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Abstract: The escalating prevalence of metabolic disorders, notably type 2 diabetes (T2D) and obe-
sity, presents a critical global health challenge, necessitating deeper insights into their molecular
underpinnings. Our study integrates proteomics and metabolomics analyses to delineate the complex
molecular landscapes associated with T2D and obesity. Leveraging data from 130 subjects, includ-
ing individuals with T2D and obesity as well as healthy controls, we elucidate distinct molecular
signatures and identify novel biomarkers indicative of disease progression. Our comprehensive
characterization of cardiometabolic proteins and serum metabolites unveils intricate networks of
biomolecular interactions and highlights differential protein expression patterns between T2D and
obesity cohorts. Pathway enrichment analyses reveal unique mechanisms underlying disease de-
velopment and progression, while correlation analyses elucidate the interplay between proteomics,
metabolomics, and clinical parameters. Furthermore, network analyses underscore the intercon-
nectedness of cardiometabolic proteins and provide insights into their roles in disease pathogenesis.
Our findings may help to refine diagnostic strategies and inform the development of personalized
interventions, heralding a new era in precision medicine and healthcare innovation. Through the
integration of multi-omics approaches and advanced analytics, our study offers a crucial framework
for deciphering the intricate molecular underpinnings of metabolic disorders and paving the way for
transformative therapeutic strategies.

Keywords: type 2 diabetes; obesity; data integration; proteomics; metabolomics

1. Introduction

The rise in metabolic disorders, including type 2 diabetes (T2D) and obesity, presents
a significant global health challenge, with profound implications for individual well-
being and healthcare systems worldwide [1]. Both T2D and obesity are multifactorial
conditions influenced by complex interplays between genetic predisposition, environmental
factors, and lifestyle choices [2]. Understanding the underlying molecular mechanisms
and identifying biomarkers associated with these conditions is crucial for early detection,
targeted intervention, and personalized treatment strategies [3] as well as for prediction of
complications (cardiovascular disease, diabetic nephropathy, and retinopathy).

Proteomics and metabolomics have emerged as powerful tools for unravelling the
intricate molecular signatures characteristic of metabolic disorders [4]. By analyzing the
comprehensive profiles of proteins and metabolites in biological samples, researchers can

Int. J. Mol. Sci. 2024, 25, 4781. https://doi.org/10.3390/ijms25094781 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25094781
https://doi.org/10.3390/ijms25094781
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3773-7746
https://orcid.org/0000-0003-3921-2521
https://orcid.org/0000-0003-4373-2175
https://doi.org/10.3390/ijms25094781
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25094781?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 4781 2 of 13

gain valuable insights into disease pathogenesis, identify diagnostic markers, and elucidate
potential therapeutic targets [5]. Through correlation analyses integrating proteomics,
metabolomics, and clinical parameters, researchers aim to uncover intricate networks of
biomolecular interactions, identify key mediators of metabolic dysfunction, and delineate
potential diagnostic and therapeutic avenues [6].

Proximity Extension Assay (PEA) technology utilizes antibody pairs labeled with
oligonucleotide barcodes that hybridize when the antibodies recognize and bind the target
proteins; hence, they are in a proximity. Hybridization is followed by extension and
detection by quantitative polymerase chain reaction (qPCR) or next-generation sequencing
(NGS). This enables avoiding cross-reactivity compared to classical immunoassays [7]. PEA
has become a widely used method in proteomics research of cardiovascular and metabolic
diseases. For instance, Vavruch et al. used PEA technology to find association between the
level of 92 cardiovascular proteins and the amount of leptin to obtain better understanding
of how leptin is linked to cardiovascular disease in patients with T2D [8]. In another study,
Kozakova et al. assessed the connection between matrix-metalloproteinases, interleukins,
lipids, and various cardiovascular parameters in both T2D and non-T2D cohorts [9].

In this study, we conducted an integrated analysis of serum proteomics and metabolomics
data from a cohort comprising individuals with T2D and obesity as well as healthy controls.
We aimed to delineate the distinct molecular landscapes associated with T2D and obesity,
unravel novel potential biomarkers indicative of disease progression, and explore the intricate
interplay between metabolic dysregulation and protein expression patterns.

Our investigation encompassed an in-depth assessment of cardiometabolic proteins
using PEA technology [10], coupled with comprehensive characterization of serum metabo-
lites, including amino acids and biogenic amines examined earlier by our group [11]. By
using complex data evaluation methods, we could obtain insights regarding the molecular
signatures underpinning metabolic disorders, and our study contributes to advancing our
understanding of disease pathogenesis, refining diagnostic strategies, and informing the
development of targeted interventions tailored to individual patient profiles. Moreover,
our findings hold the promise of unveiling novel biomarkers and therapeutic targets that
may ultimately transform the management and treatment of T2D and obesity, heralding a
new era in precision medicine and personalized healthcare [12].

Through the integration of multi-omics approaches and advanced analytics, our study
represents a critical step toward deciphering the complex molecular underpinnings of
metabolic disorders and paving the way for innovative strategies to mitigate their escalating
global burden.

2. Results

Cardiovascular complications are the most prevalent complications in patients with
T2D, and its risk is also increased in obesity. Their signs may be hidden and appear
suddenly, when the possibility for interventions is limited [13]. In our study, we aimed to
examine the proteins related to cardiovascular metabolism to obtain more information on
the cardiometabolic status of the patients recruited into the study with emphasis on the
transition from obesity to T2D. The protein levels were correlated to clinical parameters
and to the results of other tests relevant for cardiac health.

2.1. Differential Expression Analysis Reveals Distinct Protein Profiles in Obesity and Type
2 Diabetes

Relative protein abundances regarding 367 proteins having a role in cardiac fit-
ness/metabolism were acquired using the Olink’s Explore Cardiometabolic panel in form
of a service. After the completion of the PEA analyses, Olink provided comprehensive data
tables containing normalized protein expression (NPX) values, obtained through intra- and
inter-run normalization processes, as well as log2-scaling (Table S1). These datasets served
as the foundation for our subsequent analyses.
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Differential expression analyses were conducted to elucidate the protein expression
profiles associated with obesity and T2D. Results of the statistical tests were represented as
volcano plots, utilizing the EnhancedVolcano R package (v 1.18.0) (Figure 1).
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Figure 1. Differentially expressed proteins visualized as volcano plots where the x-axis represents
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with T2D.

The comparison between control subjects and individuals with obesity revealed sig-
nificant alterations in the expression levels of 17 proteins (p < 0.05) (Figure 1A) out of
which 3 proteins were more and 14 proteins were less expressed. With high statistical
significance, proteins FABP4, FCN2, and LEP showed 2-fold, 2.6-fold, and 4-fold increases
in expression in the group of individuals with obesity, respectively. Moreover, expression
of IGFBP1 was 2.5-fold higher in control subjects (p < 0.00003). The contrasts of protein
expression in control subjects and those with T2D uncovered 24 proteins with statistically
significant differences in expression (p < 0.05) (Figure 1B) with 4 less expressed and 20 more
expressed. The IGFBP2 protein showed 1.8-fold increase in expression with high statistical
significance in control subjects. In contrast, proteins ACY1, CES1, FABP4, FCN2, GSTA1,
GUSB, and LEP were significantly lower with high statistical significance in subjects with
T2D. Furthermore, comparison of protein expression patterns between individuals with
obesity and those with T2D identified six proteins that exhibited differential expression
(p < 0.05) (Figure 1C). Among them, LEP and LPL proteins showed 1.85-fold and almost 1.5-
fold lower expression in individuals with T2D. On the other hand, IGFBP1 showed 2-fold
higher expression in subjects with T2D. Among other more-expressed proteins in patients
with diabetes are CES1, GDF15, and GUSB proteins, which were previously associated to
T2D [14].

The examination of the level of individual proteins indicates association with different
parameters (Figure S1). Some of the patients recruited into the T2D group were obese
as well, so it was logical to examine the level of the individual proteins in patients with
obesity and in patients with T2D with and without obesity. This analysis showed that
some proteins, such as COL1A1, COL6A3, FABP4, LEP, LGALS1, and THBS4, are obesity-
specific, and GDF15, LPL, MCFD2, REG1A, REG1B, and TCN2 are T2D-specific (Figure S1).
We could also observe proteins that were differentially changed in both obesity and T2D
compared to controls. These proteins were ADH4, CA5A, CNDP1, FCN2, MMP7, PLAT,
THOP1, and VSTM2. Moreover, proteins such as CHI3L1, CTSD, GUSB, IGFBPL1, NRCAM,
PAG1, PRCP, SELE, and USP8 were more abundant in the group of patients with T2D
having high BMI. Overall, our results highlight distinct expression signatures of proteins
from the Olink Cardiometabolic panel in the case of obesity and T2D.

2.2. Differentially Expressed Proteins Are Responsible for Various Functions

To reach more understanding on the role of the altered proteins, we conducted a
pathway-enrichment analysis utilizing Pathway Browser from Olink Insight
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(https://insight.olink.com/ accessed on 1 March 2024 (Figure 2). Interestingly, enrich-
ment of proteins in the extracellular matrix organization category is unique to control
vs. T2D comparison (Figure 2a). Therein, protein COL1A1 was more expressed, while
protein CTSD was less expressed. Secondly, pathways responsible for visual transduc-
tion were enriched in control vs. T2D and obesity vs. T2D but not in control vs. obesity
contrast. Moreover, proteins responsible for transport of small molecules, namely chy-
lomicron remodeling and assembly of active LPL and LIPC lipase complexes, were not
enriched in control vs. obesity comparison (Figure 2c). Different patterns of enrichment
are observed in the case of immune system and signal transduction category pathways in
all three compared cases. In summary, differentially expressed proteins are involved in a
number of pathways that might underline possible mechanisms of disease development
or progression.
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The higher resolution images of the networks are presented in Figure S2.

2.3. Olink Data Correlates with Metabolomics and Clinical Data

In our previous study [11], we performed measurement of the concentration of 23
amino acids and 10 biogenic amines followed by correlation analysis with clinical data. In
this work, we complemented previous observations with proteomics data by conducting a
correlation analysis between proteomics, metabolomics, and clinical data (Table S2).

Our analysis revealed the presence of clusters, groups of variables where we observed
either strong positive or strong negative correlation (Figure 3). In fact, such parameters as
the level of histidine (His), the glomerular filtration rate (GFR), the level of taurine (Tau),
the body mass index (BMI), and the level of high-density lipoprotein (HDL) clustered
together and showed strong negative correlation with the level of majority of proteins in
the group of control subjects. For example, the level of histidine was in a strong negative
correlation with ACE2, ANG, CCL14, CCL27, CDH1, COL18A1, FAM3C, FAS, GDF15,
HSPG2, IL18BP, LACTB2, LILRB2, MFAP5, NPDC1, SPON2, ST6GAL1, THBS4, and THPO.
From those, GDF15, LILRB2, NPDC1, and THPO showed the strongest negative correlation
(Figure 3, Control). Moreover, the His together with the GFR showed a cluster where the
GFR showed the strongest negative correlation with CST3, CSTB, CD95, FABP2, PRSS2,
and PTGDS, while His was strongly negatively correlated with LTBP2, SCARF1, and
TFF3. Besides the region with negative correlation, there is a region with clusters of strong
positive correlation. The parameters that showed the strong positive correlation with
the level of the majority of cardiometabolic proteins are the levels of aspartate (Asp),
citrulline (Cit), glutamate (Glu), ethanolamine (Eth), and age. These parameters cluster
together with proteins ABCA7, ABCC2, ACAN, ACY1, ACTA2, ADGRE5, ADH4, ALCAM,
APOM, AZU1, CCL15, CD2AP, CD55, CD59, CDH6, CD95, CNTN1, COL6A3, CST3, CSTB,
FABP2, GP1BA, GSTA1, IGFBP6, IL19, ITGB2, LEPR, LTBP2, NADK, OLR1, PCOLCE,
PRSS2, PTGDS, REN, RNASET2, S100A11, SCARF1, SDC4, SORT1, SPP1, TFF3, THPO, and
TIMD4. Of note, the level of proteins ACTA2 and TFF3 has strong positive correlation with
all abovementioned parameters (Figure 3, Control). Other parameters that showed strong
positive correlation with the level of proteins are the levels of tyrosine (Tyr), alanine (Ala),
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ornithine (Orn), leucine (Leu), isoleucine (Ile), phenylalanine (Phe), glycated hemoglobin
(HbA1C), triglyceride, C-peptide, insulin, low-density lipoprotein (LDL), and cholesterol
(Figure 3, Control).
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Correlation analysis of the data obtained from the obesity group revealed four major
clusters (Figure 3, Obesity). Interestingly, two sets of proteins can be defined. Namely,
ACTA2, ALCAM, AMY2A, AMY2B, ANGPTL3, APOM, APLP1, BPIFB1, CCL14, CCL27,
CCDC80, CD46, CD55, CHL1, CLUL1, CNTN1, COL18A1, CRTAC1, CXXC4, DCN,
EFEMP1, ENPP2, FABP4, GPNMB, GH1, GHRL, ICAM1, IGFBP1, IGFBP2, IGSF8, ITGB1,
ITGB2, ITIH3, KIT, KITLG, LEPR, LGALS1, LEP, LPL, LTBP2, MCAM, NPTXR, NPDC1,
NOTCH3, NTproBNP, NPPB, PCOLCE, PAM, PLA2G1B, PLA2G2A, PLTP, PTN, RARRES2,
REG1A, REG1B, REG3A, ROR1, SCARF1, SERPINA11, SPARCL1, TFF3, TCN2, THPO,
TIMD4, TINAGL1, and XG were positively correlated with ApoA, HDL, and Gly, while neg-
atively correlated with the level of Leu, Ile, triglyceride, waist–hip ratio (WHR), neck size,
abdomen size, insulin level, homeostatic model assessment of insulin-resistance (HOMA),
and the level of C-peptide. Conversely, proteins ACE2, ACY1, ADH4, AGXT, AK1, CA5A,
CCL16, CEP43, CES1, CTSH, EIF4EBP1, FBP1, GSTA1, GPR37, GUSB, LDLR, LACTB2,
MB, MSTN, PAG1, QDPR, SELE, SDC1, SERPINE1, SSC4D, SSC5D, STK11, THOP1, TYMP,
UMOD, USP8 were positively correlated with the levels of Tyr, Glu, Phe, Leu, Ile, triglyc-
eride, WHR, neck size, abdomen size, insulin, HOMA, and C-peptide, while negatively
correlated with ApoA, HDL, and Gly.

Correlation analysis in the T2D group (Figure 3, Diabetes) revealed that the levels of
Tau, Asp, Glu, and Ala showed a strong positive correlation with CCL27, CD2AP, CTSD,
LACTB2, MARCO, NADK, PAG1, PDGFA, PLXNB3, PPP1R2, SCARF1, SDC4, SERPINE1,
SORT1, SOST, and ST6GAL1 proteins. More clusters with strong positive correlations that
are of interest include one with Eth and Orn where they correlated with ACAN, ADA2,
ADGRE5, ANGPTL3, CD59, COL1A1, CTSL, DCTPP1, DCN, ENTPD6, GGH, ICAM1,
LTBP2, NPTXR, PLA2G2A, PTN, SPP1, THPO, TIMP1, and TNFSF13B and another with
a correlation between size of abdomen, waist, and BMI and CCL18, CCDC80, COL6A3,
CSTB, CTSZ, ENPP2, GPNMB, IGSF8, LEP, LGALS1, PAM, PLXNB2, SEMA3F, TFRC, and
TFP1. In contrast, CRP and the level of His showed a strong negative correlation with
ACP5, ADGRG2, AOC3, ANG, ANPEP, AZU1, CCL14, CEBPB, CD69, CEP43, CHL1, CNST,
COMP, CPB1, CPA1, CNTN1, DOK2, EGFR, GP1BA, GYS1, ITGB1, LCN2, LILRA5, MCAM,
MCFD2, NCAM1, NPPB, NRP1, NtproBNP, OLR1, PRSS2, RARRES2, RNASE3, SNAP23,
SPARCL1, STK11, TFRC, and USP8, respectively. Additionally, similarly to the clusters
observed in the control group, parameters such as His, GFR, Tau, and BMI showed negative
correlation with the majority of proteins from the cardiometabolic panel.

2.4. Cardiometabolic Proteins Interact with Each Other

To understand the holistic picture of cardiometabolic proteins’ role in the linkage
of T2D with obesity, we generated protein networks for the cardiometabolic proteins
(Figure 4).

The network of proteins shows a similar picture in both conditions as the examined
proteins are the same. However, in order to highlight the differences between the diseased
and the control groups, we calculated the quotient of the mean NPX values between the
diseased population and control group in the case of each protein. Quotients around 1.0
mean negligible differences between the pathological and control groups. Quotients below
1.0 demonstrate decreased values, while quotients above 1.0 illustrate higher NPX values
than in the control group.

The interaction network of proteins between control and obese or control and T2D
groups, respectively, contains 15 clusters in both cases. Among the 15 clusters, there is a
large one covering almost 75% of the nodes.

The network of cardiometabolic proteins in obesity showed that the strongly higher-
expressed LEP in the obese group interacts with the less-expressed GHRL and more-
expressed GH1 (Figure 4A). Interestingly, from the STRING database we found that LEP
and GH1 have physical interaction with a high confidence score (0.9). In contrast, proteins
HYAL1, GUSB, and CES1 created a separate interaction cluster (Figure 4). Considering the
network of proteins between control and obese groups, GUSB and CES1 are slightly more
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expressed in individuals with obesity (Figure 4A), while significantly higher expression of
both can be observed in T2D (Figure 4B).
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Figure 4. Network analysis of differentially expressed proteins. (A) Interaction network of proteins in
comparison of protein expression between controls and subjects with obesity; (B) Interaction network
of proteins in comparison of protein expression between controls and patients with type 2 diabetes
(T2D). The size of the nodes is proportional to the obese/control or T2D/control NPX quotients.
The green color indicates quotients close to 1, while the change of color toward dark brown and red
indicates the deviation from the control group.

Regarding the proteins with the highest connectivity, DCN, EGFR, ITGB1, ITGB2, and
SDC1 are among the top 10 hub proteins. Additionally, some of the differentially expressed
proteins have central locations in the network. SDC4 and IL6 were in the top 10 of the
most-connected proteins.
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Thus, the graph describes a quite complex biochemical system, which cannot be
understood as a set of protein-pair interactions.

3. Discussion

The identification of new biomarkers is crucial for the diagnosis, prevention, and
treatment of diseases. In the case of metabolic disorders, biomarkers can serve as valuable
tools for early detection, risk stratification, and prediction of complications. Therefore,
new confident biomarkers can facilitate improvement in patient outcomes, reduce disease
burden, and advance the field of precision medicine.

The integration of proteomics and metabolomics data in our study provides possibility
for a comprehensive examination of the molecular landscapes associated with T2D and
obesity. Our findings underscore distinct molecular signatures and unveil novel potential
biomarkers indicative of disease progression in these metabolic disorders. By leverag-
ing advanced analytics and pathway enrichment analyses, we elucidate the functional
implications of differential protein expression patterns and uncover unique mechanisms
underlying disease development and progression. Our results align with previous studies
utilizing PEA technology, which has been instrumental in uncovering associations between
cardiovascular proteins and metabolic diseases [8,9].

The differential expression analysis highlights significant alterations in protein ex-
pression profiles between control subjects and individuals with T2D or obesity, revealing
distinctive patterns reflective of disease pathology. We observed significant upregulation of
proteins like COL1A1, COL6A3, FABP4, and LEP in individuals with obesity, indicating
potential roles in adipose tissue dysfunction and metabolic dysregulation [15]. Conversely,
subjects with T2D showed significant downregulation of LEP and upregulation of proteins
such as CES1 and GSTA1, suggesting alterations in detoxification pathways and lipid
metabolism [16]. The comparison between obesity and T2D cohorts revealed distinct ex-
pression patterns, further emphasizing the heterogeneity of metabolic disorders and the
need for personalized approaches in diagnosis and treatment.

Pathway enrichment analyses further elucidate the involvement of proteins in cru-
cial pathways related to extracellular matrix organization, visual transduction, and small
molecule transport, underscoring the multifaceted nature of disease pathogenesis [17].
These pathways offer insights into potential therapeutic targets and avenues for interven-
tion. The dysregulation of extracellular matrix proteins like COL1A1 and CTSD suggests
alterations in tissue remodeling processes and may contribute to the development of
metabolic complications, such as insulin resistance and cardiovascular diseases [18].

Correlation analyses between proteomics, metabolomics, and clinical parameters un-
veil intricate networks of biomolecular interactions and identify key mediators of metabolic
dysfunction, offering valuable insights into disease mechanisms and potential therapeutic
targets [19]. Strong correlations between His levels and several cardiometabolic pro-
teins indicate potential regulatory roles of His in metabolic homeostasis and inflamma-
tion [20]. Conversely, positive correlations between amino acids like Asp and Glu with
cardiometabolic proteins highlight the interplay between amino acid metabolism and
cellular signaling pathways in metabolic disorders [21].

The protein–protein interaction networks provide a holistic view of cardiometabolic
proteins’ roles in linking T2D with obesity, highlighting key interactions and potential av-
enues for further investigation [22]. The interactions between GH1 and LEP underscore the
intricate crosstalk between adipose tissue and endocrine signaling pathways in metabolic
regulation [23]. Conversely, the interactions between CES1, GUSB, and HYAL1 suggest
coordinated regulation of metabolic processes and detoxification pathways in response to
metabolic stress [24].

Monitoring the level of some proteins, such as the increase of CTSD, GDF15, GUSB,
MCFD2, REG1A, REG1B, and TCN2 and concomitantly the decrease of FABP4, LEP, and
LPL may help in identifying the group of patients with obesity with higher risk for the
appearance of T2D allowing for more precise therapeutic interventions. Of course, further
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validation is required to prove the utility of the abovementioned proteins as potential
prognostic markers for T2D in patients with obesity.

Besides recapitulating some previously discovered associations, the results of our
study further highlight the importance of application of multi-omics approaches to show
the tightly interconnected network of proteins and metabolites to uncover new biomarkers.
These interrelations along with the heterogeneity observed at the group level emphasize
the importance of further patient stratification aiming for personalized interventions and
heralding a new era in precision medicine and healthcare innovation. However, our study
possesses some limitations. For example, the number of recruited subjects is good for
conducting an exploratory, cross-sectional study, but it does not allow us to generalize
our findings. Therefore, future studies with more recruited patients are needed. It should
be emphasized that biomarker studies heavily rely on validation experiments. Thus, an
appropriate validation strategy with broader and diverse cohorts should be outlined in
future research.

In multi-omics approaches, the complex nature of the metabolic diseases can be
depicted with the integration of as many data layers as possible. Besides proteomics,
metabolomics, genomics, and transcriptomics data are required to better understand the
complex interrelations among the metabolic pathways. For instance, our future research
aims to recruit more layers of data such as phosphoproteomics, complex metabolomics,
and lipidomics, along with genomics and epigenomics. This approach could allow the
improvement of data-driven discoveries and facilitate precision medicine for metabolic
diseases; however, the complexity of the data necessitates the application of system biology
and complex bioinformatics workflows while the utilization of artificial intelligence is
inevitable. These types of multi-omics studies require interdisciplinary collaborations
involving researchers with different backgrounds, such as clinicians, computational bi-
ologists, statisticians, and bioinformaticians. This interdisciplinary collaboration could
provide a blueprint for translating research findings to bedside applications, reinforcing
the study’s impact and applicability.

Through the integration of multi-omics approaches and advanced analytics, our
study offers a crucial framework for deciphering the intricate molecular underpinnings of
metabolic disorders and guiding transformative therapeutic strategies.

4. Materials and Methods
4.1. Study Subjects and Sample Collection

In total, samples from 130 subjects were collected, including 53 patients with T2D, 45
individuals with obesity, and 32 healthy volunteers. Sample collection was approved by
the Ethics Committee of the University of Debrecen, and all participants provided written
informed consent. The T2D group’s mean age was 50.7 years, with a “male-to-female” ratio
of 1.4:1; the obese group’s mean age was 51.9 years, with a “male-to-female” ratio of 0.8:1;
and the healthy group’s mean age was 49.3 years, with a “male-to-female” ratio of 1.5:1.
Table 1 represents clinical characteristics of study groups, while Table S3 contains clinical
characteristics per every subject in the study.

Table 1. Characteristics of the studied groups.

Parameter 1 Control Obesity Type 2 Diabetes
(N = 32) (N = 44) (N = 54)

Age, years 49.25 ± 10.13 51.93 ± 9.61 50.72 ± 7.94

Sex (number)
Male (19) Male (20) Male (32)

Female (13) Female (24) Female (22)
Body mass index (BMI) 25.33 ± 2.08 37.8 ± 5.82 33.78 ± 5.88

1 Age and BMI are indicated as mean ± SD.

T2D was diagnosed with an oral glucose tolerance test (OGTT). The subjects were
included in group of patients with obesity if BMI was ≥30 and T2D was not diagnosed.
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Fasting blood samples were collected from all participants in native tubes and centrifuged
to extract the serum. Sera were aliquoted and stored at −80 ◦C until they were processed.

4.2. Analysis of Cardiometabolic Proteins with Proximity Extension Assay

PEA of 369 proteins from the Olink Explore Cardiometabolic panel was performed
by the analysis service of Olink Proteomics (Uppsala, Sweden). In short, 1 µL of plasma
sample from each donor was used by Olink to provide the normalized NPX values for the
367 proteins from the panel. Raw values were converted to normalized protein expression
units by intra- and inter-run normalization and log2-scaling [7]. Olink technology is
described in detail on their website: https://www.olink.com/. The abbreviated names
of the proteins included in the panel with their respective full names are provided as a
supplementary table (Table S4).

4.3. Data Analysis

Results from PEA were filtered, explored, and cleaned utilizing R (v 4.3.1) statistical
programming language with in-house developed scripts. Cleaning included removal of
observations with warnings or failures in quality checks assessed by Olink with incubation
and detection controls [7]. Olink applies a very strict quality control system. An observation
was excluded from the Olink results table if the assay warning or quality-check warning
had the value “EXCLUDED”. In the case that these parameters were “PASS” or “WARN”,
the observation was retained.

4.3.1. Pathway Enrichment Analysis

Pathway enrichment analysis was performed in Olink Insight’s Pathway Browser (PB)
powered by Reactome. Lists with differentially expressed proteins were loaded into PB,
and enriched pathways were visualized.

4.3.2. Statistical Analysis

A Kruskal–Wallis non-parametric test with a Benjamini–Hochberg [25] correction
was calculated for every protein in the Olink data. Proteins that passed the adjusted
p-value threshold of 0.05 were subjected to post hoc Dunn’s test with Benjamini–Hochberg
adjustment for multiple comparison. Log2 fold-changes of proteins were calculated by
subtracting mean expression values in compared groups. Finally, volcano plots were
generated utilizing the EnhancedVolcano package in R by plotting log2 of fold-change
versus −log10 of p-value.

Group differences between the groups of patients with T2D normal BMI, high BMI
patients with obesity, and controls were calculated using the Kruskal–Wallis test and
pairwise Wilcoxon tests.

4.3.3. Correlation Analysis

The measurements of amino acids and biogenic amines in serum as well as clinical data
were taken from our previous study [11]. Spearman’s correlation coefficient was calculated
between variables utilizing R (v 4.3.1) statistical programming language with in-house
developed scripts. p-value was adjusted with the false discovery rate (FDR) method [25].

4.3.4. Network Analysis

Mean normalized protein expression (NPX) values provided by Olink for each protein
were exponentially transformed (the base was 2).

Information on interacting proteins was obtained from String Database considering
only interactions with the highest confidence (0.9) and exported to a text file. In order to
create, analyze, and represent networks, the text files were imported to the Cytoscape 3.10.1
(Institute for Systems Biology, Seattle, WA, USA) open-source bioinformatics software
platform. The positions of the nodes during the visualization were determined by the

https://www.olink.com/
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Perfuse Force Directed Layout algorithm. Using this software, the size and color of nodes
and links could be configured according to the imported data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25094781/s1.
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