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Abstract: Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, SARS-CoV-2 variants
capable of breakthrough infections have attracted global attention. These variants have significant
mutations in the receptor-binding domain (RBD) of the spike protein and the membrane (M) protein,
which may imply an enhanced ability to evade immune responses. In this study, an examination of
co-mutations within the spike RBD and their potential correlation with mutations in the M protein
was conducted. The EVmutation method was utilized to analyze the distribution of the mutations to
elucidate the relationship between the mutations in the spike RBD and the alterations in the M protein.
Additionally, the Sequence-to-Sequence Transformer Model (S2STM) was employed to establish
mapping between the amino acid sequences of the spike RBD and M proteins, offering a novel and
efficient approach for streamlined sequence analysis and the exploration of their interrelationship.
Certain mutations in the spike RBD, G339D-S373P-S375F and Q493R-Q498R-Y505, are associated with
a heightened propensity for inducing mutations at specific sites within the M protein, especially sites 3
and 19/63. These results shed light on the concept of mutational synergy between the spike RBD and
M proteins, illuminating a potential mechanism that could be driving the evolution of SARS-CoV-2.

Keywords: SARS-CoV-2; co-mutations; mutational synergy; sequence-to-sequence transformer
model; sequence analysis

1. Introduction

Since the initial case, identified in December 2019, the coronavirus disease 2019
(COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) [1–3] has garnered worldwide attention [4]. As of 12 June 2023, the World Health
Organization (WHO) reported a remarkable 767 million COVID-19 cases worldwide, with
6.9 million deaths (https://covid19.who.int/ (accessed on 12 June 2023)). Despite the
widespread distribution of vaccines, the rapid mutation rate of SARS-CoV-2 poses ongo-
ing challenges to immune responses and vaccine efficacy [5]. Consequently, there is an
urgent need for continuous viral surveillance, the creation of innovative vaccines, and the
meticulous testing of vaccination strategies to effectively confront the ongoing threat of
COVID-19 [6–10].

1.1. SARS-CoV-2 Structural Proteins

SARS-CoV-2 virus comprises four structural proteins [11]: the spike (S), membrane
(M), nucleocapsid (N), and envelope (E) proteins. Figure 1 provides detailed insights into
the SARS-CoV-2 reference genome (NC_045512.2) [12]. SARS-CoV-2 is an enveloped virus
that uses membrane fusion [13,14] to enter host cells [15,16]. The successful infection cycle
of SARS-CoV-2 relies heavily on its structural proteins, especially the S and M proteins.
The S protein is assembled into a homotrimer structure and is crucial for viral entry by
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recognizing host cell receptors and mediating membrane fusion [17,18]. A particularly
significant component of the S protein is the receptor-binding domain (RBD), which directly
interacts with host receptors [19]. The M protein plays a role in the assembly of virions and
the process of membrane budding [20,21], while the N protein facilitates the transcription
and replication of viral RNA within the host cells [22,23]. The E protein forms a cation
channel that is vital for the pathogenicity of the virus [24].
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Like SARS-CoV-2, the Influenza A virus (IAV), another enveloped virus, triggers dis-
ease by leveraging a pair of complementary proteins: [25]: hemagglutinin (HA) [26], which
mediates viral entry, and neuraminidase (NA) [27], which facilitates viral egress [28,29].
The functional antagonism exhibited by the HA and NA proteins of IAV offers a valuable
reference for the evolutionary mechanisms of SARS-CoV-2, such as the functional linkages
between the S and M proteins.

1.2. SARS-CoV-2 Variants

SARS-CoV-2 is a novel evolutionarily divergent RNA virus [30]. Unlike DNA viruses,
RNA viruses exhibit higher error rates during replication and possess less efficient error-
correcting mechanisms [31]. Consequently, it leads to a dramatically high mutation and
evolution rate, which is correlated with virulence modulation and evolvability [32–34].
SARS-CoV-2 has a spontaneous mutation rate of approximately 1.3 × 10−6 ± 0.2 × 10−6 per
base per infection cycle, based on the accumulation of mutation frequencies and excluding
genes under selective pressure [35]. The emergence of these viral variants has led to more
contagious strains and instances of vaccine breakthrough infections [36]. Among the four
structural proteins, the S protein, particularly its RBD, is the primary focus of current
research due to its role in immune evasion [37–39]. In contrast, the amino acid sequences of
the M, N, and E proteins exhibit greater stability and conservation.

The World Health Organization (WHO) classified some SARS-CoV-2 variants as
variants of concern (VOC), including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta
(B.1617.2), and Omicron (B.1.1.529). The Omicron variant, characterized by its high trans-
missibility and prevalence of asymptomatic cases, has become the dominant strain in
many countries [40–42]. It was found that the extensive spike RBD mutations in Omicron
allowed it to evade immune responses targeted at the original strain [43]. The WHO
has reported novel M protein mutations in the Omicron variant, such as D3G/N, Q19E,
and A63T (https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on
12 June 2023)). With the Omicron variants, we have observed a synchronous increase in
mutations in the spike RBD and M proteins, which is a phenomenon not previously seen.
Based on its structure and function, the spike protein (especially the RBD) mediates viral
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entry, replication, and the assembly of new virions [16], and the M protein facilitates the
release from host cells. We hypothesized that the spike RBD and M proteins have a muta-
tional synergy tendency which may enhance the viral infectivity and the capacity to avoid
host immune responses.

Interestingly, the HA and NA proteins of IAV not only share functional parallels
with the spike RBD and M proteins of SARS-CoV-2 but also have exhibited a pattern of
co-mutation synergy. IAV undergoes antigenic drift, leading to a multitude of variants
that can evade the host immune system [44,45]. This trait has contributed to its high
transmissibility and the occurrence of four global pandemics (https://www.cdc.gov/flu/
pandemic-resources/ (accessed on 12 June 2023)). The synergistic genomic interactions
between the HA and NA proteins are a major force underlying IAV’s evolution [46–48]. The
mutational synergy between HA and NA at the sequence level is the potential restrictive
factor for IAV’s evolution [49,50]. Drawing from research on the mutational synergy of the
HA and NA proteins, we try to explore the possible variation tendency of the spike RBD
and M proteins from an evolutionary perspective.

1.3. Mutational Correlations Analysis

Regarding mutation analysis, Göbel et al. were considered the pioneers in calculating
the mutational correlations between different positions using the Pearson correlation co-
efficient [51]. However, the advent of machine learning has redirected the focus towards
addressing the exploration of contact interactions between protein sequence positions as a
pattern recognition challenge, leading to notable enhancements in predictive accuracy. In
2015, Figliuzzi et al. introduced a mutation effect prediction method based on mean field Di-
rect Coupling Analysis (DCA), which predicts the phenotypic effects of mutation sequences
relative to the wild-type sequence by statistically scoring each variant sequence [52]. This
approach demonstrated a higher accuracy compared to models that independently analyze
individual positions. Particularly, Hopf et al. developed EVmutation [53] based on Pairwise
Likelihood of Mutation Directed Coupling Analysis (PLMDCA) in 2017, which deduces
the mutational phenotype by emulating the interactions among all protein residues and
concurrently evaluates the influence of mutations.

While previous studies were predominantly concentrated on individual proteins, there
has been a scarcity of comprehensive studies examining the co-mutation tendencies between
pairs of proteins. To bridge this research gap, an attention-based neural network model,
termed the Sequence-to-Sequence Transformer Model (S2STM), has been introduced [54],
which has effectively facilitated mutual mapping between the HA and NA sequences of
IAV. In this context, the S2STM is utilized to delve into the co-mutation tendencies of the
spike RBD and M proteins. The S2STM incorporates a multi-head attention mechanism that
enhances global context for information processing, mitigating overfitting and enhancing
interpretability. Moreover, the computational complexity of the S2STM is invariant to
the distance between positions, which is a distinct advantage over convolutional neural
networks (CNNs) when dealing with longer sequences. Compared to recurrent neural
network (RNN) models, the S2STM significantly boosts computational efficiency through
the capability for efficient parallel processing. Consequently, the S2STM is particularly
adept at managing high-throughput sequence data and at uncovering potential mutation
trends between the spike RBD and M proteins.

In this study, our attention is directed towards examining the co-mutations and
potential evolutionary patterns between the spike RBD and M proteins at the amino
acid level, utilizing the S2STM method. By analyzing the mutation distribution of the S and
M proteins and employing the EVmutation to investigate the association between the spike
RBD mutations, we tentatively concluded that three co-mutations (G339D-S373P-S375F,
S371F/L-S373P-S375F, and Q493R-Q498R-Y505H) in the spike RBD sequence were likely
to induce mutations at sites 3/19/63 in the amino acid sequences of the M protein. After
initially revealing a strong correlation between the co-mutations, we further tested the
correlations based on the S2STM. Finally, we concluded that the co-mutations G339D-
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S373P-S375F and Q493R-Q498R-Y505 had the highest probability of inducing mutations
at sites 3 and 19/63 in the amino acid sequence of the M protein. Our study serves as a
bridge between natural language processing and viral evolution, shedding light on the
associations between mutations in the spike RBD and M proteins at the sequence level.

2. Results

Section 2.1 shows the results of the mutation analysis. Section 2.2 shows the possible
variation tendency of the spike RBD and M mutations by analyzing the sequence translation
predicted by the S2STM.

2.1. Variation Analyses at the Amino Acid Level
2.1.1. Results of Single Mutation Analysis

Deletions, replacements, and insertions are primary natural phenomena in viral evolu-
tion [45]. We analyzed the distribution of amino acids in the spike RBD and M sequences
from NCBI (https://www.ncbi.nlm.nih.gov/data-hub/taxonomy/2697049/ (accessed on
20 April 2022)) (Supplementary Table S1). Supplementary Table S1 indicates that the M
sequences were relatively conserved, and only four sites exhibited mutations: D3G, Q19E,
A63T, and I82T. In contrast, the mutations in the spike RBD were more complex and varied.
Combining the mutation information published by the WHO (Table 1), we found that both
the M sequences and the spike RBD sequences exhibited a large number of new mutations
in the Omicron variant. To explore mutational synergy, we focused on exploring these
significant mutations. In this work, we analyze a total of 39,847 sequences.

Table 1. SARS-CoV-2 variants of concern and related spike RBD mutations and M mutations.

WHO
Nomenclature or Designation Pango Lineage Spike RBD Mutations of Interest M Mutations of Interest

Alpha B.1.1.7 N501Y
Beta B.1351 K417N, N501Y, E484K

Gamma P.1 K417T, N501Y, E484K
Delta B.1.617.2 L452R, T478K I82T

Omicron B.1.1.529
G339D, S371F/L, S373P, S375F, T376A, D405N,
R408S, K417N, N440K, S447N, T478K, E484A,

Q493R, Q498R, N501Y, Y505H
D3G, Q19E, A63T, I82T

The bolded mutations occurred for the first time in the Omicron variant.

The core mutations in the M protein are D3G, Q19E, and A63T. The core mutations
in the spike RBD include G339D, S371F/L, S373P, S375F, T376A, D405N, R408S, N440K,
S447N, Q493R, Q498R, and Y505H. The mutation rates for these are depicted in Figure 2A,B.

Additionally, we calculated the mutation rate of the core RBD mutations when any or
none of the sites 3, 19, and 63 in the M sequences were mutated, as illustrated in Figure 2C.
Notably, eight core RBD mutations (G339D, S371F/L, S373P, S375F, S447N, Q493R, Q498R,
Y505H) occurred concurrently with mutations in the M sequences (the probability was 90%
for all the mutations). It tentatively indicated a correlation between certain mutations in
the M and spike RBD sequences.

https://www.ncbi.nlm.nih.gov/data-hub/taxonomy/2697049/
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were mutated (3G, 19E, and 63T). The dark red color shows the core RBD mutation rate when sites
3, 19, and 63 in the M sequences were unmutated (D3, Q19, and A63).

2.1.2. Results of Multiple Mutation Analysis

Given the correlation between the amino acid mutations, we utilized EVmutation to
analyze the mutation profile of the spike RBD and generated a coupling strength map, as
depicted in Figure 3. The coupling strength map represents the strength of the evolutionary
couplings between the amino acid positions in amino acid sequences. It appears that some
amino acids exhibit the co-evolutionary relationships from Figure 3, which implies the
significance of conducting further research.

After successive filtering based on the scores and the co-occurrence of mutations, we
identified that certain core RBD mutations exhibited strong correlations. These included
G339D-S373P-S375F, S371F/L-S373P-S375F, Q493R-Q498R-Y505H, S371F/L-T376A-D405N,
and T376A-D405N-R408S. Combined with analyzing their co-mutation rates when any of the
sites 3/19/63 in the M sequences were mutated (Figure 4), we preliminarily concluded that
the RBD mutations G339D-S373P-S375F, S371F/L-S373P-S375F, and Q493R-Q498R-Y505H
were likely to induce mutations at sites 3/19/63 in the M sequences.
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2.2. Possible Variation Tendency Identified by S2STM

The S2STM was trained and evaluated with the spike RBD sequences and the M
sequences. In the testing datasets for the M protein, the model achieved an accuracy of 99%.
To assess the model’s performance, we conducted calculations of the Pearson correlation
coefficient (PCC) [55] and Hamming distance [56], respectively, in the embedding space
and primitive space. The mean correlation coefficient for the testing datasets was 0.964,
indicating a strong correlation (>0.8). The variance was found to be 1.475 × 10−4. The
Hamming distance, frequently utilized to measure the similarity between two strings,
assigns a distance value of 0 to indicate exact similarity. In our test datasets, 85.3% of the
distance values were below 5, with 47.8% of them being 0. Moreover, the testing datasets
exhibited a statistically significant and strong Area Under the Curve (AUC) [57] of 0.99,
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as demonstrated by the Receiver Operating Characteristic Curves (ROCs) presented in
Figure 5. These findings underscore the robustness and accuracy of the S2STM model,
which effectively learns and establishes the mapping relationship between the RBD and
M sequences. Consequently, the model can be employed to assess and determine the
association of site-specific mutations between the RBD and M sequences.
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To further analyze the co-mutations, we utilized the S2STM to translate the revised testing
datasets, as outlined in the Section 4. This process yielded the translated M sequences, which
were designated as “S_Pre_M”, “S_G339-S373-S375_Pre_M”, “S_339D-373P-375F_Pre_M”,
“S_S371-S373-S375_Pre_M”, “S_371F/L-373P-375F_Pre_M”, “S_Q493-Q498-Y505_Pre_M”,
and “S_493R-498R-505H_Pre_M”. Additionally, we compared the mutation rates between
the baseline data (“M_Test”) and “S_Pre_M” to validate the accuracy. The discrepancies were
found to be no greater than 1.10% (with specific values being 1.10%, 0.37%, and 0.36%), as
depicted in Figure 6. Negligible numerical deviations underscore the accuracy of the model.
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Next, we computed the mutation rates for the core sites (3/19/63) in the M sequences
(Figure 7). Our analysis revealed that following the mutation of the core co-mutations in
the RBD, the incidence of mutations at site 3 in the M sequences rose by 3.68%, 5.88%, and
10.66%; mutations at site 19 increased by 37.50%, 2.94%, and 10.51%; and mutations at site
63 increased by 37.50%, 2.94%, and 5.51%, respectively. Among them, the co-mutations
G339D-S373P-S375F had the highest probability of inducing mutations at site 3 in the
M sequences, and the co-mutations Q493R-Q498R-Y505 had the highest probability of
inducing mutations at sites 19 and 63 in the M sequences. Given these analogous outcomes,
we hypothesized that sites 3 and 19 exhibit synergistic mutational relationships. Through
sequence alignment and variation analysis, we established the relationship between the
RBD and M sequences at the amino acid level.
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Figure 7. The mutation rate of the core sites (3/19/63) in the translated M sequences. Light
gray, dark red, dark blue, dark gray, yellow, and dark green indicate the translation re-
sults in “S_G339-S373-S375_Pre_M”, “S_339D-373P-375F_Pre_M”, “S_S371-S373-S375_Pre_M”,
“S_371F/L-373P-375F_Pre_M”, “S_Q493-Q498-Y505_Pre_M”, and “S_493R-498R-505H_Pre_M”, re-
spectively. (A) The mutation rate at site 3 in the M sequences. (B) The mutation rate at site 19 in the
M sequences. (C) The mutation rate at site 63 in the M sequences.

3. Discussion

Based on the functions of the S RBD and M proteins and drawing from research on
the mutational synergy of the HA and NA proteins, we try to explore the possible variation
tendency of the spike RBD and M proteins from an evolutionary perspective. Until late
2022, the predominant COVID-19 vaccines were formulated based on the S antigen of early
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viral variants. However, the emergence of the Omicron variant has resulted in an increased
incidence of mutations within the spike RBD, which has posed significant challenges in the
development of universal vaccines. The spike RBD, which plays a crucial role in viral entry
and immune evasion, has become a major focus for vaccine development efforts [19]. The
mutations that have been identified have been a popular topic of discussion, and the RBD
mutations, in particular, have been extensively studied.

The mutations Q493R, S371L, S373P, and S375F have been reported to enhance binding
to the ACE2 receptor [58]. Additionally, the mutations S371L, S375F/L, Q493R, and Q498R
are suggested to potentially introduce spatial steric hindrance or disrupt specific hydrogen
bonds [40]. The M amino acid sequences are highly conserved, with only a few atypical
mutations observed in the Omicron variant. The effects of M protein mutations have not
been extensively studied, with limited research conducted to date. As a distinct variant,
the Omicron variant has been identified as the predominant strain of SARS-CoV-2 since
December 2021. Compared to earlier strains, the Omicron variant is less symptomatic, less
lethal, and has a shorter recovery time, but it spreads rapidly through the population [59].

Notably, the co-mutations identified in the spike RBD are also present in nearly all
the Omicron sublineages. Despite a comprehensive investigation, no relevant biochemical
experiments have been found to confirm the synergistic effects of mutations between the
spike RBD and M proteins. Consequently, experimental efforts are expected in order to
validate the findings regarding mutational synergy in the near future.

However, the mutation synergy between the spike RBD and M proteins identified
through our model still can hold meaningful implications for therapeutic strategies and
vaccine development [60,61]. For instance, vaccines could potentially be designed to
target key residues involved in the synergistic interaction. Such a design might elicit
immune responses that disrupt viral entry or replication, thereby inhibiting the spread of
the virus and potentially conferring broader protection against emerging viral variants.
Understanding the potential interactions between the mutations within these proteins
provides a novel perspective on the plausible evolutionary trajectory of the virus and its
infectivity, thereby facilitating the development of vaccines that are more effective against
a range of viral strains.

The XBB variant [62–64] has been detected in 35 countries and has gained a worldwide
presence, with a global prevalence of 1.3%. It is a recombinant Omicron subtype resulting
from the BA.2.10.1 and BA.2.75 sublineages. Although the sequences of the XBB variant
are not included in our dataset, they serve as a valuable validation set for assessing
the performance of our model. Core mutations in the spike RBD (G339H, S371F, S373P,
S375F, Q498R, and Y505H) have been identified in the XBB variant, based on the available
amino acid sequences (https://covdb.stanford.edu/variants/omicron_ba_2/ (accessed on
16 April 2024)). It is notable that site 339 was mutated from G to H in the XBB. According
to our conclusions, G339D-S373P-S375F is highly likely to induce mutations at site 3 in
the M sequences. However, with a different mutation observed at site 339 in the RBD
sequences, site 3 in the M sequences remains unmutated (D3). This suggests that the
potential variation tendencies of the spike RBD and M proteins may also be relevant to the
XBB variant, highlighting the broad applicability of this study.

4. Materials and Methods

Here, we describe the methods of sequence retrieval and preparation, mutation syn-
ergy analysis using EVmutation, and sequence translation based on S2STM in detail:
(1) sequence preparation: preliminary deletion and alignment of the S and M amino acid
sequences; (2) mutational synergy analysis: analysis of the mutation distribution of the
filtered S and M amino acid sequences and use of EVmutation to explore the association
between mutations in the spike RBD; and (3) sequence translation: testing the correlations
of mutations based on S2STM.

https://covdb.stanford.edu/variants/omicron_ba_2/
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4.1. Sequence Retrieval and Preparation

Complete or near-complete amino acid sequences of the S and M proteins from
SARS-CoV-2 viruses were retrieved from NCBI (https://www.ncbi.nlm.nih.gov/data-hub/
taxonomy/2697049/ (accessed on 20 April 2022)). The initial set of amino acid sequences
comprised a total of 295,199 entries for each protein.

For more targeted deciphering of genetic variation, we chose the spike RBD (amino
acid sequence number 316–541) and created a dataset pairing the spike RBD with the M
protein, ensuring they corresponded to the same strain. Initial pairing of sequences was
performed using an in-house Python script, followed by multiple sequence alignment
with MEGA X v10.2.6 [65] with the complete amino acid sequence of the SARS-CoV-2
Wuhan-Hu-1 strain (accession NC_045512, version NC_045512.2) serving as the reference
sequence. Sequences with missing amino acids exceeding half of their total length were
excluded, and duplicate sequences were represented by a single random instance from this
study, also using the in-house Python script. After this filtration process, we obtained a
final set of 39,847 sequences, with all spike RBDs and M proteins having sequence lengths
standardized to 223 and 222 amino acids, respectively.

4.2. Mutational Synergy Analysis
4.2.1. Single Mutations

First, we calculated the distributions of amino acids at each position in the sequence
and the probability of mutation (PM (aa, x)) using Python, where aa denotes the specific
amino acid, and x signifies the position within the sequence.

PM(aa, x) =
number of amino acid at site x

total number of sequences
(1)

Then, combining the mutations of interest reported by the WHO, we focused on
the mutations that occurred for the first time in the Omicron variant and calculated their
mutation rates.

4.2.2. Multiple Mutations

In the spike RBD, the amino acid mutations were increased significantly. To ascer-
tain the residue dependencies between different sites, we used an unsupervised statistical
method known as EVmutation, which is adept at analyzing the interactions between protein
variants and can explicitly account for interactions between various positions. The EVmu-
tation process involves the following steps: (1) generation of multiple sequence alignments;
(2) sample reweighting; (3) regularization; (4) calculation of the mutation effects.

To minimize potential interference, three independent experiments were conducted.
The top 30 results were selected based on the score of each experiment and finally, 20 groups
were chosen based on the highest frequency of occurrence in the overall results.

4.3. Sequence Translation
4.3.1. Sequence-to-Sequence Transformer Model

We chose the Sequence-to-Sequence Transformer Model (S2STM) [54] to realize mutual
mapping between the amino acid sequences of the spike RBD and M proteins (Figure 8). The
model is structured as an encoder–decoder, with both the encoder and decoder comprising
a stack of N_layers = 4. Within each encoder layer, there are two sublayers: a multi-head
attention mechanism and a fully connected feed-forward network. Each decoder layer
has three sublayers: a masked multi-head attention mechanism, a multi-head attention
mechanism, and a fully connected feed-forward network.

https://www.ncbi.nlm.nih.gov/data-hub/taxonomy/2697049/
https://www.ncbi.nlm.nih.gov/data-hub/taxonomy/2697049/
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mapping between the RBD and M amino acid sequences.

The S2STM is based on the multi-head attention mechanism [66], which was developed
from “Scaled Dot-Product Attention”. This mechanism is capable of refining feature
information from multiple dimensions and effectively guards against overfitting. This
single “Scaled Dot-Product Attention” function can be described as mapping a query and
a set of key–value pairs to an output. In the calculation process, it is necessary to pack
together into a matrix Q, K, and V; the dimensions are dQ, dk, and dv, respectively. The
function is defined as follows.

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (2)

Multi-head attention can group each single attention operation and it allows the
model to jointly attend to information from different representation subspaces at different
positions. The output is a linear transformation via learnable parameters, WO. The multi-
head attention function with n heads is articulated as follows.

MultiHead (Q, K, V) = Contact (head1, . . . , headn)WO (3)

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(4)

4.3.2. Model Parameters

All networks were simultaneously trained with a batch size of 8 on an NVIDIA
1080 GPU, adhering to computational resource efficiency and facilitating residual con-
nections within the model. The values of input and output dimensionality were set as
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dmodel = 128, while the inner layer had a dimensionality of dff = 512. To prevent overfitting,
the number of parallel attention layers or heads was set as N_heads = 8. Consequently, for
each head, the dimensions of dk = dv = dmodel/h = 16. In the training process, we utilized
the Adam optimizer [67,68] with the following parameter settings: β1 = 0.9, β2 = 0.98, and
ε = 10−9. Additionally, a dropout rate of Pdrop = 0.1 was employed as a generic parameter.

4.3.3. Dataset Selection and Division

Before constructing the training datasets, it was necessary to create word sets tailored
for the S2STM. This process enhanced the suitability of the datasets for the S2STM. Each
amino acid position in the original sequence was expanded from one to three units, whereby
each spike RBD sequence was described as a list of 223 3-g, and each M sequence was de-
scribed as 222 3-g. The sizes of the spike RBD and M protein word sets were 1298 and 1144,
respectively. These word sets were converted to numerical representations to be used as
the index of the embedding.

The details of the training datasets are as follows: (1) The training datasets of the
M sequences were divided equally into two parts: one was extracted from the whole M
sequence datasets with mutations at sites 3/19/63, and the other was randomly extracted
from the remaining sequences with an equal number of sequences, and (2) the training
datasets of the spike RBD sequences introduced a bijection into the training datasets of the
M sequences based on the isolate. The entire training and testing processes were performed
using TensorFlow v2.0.4 [69]. We disrupted the datasets before training, and the datasets
were divided into training, validation, and testing sets at a ratio of 0.8:0.1:0.1.

In parallel, we found that the core co-mutations in the spike RBD were G339D-S373P-S375F,
S371F/L-S373P-S375F, and Q493R-Q498R-Y505H. To further investigate the potential
covariation tendencies, we created six additional revised spike RBD testing datasets,
named “G339-S373-S375”, “339D-373P-375F”, “S371-S373-S375”, “Q493-Q498-Y505”, and
“493R-498R-505H”. For instance, “G339-S373-S375” (“339D-373P-375F”) indicated modifi-
cations of the 339/373/375 site into G, S, and S (D, P, and F), respectively. The remaining
testing datasets were constructed following the same pattern.

4.3.4. Model Validation

The calculations of the Pearson correlation coefficient (PCC) [55], Hamming dis-
tance [56], and Area Under Curve (AUC) [57] were conducted to assess the performance
of the model.

The PCC serves as a metric for quantifying linear correlation between two datasets.
Given a pair of random variables (X, Y), the formula for ρ is

ρ (X, Y) =
cov (X, Y)

σXσY
(5)

The Hamming distance, commonly employed for assessing the dissimilarity between
two strings, assigns a distance value of 0 to indicate exact similarity. For two strings,
u = (u1, · · · , un) and v = (v1, · · · , vn), representing words in set C, the Hamming
distance is denoted as d(u, v). Therefore, the Hamming distance functions as a metric
within the set C.

The AUC serves as a metric for evaluating the discriminatory capability of a binary
classifier and is utilized as a concise representation of the Receiver Operating Character-
istic (ROC) Curve. A higher AUC value indicates superior performance of the model in
discriminating between positive and negative classes.

AUC =
∫ 1

0

True Positive
True Positive + False Negative

d(x) (6)
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5. Conclusions

Our research identified some co-mutations in the spike RBD sequences during the
evolution of SARS-CoV-2. Through a preliminary analysis of the sequences, we pinpointed
the core mutations and several co-mutation sites in the spike RBD (G339D-S373P-S375F,
S371F/L-S373P-S375F, and Q493R-Q498R-Y505H). Subsequently, we established, for the
first time, mapping relationships between the RBD and M sequences using the S2STM.
This model can reveal and validate the potential variation tendencies of the amino acid
sequences of the spike RBD and M proteins with 99% accuracy. Our findings suggest that
the co-mutation G339D-S373P-S375F is highly likely to induce mutations at site 3 in the M
sequences, while the co-mutations Q493R-Q498R-Y505H are likely to induce mutations at
sites 19 and 63 in the M sequences.

In our study, we propose that co-mutations in the spike RBD could potentially induce
mutations in the M protein. This not only facilitates our understanding of the evolution
of SARS-CoV-2 but also provides new insights into the mutational synergy between the
spike RBD and M proteins, while simultaneously advancing the development of sequence
analysis methodologies.
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