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Abstract: Cerebral cavernous malformations (CCMs) are a neurological disorder characterized by
enlarged intracranial capillaries in the brain, increasing the susceptibility to hemorrhagic strokes, a
major cause of death and disability worldwide. The limited treatment options for CCMs underscore
the importance of prognostic biomarkers to predict the likelihood of hemorrhagic events, aiding
in treatment decisions and identifying potential pharmacological targets. This study aimed to
identify blood biomarkers capable of diagnosing and predicting the risk of hemorrhage in CCM1
patients, establishing an initial set of circulating biomarker signatures. By analyzing proteomic
profiles from both human and mouse CCM models and conducting pathway enrichment analyses,
we compared groups to identify potential blood biomarkers with statistical significance. Specific
candidate biomarkers primarily associated with metabolism and blood clotting pathways were
identified. These biomarkers show promise as prognostic indicators for CCM1 deficiency and the risk
of hemorrhagic stroke, strongly correlating with the likelihood of hemorrhagic cerebral cavernous
malformations (CCMs). This lays the groundwork for further investigation into blood biomarkers to
assess the risk of hemorrhagic CCMs.

Keywords: hemorrhagic stroke; cerebral cavernous malformations (CCMs); circulating blood biomarker;
prognostic and predictive biomarkers

1. Introduction

Cerebral cavernous malformations (CCMs) are a neurological disorder that causes
enlarged intracranial capillaries in the brain, leading to an increased risk of hemorrhagic
stroke [1,2]. This condition is particularly prevalent in the Hispanic population, with the
highest rates observed in individuals with the CCM1 gene mutation [3–6]. The common
Hispanic BACA-CCM1 mutation has been traced back to several generations of descendants
in the West Texas borderland area, which also has the highest percentage of Hispanics in
the United States and is considered the epicenter for CCMs in North America by stroke
specialists. Unfortunately, the majority of individuals with the CCM gene mutation are
mainly asymptomatic, but when symptoms do occur, the disease has often reached the
stage of focal hemorrhage, leading to significant morbidity [7–11].

Currently, the treatment options for CCMs are limited to neurosurgical removal for
most lesions or gamma knife radiosurgery for deep-stem CCM lesions [12–15]. These treat-
ments are invasive and can have severe consequences for patients, highlighting the need
for prognostic biomarkers to predict the risk of hemorrhagic events to inform treatment
decisions better and identify future pharmacological targets. Recent research has identified
several etiological serum and blood-circulating biomarkers in a selected cohort of homo-
geneous CCM patients sharing the BACA-CCM1 mutation [7]. Based on the previously
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identified biomarkers, the authors have developed the first panel of candidate biomarkers
to predict the risk of hemorrhagic CCMs in the largest recorded sample size from local
Hispanic CCM patients. This biomarker panel has the potential to significantly improve
patient outcomes and reduce the morbidity associated with this debilitating condition.

Biomarkers are essential in predicting, screening, diagnosing, forecasting, or stratify-
ing risk for disease outcomes. They can be cellular, histological, molecular, physiological,
or radiographic characteristics and can be used alone or as a panel with multiple targets
(FDA-NIH BEST resources). Blood biomarkers, especially prognostic biomarkers, are ad-
vantageous due to their low cost, feasibility, and acceptability for diagnostic and prognostic
applications. They have been long sought after as diagnostic and prognostic tools for
various disorders, mainly ischemic strokes [16–20]. Thus far, the progress in developing
biomarker-driven prediction models for hemorrhagic CCMs has been restricted. A handful
of initial investigations have been carried out in human and animal models, yet they have
faced considerable constraints [7,21–24].

In this research, we have discovered the inaugural set of biomarker signatures closely
linked to hemorrhagic risk. This innovative biomarker panel lays the groundwork for the
further assessment of potential blood biomarkers in determining the risk of hemorrhagic
CCMs. This could pave the way for a reformed approach incorporating updated clinical
definitions and substantially enhance the management of hemorrhagic strokes.

2. Results
2.1. Differentially Expressed Serum Proteins Were Identified through Proteomics in Two Species

Using the proteomics approach, we identified 69 confirmed serum proteins from
189 peptide entries in humans and 105 confirmed serum proteins from 168 peptide entries
in mice. By comparing the distribution of expressed protein profiles between CCM1-
deficient subjects and normal controls across species, we found that there were more
down-regulated DEPs than up-regulated DEPs in both humans (Figure 1A) and mice
(Figure 1B). Of these, 35 genes were uniquely expressed and shared between the two
species (Figure 1C). Comparative heatmaps visualize the differential expression of serum
proteins (DEPs) between CCM1-deficient subjects and normal controls in both species
(Figure 1D). This suggests that the DEPs shared by both species could serve as potential
blood-circulating biomarkers for hemorrhagic CCMs. We observed a congruous trend of
DEPs in both species, which was further highlighted in the volcano plots in both humans
(Figure 1E) and mice (Figure 1F). The data presented showcase the involvement of DEPs in
several biological processes, making them an excellent foundation for the following gene
pathway and enrichment analysis.
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Figure 1. Differentially expressed serum proteins (DEPs) were identified in CCM1-deficient subjects 
and normal controls across species using high-throughput comparative proteomics. The statistical 
significance of differentially expressed serum proteins (DEPs) was determined by analyzing the dis-
tribution of expressed protein profiles. (A,B) Highly expressed serum proteins were distributed 
across species in CCM1-deficient subjects and normal controls. The distribution of DEPs was over-
laid by comparing CCM1-deficient subjects to normal controls in both humans (A) and mice (B). 
Up- (red bar) and down- (blue bar) regulation were determined by fold change values. (C,D) Unique 
patterns in the DEPs were identified by comparing CCM1-deficient individuals and normal controls 
in two species. A Venn diagram displays unique and co-expressed proteins between humans and 
mice (C). Comparative heatmaps illustrate protein expression changes between CCM1-deficient 
subjects and controls in both species (D). The heatmaps display protein expression values for each 
related protein on the Y-axis. (E,F) Volcano plots display DEPs between CCM1-deficient subjects 
and healthy controls. This visualization highlights proteins in both control and confirmed CCM-
deficient subjects, demonstrating how the differentiated protein expression varies compared to con-
trols. A p-value, derived from a Student’s t-test, is shown in a −log10 function relative to the log2 
fold change. This approach helps regulate infinite fold values for unique values, preventing graph 
distortion. The data points within the plot represent fold changes in protein expression for CCM1-
deficient subjects compared to the control group in both humans (E) and mice (F). The values of up-
and down-regulated proteins from figures (E,F) were refined using a −log10 p-value threshold to 
identify more significant results. For specific gene/protein names corresponding to the dots in the 
plot, please refer to Supplementary Figure S1E,F. 

2.2. CCM1-Associated Signaling Pathways Were Identified through Pathway Analyses among 
DEPs in Two Species 

Gene pathway and enrichment analysis is a widely used method in omics to identify 
overrepresented gene sets in a specific subset of genes or proteins, such as pathways, gene 
ontology terms, or disease-associated genes. This approach provides valuable insights 
into the underlying biological processes of a disease phenotype. In our study, we con-
ducted gene ontology (GO), disease ontology (DO), and KEGG pathway enrichment anal-
yses to comparatively examine the functional characteristics and biological pathways of 
the differentially expressed proteins (DEPs) identified in our study. 

To determine the statistical significance of the biological functions within the group 
of DEPs identified in our study, we first conducted group gene ontology (GO) and path-
way analysis with systematic functional annotation [25–27]. Given the significant number 
of DEPs identified in both species, we used these DEPs for initial biological profiling 
through functional interaction network and pathway analyses. GO enrichment analysis 
was performed based on the described method [28]. Enriched GO pathway dot plots offer 
a comparative visualization of functional enrichment outcomes in both human (Figure 2A, 

Figure 1. Differentially expressed serum proteins (DEPs) were identified in CCM1-deficient subjects
and normal controls across species using high-throughput comparative proteomics. The statistical
significance of differentially expressed serum proteins (DEPs) was determined by analyzing the
distribution of expressed protein profiles. (A,B) Highly expressed serum proteins were distributed
across species in CCM1-deficient subjects and normal controls. The distribution of DEPs was overlaid
by comparing CCM1-deficient subjects to normal controls in both humans (A) and mice (B). Up-
(red bar) and down- (blue bar) regulation were determined by fold change values. (C,D) Unique
patterns in the DEPs were identified by comparing CCM1-deficient individuals and normal controls
in two species. A Venn diagram displays unique and co-expressed proteins between humans and
mice (C). Comparative heatmaps illustrate protein expression changes between CCM1-deficient
subjects and controls in both species (D). The heatmaps display protein expression values for each
related protein on the Y-axis. (E,F) Volcano plots display DEPs between CCM1-deficient subjects and
healthy controls. This visualization highlights proteins in both control and confirmed CCM-deficient
subjects, demonstrating how the differentiated protein expression varies compared to controls. A
p-value, derived from a Student’s t-test, is shown in a −log10 function relative to the log2 fold change.
This approach helps regulate infinite fold values for unique values, preventing graph distortion.
The data points within the plot represent fold changes in protein expression for CCM1-deficient
subjects compared to the control group in both humans (E) and mice (F). The values of up-and
down-regulated proteins from figures (E,F) were refined using a −log10 p-value threshold to identify
more significant results. For specific gene/protein names corresponding to the dots in the plot, please
refer to Supplementary Figure S1E,F.

2.2. CCM1-Associated Signaling Pathways Were Identified through Pathway Analyses among
DEPs in Two Species

Gene pathway and enrichment analysis is a widely used method in omics to identify
overrepresented gene sets in a specific subset of genes or proteins, such as pathways, gene
ontology terms, or disease-associated genes. This approach provides valuable insights into
the underlying biological processes of a disease phenotype. In our study, we conducted
gene ontology (GO), disease ontology (DO), and KEGG pathway enrichment analyses
to comparatively examine the functional characteristics and biological pathways of the
differentially expressed proteins (DEPs) identified in our study.

To determine the statistical significance of the biological functions within the group of DEPs
identified in our study, we first conducted group gene ontology (GO) and pathway analysis
with systematic functional annotation [25–27]. Given the significant number of DEPs identified
in both species, we used these DEPs for initial biological profiling through functional interaction
network and pathway analyses. GO enrichment analysis was performed based on the described
method [28]. Enriched GO pathway dot plots offer a comparative visualization of functional
enrichment outcomes in both human (Figure 2A, Supplementary Figures S1A,C and S2A,C,E,F)
and mouse (Figure 2B, Supplementary Figures S1B,D and S2B,D,G,H) datasets, enabling us to
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discern patterns in extensive biological data and assess the differentially expressed proteins
(DEPs) affected by CCM1 deficiency.
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Figure 2. Comparative proteomics identifies critical pathways and their associated biomarkers for 
CCM1 deficiency. Comparative proteomics research has revealed crucial pathways and biomarkers 
related to CCM1 deficiency. By detecting differentially expressed serum proteins (DEPs) in CCM1-
deficient and normal subjects, the study successfully uncovered various pathways implicated in 
CCM1 deficiency. This was achieved through gene set enrichment analysis (GSEA) of the identified 
DEPs in human and mouse subjects. (A,B) Gene ontology (GO) groupings for functional interaction 
networks and pathway analyses were conducted to assess the statistical significance of a biological 
process among the identified DEPs. This was done to evaluate the enrichment of differentially ex-
pressed serum proteins (DEPs) between CCM1-deficient and normal conditions in both humans (A) 
and mice (B). Two common pathways between (A) and (B) were identified: the cellular metabolic 
pathway and the coagulation and complement pathway. (C,D) A comparative proteomics study 
was carried out between CCM1-deficient and normal conditions, employing the Kyto Encyclopedia 
of Genes and Genomes (KEGG) pathways to enrich differentially expressed serum proteins (DEPs) 
in humans (C) and mice (D). The pathways emphasized by colored frames represent the top-selected 
pathways. Two common pathways between (A) and (B) were identified: the cellular metabolic path-
way and the coagulation and complement pathway. (E,F) The disease ontogeny (DOSE) pathways 
were employed to enrich differentially expressed serum proteins (DEPs) between CCM1-deficient 
and normal conditions in humans (E) and mice (F). Two common pathways between (A) and (B) 
were identified: the cellular metabolic pathway and the coagulation and complement pathway. (G) 
Applying three distinct enrichment libraries showcases pathways impacted by the CCM1 deficiency 
compared to the control for both species studied. From left to right, we observe enriched gene on-
tology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Disease Ontology Semantic 
and Enrichment (DOSE) analyses, revealing affected pathways in metabolism (red outline) and com-
plement and coagulation cascade pathways (blue outline). The highlighted pathways across two 
different species hold the potential for discovering etiological and prognostic biomarkers for future 
validation analysis. 

2.3. Common Shared CCM1-Associated Signaling Pathways Were Identified in Two Species 
We subsequently performed a disease ontology (DOSE) pathway analysis to corrob-

orate the GO enrichment findings. This robust method facilitates the establishment of con-
nections between enriched signaling pathways derived from differentially expressed 
genes and proteins (DEGs/DEPs) and the clinical phenotype (hemorrhagic CCMs), allow-
ing for the identification of potential pathways linked to the progression of the pathology 
[27,29,30]. 

Notably, the DOSE enrichment pathway analysis revealed the sharing of both meta-
bolic processes and pathways and coagulation and complement pathways in individuals 
with CCM1 deficiency compared to the control group in both humans and mice (as shown 
in Figure 2E,F). However, DOSE-based over-enrichment analysis only identified coagula-
tion and complement pathways (as demonstrated in Table 2A,B), possibly due to the 
abovementioned reasons. These results suggest that the differentially expressed proteins 
associated with metabolic processes/pathways and coagulation and complement path-
ways could be crucial in developing CCM1 deficiency in humans and mice. These findings 

Figure 2. Comparative proteomics identifies critical pathways and their associated biomarkers for CCM1
deficiency. Comparative proteomics research has revealed crucial pathways and biomarkers related to
CCM1 deficiency. By detecting differentially expressed serum proteins (DEPs) in CCM1-deficient and
normal subjects, the study successfully uncovered various pathways implicated in CCM1 deficiency.
This was achieved through gene set enrichment analysis (GSEA) of the identified DEPs in human
and mouse subjects. (A,B) Gene ontology (GO) groupings for functional interaction networks and
pathway analyses were conducted to assess the statistical significance of a biological process among the
identified DEPs. This was done to evaluate the enrichment of differentially expressed serum proteins
(DEPs) between CCM1-deficient and normal conditions in both humans (A) and mice (B). Two common
pathways between (A) and (B) were identified: the cellular metabolic pathway and the coagulation and
complement pathway. (C,D) A comparative proteomics study was carried out between CCM1-deficient
and normal conditions, employing the Kyto Encyclopedia of Genes and Genomes (KEGG) pathways
to enrich differentially expressed serum proteins (DEPs) in humans (C) and mice (D). The pathways
emphasized by colored frames represent the top-selected pathways. Two common pathways between
(A) and (B) were identified: the cellular metabolic pathway and the coagulation and complement
pathway. (E,F) The disease ontogeny (DOSE) pathways were employed to enrich differentially expressed
serum proteins (DEPs) between CCM1-deficient and normal conditions in humans (E) and mice (F).
Two common pathways between (A) and (B) were identified: the cellular metabolic pathway and the
coagulation and complement pathway. (G) Applying three distinct enrichment libraries showcases
pathways impacted by the CCM1 deficiency compared to the control for both species studied. From
left to right, we observe enriched gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and Disease Ontology Semantic and Enrichment (DOSE) analyses, revealing affected pathways
in metabolism (red outline) and complement and coagulation cascade pathways (blue outline). The
highlighted pathways across two different species hold the potential for discovering etiological and
prognostic biomarkers for future validation analysis.

The GO enrichment pathway analysis showed that human and mouse CCM1-deficient
subjects shared metabolic processes and pathways compared to the respective control
groups (Figure 2A,B). In contrast, the GO-based over-enrichment analysis identified shared
coagulation and complement pathways in CCM1-deficient subjects relative to the con-
trol groups in both humans (Table 1A, Supplementary Figures S3A and S4A) and mice
(Table 1B, Supplementary Figures S3B and S4B). These differences could be attributed to
each method’s distinct bioinformatics approaches and databases.
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Table 1. Gene set enrichment analysis (GSEA) for GO. The gene set enrichment analysis (GSEA) was
performed using the gene ontology (GO) of CCM1-deficient subjects compared to that of the control in
both humans (A) and mice (B). Significant DEP enrichment was then compared to a human database
from BiocManager (Org.Hs.eg.db) (A) and a mouse database from BiocManager (Org.Mm.eg.db) (B).
The DEPs associated with pathways that showed significant differences in GO enrichment analysis
are listed in the table. The pathways highlighted in blue represent the complement and coagulation
cascade, with associated DEPs potentially serving as prognostic biomarkers.

(A)

Ontology Description Genes Involved

BP negative regulation of multicellular
organismal process

FN1 APOD PGLYRP2 RBP4 KNG1 APOA2 APCS
VTN APOE KLKB1 SERPINF2 APOC3

BP vesicle-mediated transport APOA2 VTN APOE PCLO APOC3

BP regulation of vesicle-mediated transport APOA2 VTN APOE PCLO APOC3

MF phospholipid binding APOE PCLO APOC3

BP regulation of wound healing KNG1 APCS VTN APOE KLKB1 SERPINF2

BP negative regulation of cellular process APOD PGLYRP2 RBP4 KNG1 C5 APOA2 APCS
APOE APOC3

(B)

Ontology Description Genes Involved

BP Cytokine Production Thbs1 Serpinf1 B2m

BP Regulation of Cytokine Production Thbs1 Serpinf1 B2m

BP Behavior Thbs1 Serpinf1 B2m

BP Negative Regulation of Gene Expression Thbs1 Pglyrp2 Serpinf1

BP Immune Response Pglyrp2 Igkv1-135 Kng2 Igkv4-70 APCS Ighv6-6
B2m

CC Extracellular region
C8b Pf4 Klkb1 Gpx3 Qsox1 F12 RBP4 Gsn Cd5l F5
Lcat Agt Thbs1 Pglyrp2 Igkv1-135 Serpinf1 Kng2

F13a1 Igkv4-70 APCS Ighv6-6 B2m

2.3. Common Shared CCM1-Associated Signaling Pathways Were Identified in Two Species

We subsequently performed a disease ontology (DOSE) pathway analysis to corrobo-
rate the GO enrichment findings. This robust method facilitates the establishment of connec-
tions between enriched signaling pathways derived from differentially expressed genes and
proteins (DEGs/DEPs) and the clinical phenotype (hemorrhagic CCMs), allowing for the
identification of potential pathways linked to the progression of the pathology [27,29,30].

Notably, the DOSE enrichment pathway analysis revealed the sharing of both metabolic
processes and pathways and coagulation and complement pathways in individuals with
CCM1 deficiency compared to the control group in both humans and mice (as shown in
Figure 2E,F). However, DOSE-based over-enrichment analysis only identified coagulation
and complement pathways (as demonstrated in Table 2A,B), possibly due to the abovemen-
tioned reasons. These results suggest that the differentially expressed proteins associated
with metabolic processes/pathways and coagulation and complement pathways could be
crucial in developing CCM1 deficiency in humans and mice. These findings provide further
evidence supporting the involvement of proteins from these two significant pathways in
CCM1 deficiency and emphasize their potential as biomarkers for this disease.
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Table 2. Gene set enrichment analysis (GSEA) using DOSE. The GSEA was performed based on
the disease ontology (DOSE) of CCM1-deficient subjects compared to that of the control in both
humans (A) and mice (B). Significant DEP enrichment was then compared to a human database from
BiocManager (Org.Hs.eg.db) (A) and a mouse database from BiocManager (Org.Mm.eg.db) (B). The
DEPs associated with pathways that showed significant differences in GO enrichment analysis are
listed in the table. The pathways highlighted in blue represent the complement and coagulation
cascade, with associated DEPs potentially serving as prognostic biomarkers.

(A)

DO:ID Description Gene Symbol

DOID:6262 Complement Deficiency APOA1, C3, C4B, C5, C6, C7, C8A, C8B, CFH,
CFHR1

DOID:1247 Blood Coagulation Disease C3, C4B, C5, CFH, CPB2, F11, F13B, FGA, PROS1,
SELL, SERPINA10, SERPIND1, SERPINF2, VWF

DOID:5844 Myocardial Infarction
APOA1, APOA4, APOE, C3, C4B, C7, C8A, C8B,
CFH, CPB2, F11, F13B, FGA, GSN, ITIH4, LPA,

SERPIND1, VWF

DOID:10871 Age Related Macular Degeneration APOE, C3, C5, CFD, CFHR1, SELL, SERPINF1, TF

DO: 576 Proteinuria APOA1, APOA4, APOE, C3, C4B, C5,C6, CFH,
CPB2, HPX, LPA, VTN

DO:1074 Kidney Failure AMBP, APOA1, APOA4, APOE, C3, C6, CFH, CPB2,
FGA, PROS1, S100A8, SELL, SERPINF1, TFRC, VWF

(B)

DO: ID Description Gene Symbol

DOID:3393 Coronary Artery Disease

APOA1, APOA2, APOA4, APOC3, APOC4, APOE,
APOM, C3, C7, C8A, C8B, CFH, CPB2, F11, F13B, F5,
FGA, GSN, ITIH3, ITH4, LCAT, LPA, LUM, PON3,

SELL, SERPIND1, SERPINF2, SERPING1, VTN,
VWF

DOID:626 Complement Deficiency APOA1, C3,C5, C6, C7, C8A, C8B, CFH, CFHR1

DOID:1074 Kidney Failure
AMBP, APOA1, APOA4, APOC3, APOE, B2M, C3,
C6, CFH, CPB2, F5, FGA, LCAT, PROS1, PTGDS,

S100A8, SELL, SERPINF1, TFRC, VWF

DOID:5844 Myocardial Infarction
APOA1, APOA4, APOC3, APOE, C3, C7, C8A, C8B,
CFH, CPB2, F11, F13B, F5, FGA, GSN, ITIH3, ITIH4,

LCAT, LPA, SERPIND1, SERPING1, VWF

DOID:1247 Blood Coagulation Disease C3,C5, CFH, CP, CPB2, F11, F13B, F5, FGA, KLKB1,
PROS1, SERPINA10, SERPIND1, SERPINF2, VWF

DOID:74 Hematopoietic System Disease
APOE, C3,C5,CA1,CP, CPB2, F11, F13B, F5, FGA,
KLKB1, MASP2, SELL, SERPINA10, SERPIND1,

SERPINF1, SERPINF2, TF, TFRC, VWF

In addition to GO and DOSE enrichment analyses, we also conducted an enriched
KEGG analysis. This revealed that both human (Figure 2E, Supplementary Figure S5A) and
mouse (Figure 2F, Supplementary Figure S5B) CCM1-deficient subjects exhibited alterations
in coagulation and complement pathways compared to the control group, which is further
supported by KEGG-based GSEA (Table 3A,B). Notably, the top three pathways identified
in the enriched KEGG analysis, including complement and coagulation, ECM-receptor
interaction, and focal adhesion pathways, are all closely related to hemorrhagic events.
These findings offer valuable insights into the biological processes underlying CCM1
deficiency and may contribute to developing new therapeutic approaches for the disease.
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Table 3. Gene set enrichment analysis (GSEA) based on KEGG. The GSEA was performed based
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of CCM1-deficient subjects
compared to those of the control in both humans (A) and mice (B). Significant DEP enrichment was
then compared to a human database from BiocManager (Org.Hs.eg.db) (A) and a mouse database
from BiocManager (Org.Mm.eg.db) (B). Blue-highlighted pathways represent the complement and
coagulation cascade, with associated DEPs potentially serving as prognostic biomarkers. Furthermore,
red-highlighted pathways pertain to the metabolic pathway, where related DEPs are intended for
evaluation as potential etiological biomarkers.

(A)

ID Description Gene Symbol

hsa04610 Complement and coagulation cascades A2M, C1QA, C1QC, C3, C4BP, C6, C8A, F11, F13B,
FGA, MASP2, SERPIND1, SERPINF2, VTN VWF

hsa05171 Coronavirus disease—COVID-19 C1QA, C1QC, C3, C6, C8A, F13B, FGA, MASP2,
VWF

hsa05322 Systemic lupus erythematosus C1QA, C1QC, C3, C6, C8A, H2AJ

hsa05150 Staphylococcus aureus infection C1QA, C1QC, C3, KRT9, MASP2

hsa05133 Pertussis C1QA, C1QC, C3, C4BPB

hsa04613 Neutrophil extracellular trap formation C3, FGA, H2AJ, VWF

hsa04512 ECM-receptor interaction CD44, VTN, VWF

hsa05142 Chagas disease C1QA, C1QC, C3

(B)

ID Description Gene Symbol

hsa04610 Complement and coagulation cascades

C1QA, C1QB, C1QC, C3, C4BPB, C5, C6, C7, C8A,
C8B, CFD, CFH, CFHR1, CPB2, F11, F13B, F5, FGA,

KLKB1, MASP2, PROS1, SERPIND1, SERPINF2,
SERPING1, VTN, VWF

hsa05171 Coronavirus disease—COVID-19 C1QA, C1QB, C1QX, C3, C5, C6, C7, C8A, C8B, CFD,
F13B, FGA, IKBKG, MASP2,VWF

hsa05150 Staphylococcus aureus infection C1QA, C1QB, C1QC, C3, C5, CFD,CFH, KRT9,
MASP2

hsa04979 Cholesterol metabolism APOA1, APOA2, APOA4, APOC3, APOE, LCAT,
LPA

hsa05322 Systemic lupus erythematosus C1QA, C1QB, C1QC, C3, C5, C6, C7, C8A, C8B,
H2AJ

hsa05133 Pertussis C1QA, C1QB, C1QC, C3, C4BPB, C5, SERPING1

2.4. Candidate Serum Circulating Biomarkers Were Identified through Comparative Analysis
among Common Shared CCM1-Associated Signaling Pathways in Two Species

Finally, we conducted a comprehensive comparative analysis among three separate
enrichment approaches (GO/DOSE/KEGG) to identify pathways affected by CCM1 defi-
ciency in comparison to the control group across both species. Our comparative pathway
dot plots reveal that both metabolic processes/pathways and coagulation and complement
pathways are consistently present in the sera of subjects with CCM1 deficiency relative
to the control group in both humans and mice (Figure 2G). This observation is further
substantiated by the GSEA results derived from the three distinct enrichment libraries
(Table 3A,B). Our findings indicate that the identified serum DEPs are mainly linked to
two primary pathways that could act as potential circulating blood biomarkers for the
disease: metabolic processes/pathways and coagulation and complement pathways. Re-
cent research in our lab has shown that CCM1 loss-of-function (LOF) results in disrupted
metabolic processes/pathways, which aligns with prior studies highlighting the association
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between metabolic disturbances, oxidative stress, and intracellular reactive oxygen species
(ROS) with CCM1 deficiency [31–34]. Additionally, we identified serum DEPs associated
with coagulation and complement pathways, including complement C3, fibrinogen, vit-
ronectin, collagen, fibronectin, and laminin. These findings align with recent studies. In
total, we discovered 21 potential blood biomarkers among the 71 detected DEPs. This study
identified 21 potential blood biomarkers, primarily within metabolic processes/pathways
and the complement and coagulation cascade pathway, that could serve as etiological and
prognostic blood biomarkers, respectively. Table 4. These biomarkers were found in BACA
CCM1 hemizygous mutation patients and Ccm1 hemizygous mutant mice using three
distinct pathway enrichment methods with separate library datasets. The consistent results
across approaches reinforce the findings and emphasize the potential of these biomarkers
as diagnostic tools for CCM1 deficiency.

Table 4. The combined gene set enrichments from three distinct enrichment libraries showcase path-
ways impacted by the CCM1 deficiency compared to the control for both species. Blue-highlighted
pathways represent the complement and coagulation cascade, with associated DEPs potentially
serving as prognostic biomarkers. Additionally, red-highlighted pathways pertain to the metabolic
pathway, where related DEPs are intended for evaluation as potential etiological biomarkers.

Gene Symbol Gene Name Pathway

APCS Amyloid P Component Complement and coagulation
cascades

SERPINF1 Serpin Family F Member 1 Complement and coagulation
cascades

SERPINF2 Serpin Family F Member 2 Complement and coagulation
cascades

THBS1 Thrombospondin 1 Complement and coagulation
cascades

VTN Vitronectin Complement and coagulation
cascades

FN1 Fibronectin 1 Complement and coagulation
cascades

F12 Coagulation Factor XII Complement and coagulation
cascades

GSN Gelsolin Complement and coagulation
cascades

KLKB1 Kallikrein B1 Complement and coagulation
cascades

KNG1 Kininogen 1 Complement and coagulation
cascades

KNG2 Kininogen 2 Complement and coagulation
cascades

LCAT Lecithin-Cholesterol
Acyltransferase Cholesterol metabolism

APOA2 Apolipoprotein A2 Lipoprotein metabolism
APOC3 Apolipoprotein C3 Lipoprotein metabolism
APOD Apolipoprotein D Lipoprotein metabolism
APOE Apolipoprotein E Lipoprotein metabolism

PCLO Piccolo Presynaptic
Cytomatrix Protein Cytoskeletal matrix

QSOX1 Quiescin Sulfhydryl Oxidase 1 Extracellular matrix
B2M β2-Microglobulin Immunopathways
RBP4 Retinol Binding Protein 4 Membrane transporter

PGLYRP2 Peptidoglycan Recognition
Protein 2

N-acetylmuramoyl-L-alanine
amidase

3. Discussion

The objective of this research is to systematically detect prospective blood prognostic
biomarkers in a homogeneous group of Hispanic fCCM patients and Ccm mutant mice,
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establishing a solid basis for our ongoing biomarker project. Our ongoing project aims to
assess the potential of these biomarkers to predict early hemorrhagic events and recognize
a critical time window for patients to receive preventive and therapeutic treatment using
deep learning algorithms combined with our candidate serum biomarkers. The proposed
experiments offer valuable insights into the development and prognosis of hemorrhagic
CCMs and provide information about environmental exposures, effect modifiers, or risk
factors linked to their progression. Gene set enrichment analysis (GSEA) was used to
identify signaling pathways enriched due to CCM1 deficiency. The top two pathways
identified were metabolic processes/pathways and coagulation and complement pathways,
which are relevant to hemorrhagic events. Coagulation signaling is linked to hemorrhagic
stroke risk and outcomes [35–39], leading to proposals for coagulation-targeted therapies
and circulating prognostic biomarkers [36,40]. Similarly, the complement cascade has
also been associated with hemorrhagic stroke. However, it is still under debate whether
complement factors can be used as prognostic tools for pre-hemorrhagic progression or as
biomarkers for recovery after hemorrhagic events [35,41–44].

Among identified candidate prognostic biomarkers, plasma kallikrein (PKa) is in-
volved in blood coagulation, fibrinolysis, hemostasis, and inflammatory response [45–48].
PKa deficiency due to KLKB1 mutations leads to vascular bleeding and has been implicated
in hereditary angioedema and hemorrhagic stroke [47,49–55]. Serpins, a superfamily of ser-
ine protease inhibitors, play critical roles in vascular angiogenesis and have been implicated
in retinal vascular leakage and hemorrhagic stroke [56–63]. Peptidoglycan recognition
protein 2 (PGLYRP2) is involved in immunomodulation and innate immunity, while the
adenomatous polyposis coli (Apc) gene is crucial in development, negatively regulates Wnt
signaling, and may be involved in angiogenesis [64–69]. Retinol binding protein 4 (RBP4) is
linked to the severity of cardiovascular disorders, and complement factors are known to be
associated with hemorrhagic stroke [35,41–44,70–73]. These biomarkers may help in under-
standing and treating various vascular conditions. Several limitations to this study should
be acknowledged. Firstly, the analysis did not include non-hemorrhagic CCMs (NHCs)
due to the experimental design of the omics. Secondly, while this study has the largest
sample size with both human and mouse data, our power analysis indicates that with the
current sample size, we may have missed some potential targeted proteins, leading to type
2 errors. To address this, we plan to examine 19 subjects and 38 controls with a 1:2 ratio to
achieve 80% power to detect significant differences with a 0.05 significance level. Thirdly,
while we recognize that our comparison involved hemorrhagic CCM patients with a shared
mutated CCM1 gene and healthy subjects with a wild-type CCM1 gene background, this
study served as our initial exploration of etiological biomarkers for hemorrhagic events.
However, recent discoveries regarding the genetic heterogeneity of both familial and spo-
radic CCMs, as well as the various potential genetic modifiers and environmental triggers
for hemorrhagic events in CCM patients, suggest the need to enhance our current findings.
This could entail further comparative analysis among candidate biomarkers identified
from familial and sporadic CCM studies. Alternatively, conducting a longitudinal study to
compare healthy, non-symptomatic, or pre- and post-hemorrhagic subjects within familial
CCM cohorts, all carrying specific CCM gene mutations, with genomic, proteomic, and
systems biological analysis approaches would be beneficial. We believe that this integrative
approach can yield more precise and sensitive biomarkers for diagnostic, prognostic, and
predictive purposes, potentially enabling the prediction and prevention of the most severe
and life-altering event, the hemorrhagic stroke. Henceforth, regarding the future trajectory
of the project, our strategy to tackle the challenges and execute the proposed potential
solutions mentioned earlier entails conducting analyses with a significantly larger sample
size of subjects and diverse control groups, leveraging multi-center collaborative efforts.
This strategy aims to streamline the identification of biomarkers capable of detecting subtle
differences between non-hemorrhagic and hemorrhagic subjects. Being part of the interna-
tional pooled CCM data consortium, we hold a strong belief in our ability to achieve this
objective in the foreseeable future.
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4. Materials and Methods

The objective of this study was to identify a set of blood-based biomarkers that can
predict the prognosis of different stages of hemorrhagic strokes. To accomplish this, we
began an exploratory project with the hypothesis that prognostic blood biomarkers for
hemorrhagic risk, discovered within a genetically well-defined familial CCM cohort, can
be expanded and applied to sporadic CCM cases and ultimately to a broader range of
hemorrhagic strokes. Moreover, ongoing debates and unresolved issues persist concerning
the underlying causes of both familial and sporadic CCM forms, especially whether they
originate from familial CCM mutations or other unknown genes [2,11,74–77]. The future
validation of potential biomarkers stemming from this research will help address this query.

Since this is a comprehensive investigation of CCM1 mutation effects and serves as
a basis for further large-scale studies, the participants were chosen based on their ho-
mogenous genetic predisposition and symptomatic presentation to establish the differential
protein expression patterns of CCM1 mutations compared to those of age-/gender-matched
control groups. We are confident in analyzing the experimental outcomes with a cost-
effective model for protein expression data to minimize type 1 errors (type 1 errors = 0.05)
at the cost of sacrificing for type 2 errors (missing some potential targeted proteins), as
detailed in the statistical analysis section [78]. In this study, we carried out a proteomics
analysis involving a cohort of human patients with familial cerebral cavernous malforma-
tions (fCCMs) resulting from a uniform BACA CCM1 hemizygous mutation alongside their
age- and gender-matched healthy controls (n = 14). In addition, we examined Ccm1 mutant
mice along with their wild-type (WT) counterparts (n = 6) to strengthen our analytical capa-
bilities. While this omics research substantially deviates from traditional epidemiological
analysis, it is important to note that this investigation is conducted within the context of
a clinical trial focused on biomarker identification and validation. As a result, we have
rigorously adhered to the STROBE (Strengthening the Reporting of Observational Studies
in Epidemiology) guidelines [79] throughout the process of preparing this manuscript.

4.1. fCCM Patient Cohort Recruitment Procedure

The criteria for the International Classification of Diseases (ICD) codes 9/10 must be
met for a patient’s medical history to be considered for the study on CCMs (categorized
as 228.00, 228.02, 228.09/Q28.3, D18.00, D18.02). Neurovascular disorders (747.81/Q28.2,
Q04.9, G93.9) and codes related to hemorrhagic stroke and epilepsy (430, 431, 432.1, 432.9,
and 345.00, 345.01/I60.9, I61.9, I62.00, I62.9 and G40.A01, G40.A09, G40.A11, G40A.19) may
also be used as supplementary criteria. The authorized IRB protocol permits the enrollment
and consent of participants ranging from 8 to 89 years old. Considering the substantial
Hispanic population in the vicinity, the study primarily focuses on including minority
individuals, although it does not impose any restrictions, as detailed in. Individuals with
CCMs can be classified into two distinct groups: non-hemorrhagic CCMs (NHCs) and
hemorrhagic CCMs (HCs). Only hemorrhagic CCMs (HCs) and healthy controls (Ctrls)
were utilized for this comparative proteomic study.

4.2. Data Collection

Data for the study were collected through structured interviews conducted in person
by clinical co-investigators and stored on secure PCs. The correlation between blood
biomarker levels and disease severity in fCCM patients was analyzed using statistical
methods. Odds ratios and 95% confidence intervals were calculated using stratified data
analysis and logistic regression to determine the relationship between the blood levels
of biomarkers and the risk of hemorrhagic stroke in fCCM patients. Comparisons were
made between symptomatic fCCM carriers (HCs) and healthy controls to determine the
correlation between blood levels of biomarkers and the odds of hemorrhagic stroke. All
statistical tests were two-tailed with a significance level of p < 0.05.

Given that all individuals in this cohort share the same Mendelian rare causal variant,
specifically a single Hispanic CCM1 mutation responsible for their CCM disorder, this
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homogeneous group with a rare genetic mutation demonstrates a limited sample size yet a
significant effect size due to the mutant allele’s substantial influence on disease progression.
This strategy of utilizing a small sample size with a larger impact has a proven track record
of success in genetic studies, such as linkage analysis for identifying disease-causing alleles
or genes. Thus, we postulated that this rare genetic mutation exerts considerable influence
with ample power, facilitating the discovery of disease-associated biomarkers at both
transcriptional and translational levels. Based on this reasoning, to further validate this
experiment, both human and mouse species bearing the same mutation acted as replicas of
each other, accompanied by gender- and age-matched healthy controls for normalization.
Subsequently, the datasets were merged for comparative analysis, facilitating further
reassessment and validation of the identified candidate biomarker pool. This iterative
process contributed to the finalization of candidate biomarkers for evaluating disease risk
during pathway enrichment analysis.

4.3. Biomarker Data Collection from Proteomics

We conducted a comprehensive and impartial search to discover new biomarkers
through high-throughput omics methods using human serum samples from fCCM patients
and healthy matched controls. Our optimized procedures include: (3-1) Abundant serum
protein depletion: We processed ten serum samples from hemorrhagic fCCM patients with
BACA-CCM1 mutations and matched controls for proteomic analysis [80–83]. The total
protein concentration was determined using a bicinchoninic acid (BCA) assay (Bio-Rad,
Hercules, CA, USA). Then, using High Select Mini Spin Columns (Thermo Scientific),
we removed highly abundant proteins, such as albumin, immunoglobulins, fibrinogen,
and transferrin, to detect low-abundance biomarkers. The protein concentration was
re-measured using the BCA assay. (3-2) Protein Enrichment: The serum samples were pro-
cessed with a ProteoMiner kit (Bio-Rad), and the protein concentration was determined
using the BCA and fluorescence assays. (3-3) Trypsin Digestion and iTRAQ Labeling: The
serum proteins were reduced, alkylated, desalted, buffer changed, and then digested with
trypsin and labeled with iTRAQ reagents [80–83]. The labeled peptides were subjected to a
Phoenix Peptide Cleanup Kit to remove excess labeling and salt and were lyophilized and
stored at −80 ◦C. (3-4) Raw Proteomic Data Acquisition: All proteomic data were acquired
through tandem mass spectrometry (MS/MS) analysis, including NanoLC-MS/MS anal-
ysis, using a Q Exactive Plus Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo
Scientific, Waltham, MA, USA) [80–83].

After implementing these refined proteomic procedures, our objective was to discover
novel biomarkers in fCCM patients relative to healthy matched controls using high-throughput
omics techniques, employing human serum samples as previously outlined [80–83].

4.4. Biomarker Identification through Pathway Analyses with Bioinformatics Tools

The Bioconductor R package was employed to conduct biological process and func-
tional interaction network analyses [84–86]. The groupGO function in clusterProfiler of
Bioconductor was used to determine the functional profile of the pathway components
by grouping genes based on their gene ontology [87–90]. A vector of UniProt Accession
numbers was provided for the gene argument, and the Bioconductor Genome-Wide Anno-
tation for Mouse was used as the database. The keytype argument was set to “UNIPROT”,
converting the UniProt Accession numbers into Entrez Gene IDs, and the level was set
to GO levels 2. This process was repeated for all three sub-ontologies and followed by
hierarchical clustering analysis. Complementing this process, the enrichGO function in
clusterProfiler of the Bioconductor further explored the grouping of the gene ontology,
creating pathways visualizing functional profiles of where these proteins were located in
the previously mentioned sub-ontology levels. GO, KEGG, and DOSE pathways, modules,
and pathway enrichment analysis were performed using Bioconductor and its associated
functions [29,87,91–96]. The enrichDO function within the clusterProfiler package of Bio-
conductor was employed as a systematic approach to analyze disease ontology based on
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shared genes mapped from Entrez Gene IDs [29]. Subsequently, pathway enrichments
were conducted by analyzing Entrez Gene IDs to discern shared molecular functions and
relationships across subjects.

4.5. Statistical Analysis

Significance was meticulously adjusted for multiple comparisons, and differences
between groups were rigorously compared using the Student’s t-test or paired samples
t-test. A p-value less than 0.05 was considered statistically significant. Our analysis,
conducted with the utmost care, indicated that our proposed sample size would be suitable
for exploring protein expression differences between CCM1 deficient and normal groups
(HCs and age-/gender-matched Ctrls). Results were visualized using ggplot2 with log2fc
for fold changes, providing a clear and comprehensive representation of the data [97].

A power analysis was employed to assess the ability of the sample sizes to yield
significant findings. By setting a significance level of 0.05 to reduce type 1 errors, the
power level dropped below 80%, making the study more prone to type 2 errors or false
negatives. Only participants with a homogenous genetic background were recruited to
counteract this, ensuring a population with a known inheritance history. The selection of
subjects was further refined by considering phenotypical manifestations in a clinical setting,
which guaranteed a sample with actively expressed proteins relevant to the condition.
Consequently, instead of relying on a power analysis-based population, a cost-effective
model was adopted, resulting in statistically significant findings contributing to the field
and the potential identification of biomarkers.

Additionally, a Benjamini–Hochberg procedure was utilized as the FDR method
throughout the enrichment process. We then used only p-adjusted values to prevent any
false positive findings of the overrepresentation analysis. While this makes us more prone
to type-2 false negatives, we utilized the limitations to create only limited, accurate findings
to focus on only the highest related pathways in this analysis. We only accepted statistically
significant findings when the p-adjusted value was less than 0.05.

5. Conclusions

The aim of this study was to identify an initial set of circulating blood biomarker
signatures for diagnosing and predicting hemorrhagic risk in CCM1 patients. Both human
and mouse subjects displayed varying expression of serum proteins (DEPs). We employed
combined enrichment analysis methods, encompassing gene ontology (GO), disease on-
tology (DOSE), and KEGG pathway analysis, to explore the functional characteristics and
biological pathways linked to CCM1 deficiency-related DEPs. Through bioinformatic
analysis of blood proteomic data from Hispanic individuals and CCM1-deficient mice, we
identified a specific panel of blood biomarkers primarily associated with metabolism and
blood clotting pathways. These biomarkers hold potential as prognostic indicators for
CCM1 deficiency and the risk of hemorrhagic stroke. Moreover, they exhibit a significant
correlation with the likelihood of hemorrhagic cerebral cavernous malformations (CCMs).
This underscores the need for further evaluation and validation of these candidate blood
biomarkers in a larger CCM cohort with a more heterogeneous genetic background to
reassess their clinical potential for assessing hemorrhagic CCM risk.
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