filter the subjects based on the following criteria:
(1) those with distinct Bacteroides dominance (PB ratio < 0.02); (2) those whose microbiota
dominance is maintained across all sampling timepoints. Accordingly, based on the criteria,
only samples from a total of 20 subjects with the Bacteroides-dominant enterotype were
used for further analysis and the consistency of the Bacteroides-dominant enterotype across
all six sampling points for these subjects was confirmed (Supplementary Figure S3).
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Figure 1. Gut enterotype classification of subjects. (A) Evaluated Calinski–Harabasz (CH) index for
every number of k clusters to determine the optimal number of clusters. (B) Principal coordinates
analysis (PCoA) plot of enterotyping data based on relative genus abundance using the Jensen–
Shannon divergence (JSD) distance matrix and the partitioning around medoids (PAM) clustering
algorithm. (C,D) PCoA plots based on the Bray–Curtis distance metric. (C) Samples are colored
according to the enterotyping results. Covariance ellipses were projected for each cluster and
the bounds of the cluster were marked by two standard deviations (2σ) in each direction from
the mean of the cluster. (D) Samples are colored according to the PB ratio (Prevotella/Prevotella +
Bacteroides). Coloring toward red or purple indicates Prevotella-dominant or Bacteroides-dominant
subjects, respectively.

2.3. Microbial Diversity and Structure Differences According to Defecation Frequency

To determine the relationship between microbial diversity and defecation frequency,
the alpha diversity was measured using Faith’s PD and observed features indices. The
microbial diversity of the ‘1–3 times a week’ group was significantly higher than in the
other two groups for both metrics, while no difference was observed between the ‘4–6 times
a week’ and ‘everyday’ groups. These results demonstrate that higher defecation frequency
is associated with lower microbial diversity in the gut (Figure 2). In line with this trend, we
also observed a negative relationship between microbial diversity and defecation frequency
at each sampling timepoint, albeit with slight variability (Supplementary Figure S4).
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Figure 2. Alpha diversity of gut microbiota according to defecation frequency. Faith’s phylogenetic
distance (A) and observed features metrics (B) were used to plot the graphs. Each single dot represents
an individual. The dashed line represents the median and the dotted lines denote interquartile ranges
(IQRs). Statistical analysis was conducted using the pairwise Kruskal–Wallis test.

To evaluate the differences among the samples in regard to the bacterial communities,
PCoA analysis based on the weighted UniFrac distance was performed, revealing that each
group was well separated, and their community structures significantly differed depending
on the defecation frequency (Figure 3A, PERMANOVA p < 0.001). The separation also
remained consistent at each sampling timepoint (Figure S4A). We then examined the
pairwise distances between the groups, according to the defecation frequency: intragroup
distances for the everyday samples were significantly greater than the other two groups
(Figure 3B); the intergroup distance of the everyday group compared to the 1–3 times
a week group was larger than that of 4–6 times a week; and the difference between the
pairwise distance was shown to be statistically significant (Figure 3C). Consistent with the
weighted UniFrac distance, a similar separation according to the defecation frequency was
also observed using the unweighted UniFrac distance in the PCoA plot and a similar trend
remained at each sampling timepoint (Supplementary Figures S5 and S6).
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Figure 3. Microbial structure and composition of each group, depending on the defecation frequency.
(A) PCoA plot based on weighted UniFrac distance. PERMANOVA was used to test the statistical
differences among the groups. Intragroup (B) and intergroup (C) distances, using weighted UniFrac
distance, across the three different groups. Data shown and error bars are mean ± SEM (non-
parametric t-test, p < 0.001). Different alphabets indicate significant differences between the groups
(p < 0.001). (D) Relative abundance plot of bacterial taxa at the genus level across all three groups.
Asterisks (white/blue) denote differentially abundant taxa, according to the defecation frequency.
(E) Bar chart showing differentially abundant taxa between the groups using ALDEx2 (median effect
size > 0.5 and Benjamini–Hochberg corrected p-value of Wilcoxon test < 0.05).

2.4. Microbial Composition Difference and Relationship with Defecation Frequency

We observed differences in the microbial composition of the gut microbiota based on
the defecation frequency. To further dissect which bacterial taxa are differentially prominent
in each group, we analyzed the relative bacterial abundance and discriminant taxa using
ANOVA-like differential expression 2 (ALDEx2) at the genus level. The Ruminococcus genus
was significantly overrepresented in the ‘1–3 times a week’ group compared to the other
two groups, and its abundance decreased as the defecation frequency increased. Although
the Ruminococcus genera was identified as a significant component of the gut microbiota
in our subjects, its presence alone was not sufficient to alter their established enterotypes
(Supplementary Figure S3). In contrast, the Bacteroides genus was highly prominent in the
‘everyday’ group compared to the other two groups, and its abundance decreased as the
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defecation frequency became less frequent (Figure 3D). Likewise, the same trend was also
observed at each single timepoint (Supplementary Figure S3). The ‘1–3 times a week’ group
showed more overrepresented bacterial taxa when compared to the ‘4–6 times a week’ or
‘everyday’ groups, respectively (Figure 3E).

2.5. Predictive KEGG Functional Profiling

The Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States 2 (PICRUSt2) was used to predict the KEGG functional bacterial gene profiles from
the 16S rRNA dataset in this study. To assess whether distinct bacterial genes are associated
with defecation frequency, we performed a pairwise comparison between the infrequent
(‘1–3 times a week’) and the frequent (‘4–7 times a week’) groups. Statistically significant
pathways were selected if LDA > 2 and the FDR-adjusted p-value was <0.05. The infrequent
group showed higher differential enrichments of bacterial genes related to the biosynthesis
of fatty acids, vancomycin group antibiotics, peptidoglycan, branched-chain amino acids
(BCAAs), lysine, aromatic amino acids, pantothenate and CoA, and terpenoid backbone.
Additionally, genes associated with metabolism of propanoate, sulfur-containing amino
acids, pyruvate, methane, histidine, glycerophospholipid, pyrimidine, nicotinate and
nicotinamide, and retinol were, statistically, significantly more prevalent in the infrequent
group when compared to the frequent group. In contrast, the frequent group exhibited a
higher prevalence of the bacterial genes related to the metabolism of BCAAs, glyoxylate
and dicarboxylate, glutathione, amino sugar and nucleotide sugar, vitamin B6, hexose,
lipoic acid, biotin, and the biosynthesis of ubiquinone and other terpenoid quinone, folate,
lipopolysaccharide, and polyketide sugar units. Notably, the interesting difference in the
overlapping pathways between the two groups includes a higher enrichment of BCAA
biosynthesis in the infrequent group and a higher prevalence of BCAA degradation in the
frequent group (Figure 4A).

Figure 4. Predictive KEGG functional pathways that are differentially present in pairwise com-
parisons. (A) Bar chart represents distinctly abundant KEGG pathways that were selected based
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on the following criteria: LDA > 2 and adjusted p-value < 0.05. (B) Volcano plots of differen-
tial metabolites between the infrequent and the frequent group. All metabolites and those with
KEGG annotations are indicated by gray and blue squares, respectively. The metabolites that over-
lap with predictive functional KEGG pathways generated using 16S rRNA data are shown in red
squares. Metabolites were identified as candidates based on a log2(Frequent/Infrequent) ratio > 1
and statistical significance (p < 0.05) based on unpaired t test after two–stage step–up correction
method (indicated by red dotted lines). (C,D) Heatmaps of differential metabolites in phenylala-
nine/tyrosine/tryptophan biosynthesis and degradation (C), and in branched-chain amino acid
metabolism (D). Metabolites with asterisks are statistically significant based on unpaired t test after
two–stage step–up correction; * p < 0.05; ** p < 0.01.

2.6. Differences in the Metabolites Related to Defecation Frequency

To investigate whether specific metabolites are associated with defecation frequency,
we analyzed the metabolic profiles, using LC-MS/MS on the fecal samples. Six randomly
selected samples from adults, aged 23–34, with a body mass index (BMI) ranging from 17
to 24 kg/m2, were included in the analysis. They were divided into two groups based on
their defecation frequency: an infrequent group (‘1–3 times a week’, n = 3) and a frequent
group (‘4–7 times a week’, n = 3). Consistent with the result that the abundance level of
Ruminococcus was inversely related with that of Bacteroides as the defecation frequency
increases (Figure 3D), the same tendency was observed in the participants for the metabolite
analysis (Supplementary Figure S7). In our dataset, 814 metabolites in negative mode and
891 metabolites in positive mode were identified using the Compound Discoverer software
3.3 SP2 (Figure 4B, gray squares; Supplementary Dataset, Table S1), with 154 metabolites an-
notated with a KEGG ID from open databases, such as MZcloud, ChemSpider, KEGG, and
the Human Fecal Metabolome database (Figure 4B, blue squares; Supplementary Dataset,
Table S1). Consistent with Figure 4A, the pathways for fructose and mannose/galactose
metabolism and valine/leucine/isoleucine degradation were significantly more prevalent
in the frequent group. In contrast, pathways for phenylalanine/tyrosine/tryptophan and
valine/leucine/isoleucine biosynthesis were significantly dominant in the infrequent group
(Supplementary Dataset, Table S2). Among the metabolites associated with phenylalanine,
tyrosine, and tryptophan metabolism, compounds such as pentose (a precursor for the
TCA cycle), indole, tyrosine, p-cresol, phenylalanine, and phenylpropanoic acid showed
significant enrichment in the infrequent group compared to the frequent group (Figure 4B,C;
red squares). Similarly, among BCAAs, only leucine was statistically more prevalent in
the frequent group, although the other two were not statistically significant (Figure 4B–D;
red squares).

2.7. Random Forest Prediction

To test whether the defecation frequency of the samples can be predicted based on their
microbial compositional features, a random forest classifier (RFC) model was employed
using the ASVs table with 50 decision trees. The model generated an overall accuracy of
60%, surpassing the 45% baseline (random prediction without complex computations).
Regarding the stool groups, the ‘everyday’ group showed the highest accuracy (78%),
followed by the ‘4–6 times a week’ group (72%) (Figure 5A). The best performance was
observed in the ‘4–6 times a week’ group (area under the curve, AUC: 0.83), followed by the
‘everyday’ group (AUC: 0.76) (Figure 5B). The ‘everyday’ group showed the best separation
in the random forest class probability histogram (Figure 5C).
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Figure 5. Diagnostic accuracy of gut microbial structure using the baseline fecal samples, according
to defecation frequency. The higher the accuracy, the darker the shade. (A) The confusion matrix of
the random forest classifier. (B) Receiver operating characteristic (ROC) curves, evaluating ability to
predict defecation frequency using random forest classification. Classification accuracy was assessed
by the area under the curve (AUC). The dashed line represents the points of no discrimination on a
ROC curve. (C) Random forest class probability histograms for ‘1–3 times a week’ (red), ‘4–6 times a
week’ (yellow), and ‘everyday’ (blue) according to the defecation frequency.

3. Discussion

This study involved collecting longitudinal fecal samples from each individual over
three weeks (six samples), instead of collecting them at a single timepoint. This approach
helps control the variations in gut microbiota that could occur within an individual. Our
results show clear and lasting differences in the gut microbial profiles according to the
defecation frequency. We have demonstrated that less frequent defecation is associated with
a richer population of microbes in the gut (Figure 2). In addition, the microbial structure is
distinct, depending on the defecation frequency, based on weighted/unweighted UniFrac
distances (Figures 3A and S5A), consistent with previous reports [16–18]. These results
strongly indicate differences in either the microbial composition or abundance depending
on the defecation frequency. It was interesting to observe the gradual movement of the
samples from the infrequent to the frequent defecation group towards the PC1 axis, suggest-
ing the possibility that the ‘4–6 times a week’ group has intermediate microbial structure
characteristics between the ‘1–3 times a week’ and ‘everyday’ groups (Figure 3A). We found
two different taxa that are differentially present depending on the defecation frequency: the
Ruminococcus and Bacteroides genus (Figure 3D,E). Considering that intragroup distances in
the ‘1–3 times a week’ and ‘4–6 times a week’ groups are not significantly variable, these
specific taxa could potentially be considered as biomarkers for stratifying groups according
to defecation frequency.
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An overrepresentation in the methane metabolism pathway was observed in the
‘1–3 times a week’ group compared to the ‘4–6 times a week’ group (with no observation in
the ‘everyday’ group) (Figure 4). This is in line with the fact that increased methane produc-
tion was observed in people with constipation [18,19]. Previous studies have demonstrated
the limited bioavailability of polysaccharides, as well as extensive protein catabolism as
the retention time increases in in vitro models of the gut [20,21]. In addition to previous
findings, recent studies have revealed the relationship between the colonic transit time
(CTT), a proxy for defecation frequency, and bacterial metabolism, where a longer CTT is
associated with higher colonic protein catabolism, as reflected by the presence of urinary
metabolites like p-cresol sulfate and p-cresol glucuronide. These metabolites are products of
tyrosine metabolism, as identified by urinary metabolic phenotyping in the gut [14,18,22].
Furthermore, a longer CTT is positively associated with the higher enrichment of Ruminococ-
caceae and Ruminococcus [14]. In this regard, it is noteworthy that the predicted functional
profile related to tyrosine metabolism was overrepresented in the ‘1–3 times a week’ group
compared to the ‘4–6 times a week’ group (Figure 4). In agreement with previous findings,
our data also showed that the Ruminococcus genus and Ruminococcaceae family were signifi-
cantly overrepresented in the ‘1–3 times a week’ group, and the functional genes involved
in tyrosine metabolism were highly enriched in the ‘1–3 times a week’ group compared to
the ‘4–6 times a week’ group (with no observation in the ‘everyday’ group). To address the
limitation of genomic analysis based solely on 16S rRNA data, metabolomic analysis was
further employed to support the functional gene predictions. Metabolite profiling indicated
a higher enrichment of tyrosine metabolism in the infrequent group, evidenced by the
increased level of metabolites involved in phenylalanine/tyrosine/tryptophan metabolism.
In contrast, the frequent group showed a decreased level of branched-chain amino acids
(valine, leucine, and isoleucine), whereas the infrequent group exhibited high levels of these
amino acids (Figure 4B–D). These metabolic profiles strongly corroborate the functional
KEGG pathway predicted using 16S rRNA data (Figure 4B–D). By integrating metabolite
profiling with taxa analysis, we observed an overrepresentation of indole and p-cresol in
the infrequent group, where the abundance of Bacteroides was low and that of Ruminococcus
was high, compared to the frequent group (Figures 4 and S7). These findings are in line
with previous findings, demonstrating a negative correlation between the abundance of
Bacteroides and the levels of p-cresol and indole, and a positive correlation with Ruminococ-
cus (Figures 3 and 4; [14,23,24]). Considering that p-cresol and indole, known as uremic
toxins, can potentially cause chronic kidney diseases and cardiovascular diseases, and as
such should be detoxified in the body [25,26], frequent stool defecation could be preferable
for health. Previous studies have demonstrated that circulating BCAA levels are positively
correlated with the development of obesity, and Bacteroides spp. are shown to promote
BCAA catabolism in brown fat, thus preventing obesity [27,28]. Our findings, which indi-
cate a higher abundance of Bacteroides and decreased levels of BCAA in the frequent group
compared to the infrequent group, are in strong alignment with these studies.

A strength of this study is the use of longitudinal sample collection from each individ-
ual to validate the connection between defecation frequency and gut microbiota, unlike
previous studies that considered a single sample at one timepoint. We also employed in
silico analysis, using a machine learning model (random forest) trained on the composi-
tion of the gut microbiota from individuals to build a prediction model. However, the
limitations of this study include an insufficient number of subjects for analyzing Prevotella-
dominant enterotypes, as well as metabolite analysis. Since each enterotype establishes
distinct ecological niches, prolonged defecation frequency may induce markedly varied
changes in microbial communities and their metabolic products. Futures studies with
Prevotella-dominant enterotype subjects will help establish a correlation between different
microbial compositions/metabolites and defecation frequency. To conduct a more com-
prehensive analysis of the relationship between defecation frequency and the microbiome
profile, future studies should aim to assess defecation frequency using numerical values
rather than categorical ones. This approach would facilitate correlational analysis between
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defecation frequency and microbial features, including microbial diversity and composition.
To deepen our understanding of the comprehensive relationship between defecation fre-
quency and the gut microbiome, further studies employing a comprehensive multi-omics
approach with a lager participant cohort are necessary.

4. Materials and Methods
4.1. Sample Collection

Participants were instructed to self-collect fecal samples, twice weekly, over three
weeks (23 days at most), at their convenience. Despite this schedule, delays in the collection
of these samples, ranging from 1 to 4 days, were recorded for six participants. Sterile
cotton-tipped swabs were used for the collection of fresh fecal samples, which were then
immediately frozen at −80 ◦C until sequencing. For metabolite analysis, the fecal samples
were self-collected by the participants using sterile swabs and subjected to immediate
freezing at −80 ◦C until analysis.

4.2. The 16S rRNA Amplicon Sequencing

Total genomic DNA was extracted from the stool samples using the DNeasy PowerSoil
HTP 96 kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions,
and stored at −80 ◦C for subsequent experiments. The V4 hypervariable region of the
16S rRNA gene was amplified using 515F/806R primers [29]. Amplicons were purified
using the NucleoSpin PCR clean-up kit (Macherey-Nagel, Düren, Germany) and subjected
to sequencing using the Illumina MiSeq platform (2 × 300 cycles, paired end). Sample
preparations and sequencing steps were performed according to the Earth Microbiome
Project (www.earthmicrobiome.org) accessed on 16 February 2023.

4.3. Data Analysis

Analysis of the 16S rRNA sequences was performed using the Quantitative Insights
Into Microbial Ecology (QIIME) software package 2-2020.6 [30]. Raw sequencing reads
were demultiplexed and filtered on quality using the q2-demux plugin, followed by qual-
ity trimming and denoising with DADA2 [31]. All the produced amplicon sequence
variants (ASVs) were aligned using MAFFT [32] and used to generate a rooted phy-
logenetic tree with FastTree 2 [33] for phylogenetic diversity analysis. The q2-feature-
classifier plugin was used to trim the ASVs that were not from bacteria using the SILVA
132 database [34,35]. Each ASV was classified taxonomically using a naïve Bayes taxonomy
classifier, implemented using the q2-feature-classifier plugin [36]. Faith’s phylogenetic
diversity [37] and observed features were calculated to measure the alpha diversity, and
the unweighted [38]/weighted [39] UniFrac distance were used for the beta diversity. Mul-
tiple statistical analyses were performed: (1) a non-parametric Kruskal–Wallis test [40]
was used to determine significant differences in the microbial diversity; (2) permutational
multivariate analysis of variance (PERMANOVA) was used to evaluate the difference in the
community structure (999 random permutations) [41]; (3) a non-parametric t-test with 128
Monte Carlo instances was used to run ALDEx2, a tool that detects differentially abundant
taxa between samples [42].

4.4. Enterotype Analysis

Baseline samples were clustered based on genus-level collapsed relative abundance us-
ing the Jensen-Shannon divergence (JSD) and the partitioning around medoids (PAM)
clustering algorithm. The Calinski–Harabasz (CH) index [43] was assessed to deter-
mine the optimal number of clusters. The statistical significance of the optimal clus-
tering was evaluated using the silhouette validation technique [44]. Enterotype analysis
was performed in the R environment [4], and more detailed information is available at
https://enterotype.embl.de/enterotypes.html accessed on 1 December 2023.

www.earthmicrobiome.org
https://enterotype.embl.de/enterotypes.html
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4.5. Predictive KEGG Function Profiling

The functional prediction of metagenomics profiles from the 16S rRNA gene sequence
was computed using the Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States 2 (PICRUSt2) [45]. The ASVs table was used as input into the q2-picrust2
plugin of QIIME2. For the inference from the PICRUSt2 results, the Kyoto Encyclopedia of
Genes and Genomes (KEGG) ortholog database [46] was used. Significant differences in
the predicted functional metagenomic profiles were identified using linear discriminant
analysis effect size (LEfSe) analysis (LDA score) [47].

4.6. Sample Preparation for Global Metabolomics

The fecal sample (500 µL) was extracted by mixing an equal volume of 10% of ace-
tonitrile, followed by vigorous shaking for 1 min, then incubated at −20 ◦C for 2 h. The
resulting mixture was centrifuged at 4 ◦C and 13,000× g for 15 min, followed by homoge-
nization using a Tissue Lyser (Qiagen) at 30 Hz for 10 min. The supernatant was subjected
to LC-MS/MS to profile the metabolites, with quality control (QC) samples used in parallel.

4.7. U-HPLC-MS/MS Conditions

The U-HPLC-MS/MS analyses were performed using a U-HPLC system (VanquishTM

U-HPLC, Thermo Fisher Scientific, Waltham, MA, USA), coupled to a quadrupole mass
spectrometer (Thermo Scientific Orbitrap ExplorisTM 120 high-resolution/accurate mass
spectrometer, interfaced with a heated electrospray ionization (H-ESI) source), at the
Biopolymer Research Center for Advanced Materials (BRCAM, Sejong University, Seoul,
Republic of Korea). For the chromatographic separation, the prepared samples (10 µL)
were injected into a C18 column (Waters, ACQUITY UPLC BEH C18, 2.1 × 100 mm, 1.7 µm,
Waters Corp., Milford, MA, USA), with the column temperature maintained at 45 ◦C
throughout the acquisition period. The mobile phase was eluted by a gradient of water
(A) and acetonitrile (B), containing 0.1% acetic acid, with a gradient dilution profile of 95%
A (0–2 min), 95–5% A (2–15 min), 5% A (15–17 min), 5–95% A (17–18 min), and 95% A
(18–20 min), at a flow rate of 0.3 mL/min. The mass spectrum conditions included a heated
capillary of 320 ◦C, a vaporizer temperature of 350 ◦C, a spray voltage of 3.5 KV in positive
mode, and 2.5 KV in negative mode; the sheath gas, aux gas, and sweep gas were set at 50,
25, and 1 psi, respectively. The HCD collision energy was set at 15, 30, and 60%, and the
scan range covered 55–700 m/z in full scan, with a resolution of 120,000 for MS1 and 15,000
for MS2.

4.8. Global Metabolomic Analysis

The raw MS data were processed using Xcalibur version 4.6 and Compound Dis-
coverer 3.3 (Thermo Fisher Scientific, Waltham, MA, USA). Normalization of unknown
compound intensities using the QC sample was performed. Enrichment analysis to iden-
tify the potential KEGG pathway was performed using MetaboAnalyst (https://www.
microbiomeanalyst.ca/) accessed on 29 December 2023. Statistical significance was assessed
using Student’s t-test, with p-values < 0.05 considered statistically significant.

4.9. Random Forest

For the random forest classifier prediction, supervised classification of the ASVs table
generated from the baseline samples of each individual was performed using the q2-sample-
classifier [48] plugin, via the nested stratified 4-fold cross-validation [49] classifier grown
with 50 trees.
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