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Abstract: A pterygium is a common conjunctival degeneration and inflammatory condition. It grows
onto the corneal surface or limbus, causing blurred vision and cosmetic issues. Ultraviolet is a well-
known risk factor for the development of a pterygium, although its pathogenesis remains unclear,
with only limited understanding of its hereditary basis. In this study, we collected RNA-seq from both
pterygial tissues and conjunctival tissues (as controls) from six patients (a total of twelve biological
samples) and retrieved publicly available data, including eight pterygium samples and eight controls.
We investigated the intrinsic gene regulatory mechanisms closely linked to the inflammatory reactions
of pterygiums and compared Asian (Korea) and the European (Germany) pterygiums using multiple
analysis approaches from different perspectives. The increased expression of antioxidant genes in
response to oxidative stress and DNA damage implies an association between these factors and
pterygium development. Also, our comparative analysis revealed both similarities and differences
between Asian and European pterygiums. The decrease in gene expressions involved in the three
primary inflammatory signaling pathways—JAK/STAT, MAPK, and NF-kappa B signaling—suggests
a connection between pathway dysfunction and pterygium development. We also observed relatively
higher activity of autophagy and antioxidants in the Asian group, while the European group exhibited
more pronounced stress responses against oxidative stress. These differences could potentially be
necessitated by energy-associated pathways, specifically oxidative phosphorylation.

Keywords: pterygium; inflammation; race; RNA sequencing

1. Introduction

A pterygium is a common condition where fibrous vascular tissue from the con-
junctiva proliferates and grows onto the corneal surface or limbus. When a pterygium
advances across the cornea, obstructing the visual axis or causing significant corneal astig-
matism, resulting in blurred vision for the patient, surgical removal of the pterygium is
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performed [1]. Histologically, a pterygium is characterized by the proliferation of epithelial
cells and fibroblasts, displaying features reminiscent of neoplastic tissue. A study has
demonstrated the presence of TP53 tumor suppressor gene abnormalities in both limbal
and pterygium cancers. A p53-dependent mechanism of damage-induced programmed
cell death gradually acquires mutations in other genes. Pterygiums are also defined as
tumor-altered limbal basal cells that, akin to other invasive cancers, secrete transforming
growth factor-beta (TGF-β) and produce various matrix metalloproteinases (MMPs) [2].
The disruption of ocular-surface homeostasis occurs as the tissue from the conjunctiva and
limbus invades the cornea in a wedge-shaped growth pattern. This leads to the occurrence
of proliferative clusters of limbal stem cells, epithelial metaplasia, active fibrovascular
tissue, and inflammation [3].

However, there is no clearly delineated pathologic pathway for the formation and
progression of pterygiums, and our understanding of the role of heredity in this area
remains limited. The primary prominent risk factor for the development of pterygiums is
ultraviolet (UV) light exposure [4]. It can be speculated that genetic changes at the cellular
level in normal conjunctival cells, along with alterations in the composition of tissue
components due to these genetic variations, contribute to the formation of pterygiums.
Therefore, analyzing genes that are either overexpressed or coordinately suppressed in
pterygium tissue could potentially allow us to predict the underlying mechanisms behind
pterygium development and assess the risk of recurrence after surgery. This understanding
could aid in establishing effective strategies for the prevention and treatment of pterygiums.

Previous studies have identified potential functional genes associated with the patho-
genesis or development of pterygium models [5–8] and have also underscored the connec-
tion between DNA damage, mutations in ion channel-associated genes, and the progression
of specific ophthalmic conditions. Liu et al. [5] observed the significant downregulation of
genes associated with oxidative stress response, including FOS, JUN, and DUSP1. Addi-
tionally, genes involved in ion transmembrane transport, such as CALM1, CALM2, and
FXYD4, were significantly downregulated. Therefore, it is hypothesized that these genes
may play a pivotal role in the exacerbation and progression of pterygiums. However, these
studies have been applying global searches for analysis approaches, which are probably
too broad to discover underlying functional genes effectively or efficiently. Furthermore,
these studies have only reported on patients of a single ethnicity, failing to compare genetic
differences across different racial groups.

In our pursuit of understanding the gene regulatory mechanisms closely linked to the
inflammatory responses of pterygiums, we employed several analytical approaches. These
ranged from conventional methods like gene set enrichment analysis (GSEA) to a machine
learning-based approach called QLattice. Our study focused on two distinct ethnic groups:
Asian and European pterygium patients. By applying these diverse methods, we aimed
to identify the primary regulatory patterns of functional genes or gene modules shared or
distinct between these two ethnic groups.

2. Results
2.1. Inflammation-Associated Differentially Expressed Genes Might Have Significant Roles

In our pursuit of elucidating the fundamental gene regulatory mechanisms associ-
ated with inflammatory responses in pterygiums, we meticulously analyzed and com-
pared two distinct RNA-seq datasets. Initially, we applied batch correction and performed
principal component analysis (PCA) on both the Asian and European datasets. After
batch correction (as depicted in Figure 1A), we observed that the variations within all
four groups—Asian pterygiums, European pterygiums, Asian control, and European
control—were less than 20% for PC1 and 11% for PC2. The two European groups were
positively correlated, and the other Asian groups were negatively correlated with each
other within the reduced dimensions. A large number of significantly differentially ex-
pressed genes (DEGs) were visualized as volcano plots for both Asian and European
pterygium samples. These plots demonstrate that the DEGs identified were sufficient for
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downstream analyses (Figure 1B). Of the DEGs, some appeared to be associated with ptery-
gium development. For instance, (i) Il36g (IL-36γ), one of the pro-inflammatory agonists
expressed by the corneal epithelium, was reported to be upregulated following corneal
injury and was observed to be remarkably upregulated in our Asian pterygiums [9]. (ii) The
expression of PAX6 was considerably downregulated in corneal epithelial cells isolated
from patients with severe ocular surface inflammatory diseases such as Stevens–Johnson
Syndrome or recurrent pterygiums [10]. (iii) Considering the impairment of autophagy
as a potential cause of pterygiums, we observed that MALAT1, a long non-coding RNA
that promotes autophagy in retinoblastoma cells, was markedly downregulated in the
European pterygiums [11]. We examined inflammatory pathways significantly involved in
differentially expressed genes (DEGs) by conducting the GO analysis using the curated set
of inflammation-associated genes sourced from the MSigDB. From the top twenty common
pathways shown in Figure 1C, some metabolic processes or biosynthetic processes were
negatively enriched, while others, such as the regulation of binding or protein neddylation,
were positively enriched. We also searched for differentially enriched inflammatory path-
ways between the Asian and the European pterygiums (Figure 1D). Among the European
pterygium samples, the top pathways were associated with amide biosynthetic processes
or mRNA metabolic processes. The top pathways in the Asian pterygium samples were,
however, associated with the development of the nervous system, head, and brain. From
another perspective, the inflammatory signaling cascade was upregulated in the Asian
pterygiums, while the European pterygiums displayed upregulation in RNA processing
and translational pathways.

Int. J. Mol. Sci. 2024, 25, 4789 4 of 22 
 

 

 
Figure 1. PCA result, differentially expressed genes, and enriched pathways. (A) PCA result visual-
ized by PC1 and PC2 for pterygium groups and control groups in the Asian and the European sam-
ples using inflammatory-associated genes from MSigDB. (B) Differentially expressed inflammatory-
associated genes in the Asian and the European pterygiums compared to the controls (p-value < 
0.05, and log2 fold-change > 0.5). (C) Top 20 most commonly enriched pathways in the Asian and 
the European pterygiums compared to the controls (p-value < 0.05, and log2 fold-change > 0.25). (D) 
Top 10 most differentially enriched pathways in the Asian and the European pterygiums compared 
to the controls (p-value < 0.05, and log2 fold-change > 0.25). 
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significantly enriched with straight lines (i.e., relatively lower p-values) such as otitis me-
dia (inflammation caused by an infection of the middle-ear) or colitis (inflammation in the 
colon), eye-associated inflammatory terms were also partially at least connected (i.e., rel-
atively higher p-values). 

While having inflammatory abnormality of the eye with a higher NES, inflammatory 
disorders in the uvea—such as uveitis, anterior uveitis, and iridocyclitis—as well as bleph-
aritis and punctate keratitis (which share surface conditions similar to pterygiums) were 
positively enriched. However, a few other ophthalmological diseases, namely conjunctivi-
tis and keratoconjunctivitis, whose transcriptional patterns appeared to be incomparable to 
those of pterygiums, were found to be downregulated. In the Asian pterygiums (Figure 2B), 
nodes directly connected to inflammatory abnormalities of the eye such as uveitis, anterior 

Figure 1. PCA result, differentially expressed genes, and enriched pathways. (A) PCA result
visualized by PC1 and PC2 for pterygium groups and control groups in the Asian and the Eu-
ropean samples using inflammatory-associated genes from MSigDB. (B) Differentially expressed
inflammatory-associated genes in the Asian and the European pterygiums compared to the con-
trols (p-value < 0.05, and log2 fold-change > 0.5). (C) Top 20 most commonly enriched pathways
in the Asian and the European pterygiums compared to the controls (p-value < 0.05, and log2
fold-change > 0.25). (D) Top 10 most differentially enriched pathways in the Asian and the European
pterygiums compared to the controls (p-value < 0.05, and log2 fold-change > 0.25).
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2.2. GSEA Clusters Revealed Eye-Associated Inflammatory Responses

We additionally carried out GSEA to search for interactions between pathways that
are known or at least linked in current databases. Pathway connectivity is visualized
using Cytoscape in Figure 2A for the European pterygiums and Figure 2B for the Asian
pterygiums. In the European pterygiums (Figure 2A), although inflammation-associated
nodes involved in several diseases (other than eye-associated conditions) were positively
and significantly enriched with straight lines (i.e., relatively lower p-values) such as otitis
media (inflammation caused by an infection of the middle-ear) or colitis (inflammation in
the colon), eye-associated inflammatory terms were also partially at least connected (i.e.,
relatively higher p-values).
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To better understand how the transcriptional profiles of our Asian datasets were di-
rectly associated with inflammatory responses, we explored the relative gene expression 
levels of the customized inflammatory gene lists obtained from [12] (Figure 3). The gene 
list is composed of six different categories, where three of them (i.e., innate immunity, 

Figure 2. Enriched pathways network identified by GSEA. (A) Network visualization of enriched
pathways from the European pterygiums compared with the control. (B) Network visualization of
enriched pathways from the Asian pterygiums compared with the control. Enriched pathways in
the pterygiums are depicted in red, while pathways enriched in the control are shown in blue. The
size of nodes corresponds to the size of the gene set belonging to the respective pathway. Edges
(similarity < 0.375) are generally represented as dotted lines, with particularly significant connections
(p-value < 0.25) displayed as solid lines. Since edges represent the similarity coefficient between
connected nodes, thicker lines indicate a higher degree of association.
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While having inflammatory abnormality of the eye with a higher NES, inflammatory
disorders in the uvea—such as uveitis, anterior uveitis, and iridocyclitis—as well as ble-
pharitis and punctate keratitis (which share surface conditions similar to pterygiums) were
positively enriched. However, a few other ophthalmological diseases, namely conjunctivitis
and keratoconjunctivitis, whose transcriptional patterns appeared to be incomparable to
those of pterygiums, were found to be downregulated. In the Asian pterygiums (Figure 2B),
nodes directly connected to inflammatory abnormalities of the eye such as uveitis, anterior
uveitis, and iridocyclitis were relatively more significantly and positively enriched with the
straight lines. This may suggest that the inflammatory patterns observed in pterygiums
may be similar to those seen in other ophthalmological diseases, and these patterns ap-
peared more frequently in the Asian cases. Overall, the inflammatory patterns between
the Asian and the European pterygiums were comparable and proportional, despite some
unevenness and variation.

2.3. Core Inflammatory Genes of the Asian Pterygiums Demonstrated Significant Alterations on
Inflammatory Responses and Oxidative Stress

To better understand how the transcriptional profiles of our Asian datasets were
directly associated with inflammatory responses, we explored the relative gene expres-
sion levels of the customized inflammatory gene lists obtained from [12] (Figure 3). The
gene list is composed of six different categories, where three of them (i.e., innate immu-
nity, extracellular immunity, and mitochondrial innate immunity) are typical systems
intimately associated with inflammatory responses, and the other three (i.e., integrated
stress responses, renin–angiotensin–aldosterone system, and unfolded protein responses)
are additional systems indirectly involved in cellular stresses. As initially designed in this
study, we primarily focused on gene expression profile alterations associated with various
inflammatory responses. Among the list of genes with significant up/downregulations in
Asian pterygiums, the eye-associated inflammatory gene list included (i) the upregulation
of CSF3, a cytokine linked to increased pain perception in the contralateral eye post-cataract
surgery, which represented its role in inflammatory responses [13]; (ii) the upregulation of
SOCS1, which indicated an association with modulating ocular inflammation, as observed
in intraocular inflammatory diseases like uveitis and scleritis [14]; (iii) the upregulation
of HLA-A in ocular diseases, which demonstrated its role in increasing the risk of ocular
lesions in Behçet’s disease [15]; (iv) the upregulation of CD38, which corresponds with
findings from retinal ischemia/reperfusion injury studies, where a deficiency in CD38 was
shown to confer protective effects against inflammatory responses on the retina [16]; (v) the
upregulation of JUN in glaucoma, which displayed its involvement in retinal ganglion
cell (RGC) degeneration through the JNK-JUN signaling pathway [17]; (vi) the upregu-
lation of PYCARD, coupled with the downregulation of NLRP3, which highlighted the
significance of the NLRP3 inflammasome and PYCARD in IL-1β production in the eye [18];
(vii) the upregulation of TNFRSF10B and downregulation of TNFSF10, which may express
a complex interplay in retinal degenerative disorders of age-related macular degeneration
(AMD), where TNFSF10 and its receptor TNFRSF10B are involved in inflammatory and
apoptotic pathways [19]; (viii) the upregulation of SERPING1, whose genetic variations
can be significant contributors to AMD susceptibility [20]; (ix) the upregulation of CXCL8,
alongside the downregulation of IL6, known to be associated with inflammatory responses
mediated by CXCR1 and CXCR2 receptors [21], which turned out to be important in ocular
inflammation and angiogenesis [22]; (x) the downregulation of CXCL11, involved in the
inflammatory processes of AMD, which was found to be linked to the retinal pigment
epithelium’s (RPE’s) responses [23].
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Figure 3. Heatmap of genes associated with inflammatory pathways with t-score comparing the
Asian pterygiums and the control. Transcriptional profile alterations (as t-scores) of the inflammatory
genes selectively organized by Topper and Guarnieri et al. (2023) [12] were visualized. Red indicates
upregulation and blue indicates downregulation in either the Asian or the European pterygiums
compared to the controls.

While having found a crucial association between our pterygiums’ transcriptional pro-
files and the core inflammatory genes, we also looked into how significantly inflammation-
associated genes in the pterygium are significantly involved in stress responses. The
inflammatory gene list with significant alterations associated with stress responses includes
the following: (i) The downregulation of ZBP1 whose activation is necessitated by oxidative
damage could exhibit involvement in oxidative stress-induced inflammatory signaling [24];
(ii) the downregulation of GCLC and GPX2 could correlate with activation of the Nrf2
pathway in oxidative stress responses in ocular diseases [25]; (iii) the downregulation of
LONP1 in association with CODAS syndrome suggests that the suppression of LONP1
may play a significant role in mitochondrial dysfunction [26]; (iv) the downregulation of
FOXO3, an indicator of oxidative stress and cell homeostasis, might be associated with
an impaired response to oxidative stress [27]; (v) the downregulation of SOD2 implies a
possible connection to mitochondrial dysfunction or its oxidative stress in RPE cells that
can lead to metabolic changes and structural damage in photoreceptors [28]; (vi) the upreg-
ulation of ATG12 and ATG16L1, which are autophagy markers, may strengthen the role of
autophagic processes in disease developments [29]; (vii) the upregulation of DNAJC3 and
downregulation of ATF6, involved in complex dynamics of endoplasmic reticulum (ER)
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stress and unfolded protein response (UPR) signaling pathways in ocular health, might
suggest probable ER stress or disruption in UPR-mediated cellular responses [27].

2.4. Inflammatory Pathways Displayed Dynamic Alterations on Asian Pterygiums

To estimate how the activation levels of the inflammatory pathways revealed dynamic
alterations in Asian pterygiums, we computed enrichment scores of each pathway in the
Asian cases compared to the non-Asian cases. The corresponding normalized enrichment
scores (NESs) were acquired through fast gene set enrichment analysis (fGSEA) [30] using
the aforementioned customized inflammatory modules.

As shown in Figure 4, the innate immune system, which encompasses well-known
interferon-driven and interferon-stimulated genes (ISGs), was downregulated in the Asian
pterygiums, except for antigen presentation. Both canonical and non-canonical modules of
the innate immune system, including most of the ISGs, may not only play a role in the early
stages of the innate immune responses against invading pathogens using reactive oxygen
species (ROS) [31], whereas they exhibit downregulation in inflammatory diseases such as
HIV [32].
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In the extracellular immunity system, the positive activation of cell surface mark-
ers and surface receptor signaling in Asian pterygiums could potentially necessitate the
adaptation of inflammatory responses such as immune privilege [34]. While cytokines
(i.e., CXC chemokine receptors) were also activated, interleukins were suppressed in the
pterygium. A deficiency of interleukins or an imbalance of cytokines is known to often
occur in autoimmune diseases [35,36].

Considering the mitochondria innate immune system, we estimated enrichment score
changes for modules such as mtDNA, dsRNA, and mtdsRNA. Mitochondrial ROS (mROS),
which can be generated by antiviral signaling and are also remarkably associated with
oxidative stress, could potentially result in inflammatory disorders [37].

Alterations in unfolded protein response (UPR), which are important for the functions
of immune cells, innate immune signaling, and oxidative stress within the endoplasmic
reticulum [38], have been reported to be involved in various diseases, including cancer and
inflammatory bowel disease [39].

The renin–angiotensin–aldosterone system (RAAS) plays a critical role in inflammation
and oxidative pathways. Abnormalities in the angiotensin regulatory axis could cause
tissue damage, inflammation, and NADPH activation, leading to oxidative stress. The
imbalance of RAAS is also well known in several disorders associated with inflammation,
such as obesity and cardiovascular disease [40].

The integrated stress response (ISR), which is intimately associated with oxidative
stress, has demonstrated positive activations of antioxidants, autophagy, ISR activators,
and cytokines/chemokines. This may suggest that the repair and rebuilding system,
which addresses damages caused by oxidative stress and inflammatory responses, can
be revitalized.

2.5. Compatible Patterns between the Asian and European Pterygiums Are Associated with
Oxidative Stress

To search more extensively for inflammatory-based regulations of genes or modules,
we compared alteration patterns of the core genes or their modules (i.e., gene groups)
between the Asian and the European pterygiums. As depicted in Figures 4 and 5, the
inflammatory pathways with the most similar patterns of gene expression alterations be-
tween the two ethnic groups turned out to be extracellular immunity and UPR. In these
pathways, cytokines, surface marker receptor signaling, and the endoplasmic reticulum
were positively enriched, while antigen presentation, interleukins, and mitochondrial mod-
ules were negatively enriched. RAAS and ISR displayed significantly enriched alterations
in opposite patterns between the two datasets. Specifically, bradykinin production, com-
plement activation/fibrin deposition, and hyaluronan accumulation in RAAS and death
factors in ISR demonstrated contrasting enrichment.

Despite recognizing these common alterations or contradictory patterns between the
Asian and the European pterygiums, we continuously focused on associations between
cellular stresses and inflammatory responses, given that oxidative stress already plays
pivotal roles in immune-associated activities [41]. The following compatible patterns of
some representative inflammatory genes between the two groups were observed: (i) The
downregulation of ZBP1 in both pterygiums, known for its involvement in antiviral im-
munity, could be associated with cellular stress, including oxidative stress. RPE (retinal
pigment epithelial) cells exposed to chronic low-level oxidative stress could induce damage
to mtDNA, leading to subsequent translocation of the damaged DNA, resulting in the bind-
ing and activation of ZBP1 [24]. (ii) The upregulation of FAS in both pterygiums, known
as an important cell surface receptor initiating cell apoptosis, could be a consequence of
increased oxidative stress. Oxidative stress generally increases the overall expression of
both FAS and FAS-L genes, and a high level of ROS is involved in the upregulation of
two genes [42]. (iii) The downregulation of the GPX family (GPX1 as a cofactor to shield
cells from oxidative stress, GPX2 as an electron donor to convert harmful ROS, and GPX4
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as a cofactor to convert lipid hydroperoxides into lipid alcohols), inherently linked to
oxidative stress, might deactivate its defensive mechanism against oxidative stress [43].
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Figure 5. Heatmap of genes associated with inflammatory pathways with t-score, comparing the
Asian pterygiums and the European pterygiums. Transcriptional profile alterations (as t-scores)
of the inflammatory genes selectively arranged by Topper and Guarnieri et al. (2023) [33] were
visualized. Red indicates upregulation and blue indicates downregulation in either the Asian or the
European pterygiums.

2.6. Oxidative Phosphorylation Might Cause the Different Responses against Oxidative Stress in
European Pterygiums

In an effort to uncover shared and distinctive patterns in the Asian and the Euro-
pean pterygiums, protein–protein interaction (PPI) analysis through STRING revealed
enriched pathways in both the Asian and the European pterygiums compared to the
controls. By examining differentially expressed inflammatory genes, we identified approxi-
mately 500 enriched pathways from the biological processes of Gene Ontology in both the
Asian and the European cases. Among them, multiple enriched pathways were shared
in both ethnic groups, including immune pathways, tissue remodeling, TGF beta-related
pathways, and stress response in both Asian and European pterygiums. Note that the core
inflammatory genes displayed the upregulation of genes associated with oxidative stress
response in both types of pterygiums (Figures 4 and 5), and the PPI network also unveiled
enrichment in stress response in both cases. However, the PPI network of European ptery-
giums exhibited significant alterations in oxidative phosphorylation that were absent in
Asian pterygiums. This finding was further detected in lollipop plots, indicating an overall
upregulation of oxidative phosphorylation in the European and a contrasting downregula-
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tion in the Asian pterygiums (Figure 6B). In all complexes which were associated with the
electron transport chain, there were more upregulated genes in the European group than
in the Asian pterygium group (Figure 6C). Therefore, the heatmap of oxidative phospho-
rylation consistently supported these findings, reinforcing the upregulation of oxidative
phosphorylation in pterygiums of the Europeans, observed in the aforementioned analysis.
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Figure 6. Functional differences with different activity levels in Asian and European pterygiums
compared to their controls. (A) PPI network with significantly differentially expressed inflammatory
genes. (B) Lollipop plot of oxidative phosphorylation. (C) Heatmap of oxidative phosphorylation.
The inflammatory genes from MSigDB were filtered with adjusted p-value < 0.2 and |log2 fold
change| > 0.5 for Asian, and adjusted p-value < 0.001 and |log2 fold change| > 2.25 for European.
The proteins in the PPI network were exhibited by applying confidence 0.9. The enriched pathways
were selected with strength 0.75 for Gene Ontology biological processes.

2.7. Correlated Inflammatory Modules Might Play an Important Role

In attempts to explore correlation patterns between functional modules of inflammation-
associated systems, we implemented a custom-made method adopted from QLattice [30], a
machine learning-based algorithm for omics data, where we applied normalized enrich-
ment score (NES) and Pearsons’ correlations (Figure 7). The Pearson’s correlation coefficient
for each functional module (or sub-system) was obtained through the QLattice regression
model with NESs of the modules within the corresponding system as inputs. Considering
our comparative analysis on the Asian and European datasets, the inflammation module
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of innate immunity and the endoplasmic reticulum of UPR exhibited relatively higher
correlations (i.e., higher than 0.6) with the modules of their corresponding systems (i.e.,
pathways) in both Asian and European samples. This suggests that the genes (Table 1)
involved in those modules might be coordinately regulated regarding either the innate
immune system or the unfolded protein response in the pterygiums of both ethnic groups.
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Figure 7. Pearson’s correlations of modules of the inflammatory pathways. The correlations computed
by Q-Lattice with NES values of modules and their inflammatory pathways were visualized. The NES
was calculated with the core genes of both the Asian pterygiums (p-value < 0.35) and the European
pterygiums (p-value < 0.3). Pink indicates the Asian and sky blue indicates the European samples.

Table 1. List of core inflammatory genes associated with pterygiums.

Asian
(Korean)

European
(Germany) Inflammation Eye Disease or

Pterygium Pathogenesis
Oxidative Stress or
DNA Damage

up up

EI; FYN, CD1D, CD38, CXCR6,
CD8A, FAS
ISR; GSTA1, FOS, ATF2, DELE1
UPR; PDIA4, XBP1, EDEM3

FYN [44], CD1D [45],
ATF2 [46], XBP1 [47]

CD38 [48], FAS [49],
GSTA1 [50], FOS [51],
DELE1 [52], XBP1 [53]

down down

II; IFITM3, IFIT3, LGALS3BP,
ZC3HAV1, ZBP1
ISR; SLC6A9
MII; ZBP1
UPR; LONP1, SCAF1, FOXO3, SOD2
RAAS; CTSA, CMA1, ZBP1

LGALS3BP [54],
FOXO3 [55],
SOD2 [56],
CMA1 [57]

ZBP1 [24], SCAF1 [58],
FOXO3 [59], SOD2 [28],
CTSA [60], CMA1 [61]

up down MII; MAVS
RAAS; C1QA, SERPING1, HYAL1 C1QA [62], SERPING1 [63]

down up

II; CASP1, NFKB1
MII; CASP1, IL1R1
ISR; ADARB1, EIF2B2
RAAS; SDC2

CASP1 [64] CASP1 [65]
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The correlation coefficients of some modules such as interleukins of extracellular
immunity, mtDNA of mitochondrial innate immunity, mitochondrial modules of the un-
folded protein response, ISR activators of the integrated stress response, and NADPH
oxidase of the renin–angiotensin–aldosterone system exceeded 0.6 only in Asian samples.
European pterygiums also displayed a few modules (surface marker/receptor signaling
and cytokines in extracellular immunity) whose coefficients were higher than 0.6 only in
European samples. This may indicate a coordinated regulation of genes of each group
associated with their corresponding modules in either Asian or European pterygiums.
However, some modules demonstrated very low correlation coefficients in at least one
of the groups and also substantial differences between them. These modules were as fol-
lows: (i) mtDNA/dsRNA of mitochondrial innate immunity, antioxidants of the integrated
stress response, and syndecans of the renin–angiotensin–aldosterone system in the Asian
pterygiums; (ii) interleukins of extracellular immunity, mtdsRNA of mitochondrial innate
immunity, mitochondrial modules of the unfolded protein response, and death factors of
integrated stress response in the European pterygiums. These aforementioned correlations
between the modules could possibly explain which modules seemed to be associated with
potential primary patterns of pterygium inflammation or differential inflammation patterns
between the Asian and the European pterygiums.

3. Discussion

In this study, we investigated gene regulatory mechanisms, specifically focusing on
inflammation and its corresponding stress (i.e., oxidative stress) in pterygiums, utilizing
RNA-seq datasets from pterygium patients, including both Asian and European cohorts.
Our analyses on the pterygium datasets captured biologically and computationally (mathe-
matically) sensible transcriptional profile alterations in both pterygiums compared to their
controls and the comparison between the Asian and the European pterygiums. The com-
prehensive analysis of pterygiums encompassed identifying signaling pathways associated
with existing databases through Gene Ontology (GO) analysis and gene set enrichment
analysis (GSEA). Additionally, we investigated potential regulatory changes in the core in-
flammatory gene list, assessed activity levels of essential inflammatory functional modules,
and computed correlations between these functional modules.

Although typical analyses (i.e., GO and GSEA) on the Asian and the European ptery-
gium data displayed eye-associated dysfunctions such as inflammatory abnormality of
the eye from GSEA, our investigation further dipped into underlying potential regulatory
mechanisms through the core inflammation-associated genes and their modules. Among
commonly upregulated inflammatory functional modules (cytokines and surface marker
receptor signaling in extracellular immunity; endoplasmic reticulum in UPR; NADPH
oxidase in RAAS, and antioxidants, cytokines/chemokines and ISR activators in ISR), the
endoplasmic reticulum in UPR showed consistency with the upregulation of ‘retrograde
vesicle-mediated transport, Golgi to endoplasmic reticulum’ identified by pathway en-
richment analysis with GO. Also, three modules of ISR were upregulated in both cases,
suggesting that stress responses are associated with inflammation in pterygiums since
ISR is expected to deal with various stressors, including proteostasis defects, nutrient
deprivation, viral infection, and redox imbalance. ISR, closely linked to NF-κB, facilitates
the transcription of proinflammatory genes. Upon activation, ISR also triggers the secre-
tion of inflammatory cytokines, promoting cell communication during local inflammation.
Among the frequently upregulated genes within these modules, GSTA1 plays a crucial role
in detoxifying oxidative stress products [50]. PARL in the antioxidant of ISR detoxified
lipid peroxidation and inhibited ferroptosis [12]. FOS in cytokines/chemokines of ISR
was associated with the DNA damage response [51]. As the NESs of the antioxidant and
cytokines/chemokines indicated their positive enrichment in pterygiums in both Asian
and European samples, GSTA1, PARL, and FOS might contribute to their upregulation in
response to oxidative stress and DNA damage.
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Concerning commonly downregulated inflammatory pathways, canonical and non-
canonical innate immunity, antigen presentation and interleukins in extracellular immunity,
mtDNA/dsRNA in mitochondrial innate immunity, mitochondrial UPR, AGT regulator
axis and PANoptosis in RAAS, and AA-uptake/biosynthesis and survival factors in ISR
(Figures 4 and 6) were included. Many of the genes in these negatively enriched modules
were involved in well-known inflammatory signaling pathways: (i) the JAK/STAT signal-
ing pathway, (ii) the MAPK signaling pathway, and (iii) the NF-kappa B pathway. The three
pathways are regarded as the main inflammatory pathways that cooperatively interact with
each other [66]. Among the downregulated genes in pterygium, CXCL11, ADAR, XAF1,
ZBP1, HERC5, CIITA, IL6, IL10, IL12RB2, IRF3, CGAS, SOD2, and CMA1 have been found
to be directly or indirectly associated with JAK/STAT signaling pathways [67–80]. Several
genes were also involved in MAPK signaling pathways, including CXCL11, ADAR, PLVAP,
PARP10, XAF1, ZC3HAV1, ZBP1, F12, CIITA, IL6, IL10, IRF3, CGAS, LONP1, FOXO3, and
SOD2 [81–96]. Additionally, the following genes contributed to NF-kB pathways in either a
negative or positive way: CXCL11, ADAR, LGALS3BP, PARP10, ZBP1, HERC5, CIITA, IL6,
IL10, RELB, NFKB2, CGAS, and SOD2 [78,97–104]. Intriguingly, CXCL11, ADAR, ZBP1,
CIITA, IL6, IL10, CGAS, and SOD2, which were referred to as being associated with all three
inflammatory signaling pathways, were all downregulated in both Asian and European
pterygium cases. The JAK/STAT, MAPK, and NF-kB signaling pathways also play roles
in oxidative stress and DNA damage, where increased oxidative stress impairs IFN-alpha
signaling, affecting JAK/STAT and the inactivation of JAK1, while oxidative stress and
DNA damage activate MAPK and NF-kB [105–107]. Since the pathway enrichment anal-
ysis showed a stress-activated inflammatory signaling cascade in the Asian pterygium,
the downregulation of the genes associated with the inflammatory signaling pathways
could be expected. It would appear, therefore, that both positive and negative changes
in inflammatory signaling pathways in response to oxidative stress and DNA damage in
pterygiums could be considered.

Inconsistent alteration patterns between the two pterygium groups, upregulated in
the Asian and downregulated in the European pterygiums, converged into autophagy
of the immune system. According to previous studies, autophagy could affect MHC
class 1 presentation in which HLA-B played a role [108] and negatively regulated MAVS
signaling [109]. Also, BECN1, ATG16L1, BAK1, TNFRSF10B, and C1QA might contribute
to inflammatory response and autophagy [44,110–113]. Another contradictory pattern,
downregulation in the Asian and upregulation in the European pterygiums, represented
different pathogeneses of pterygiums between the two groups. For instance, CASP1
could participate in pyroptosis through activated IL1B and IL18, and FASLG could be
involved in pterygium fibroblasts, suggesting that they might play a role in pterygium
pathogenesis [64,114]. Therefore, there might be different responses between the Asian and
the European pterygiums with regard to autophagy or pathogenesis.

The PPI network revealed common enriched pathways, potentially linked to the
pathology of pterygiums, including inflammatory responses, the regulation of leukocyte
differentiation, tissue remodeling, the TGF beta receptor signaling pathway, the positive
regulation of superoxide anion generation, and the ROS metabolic process. Notably, TGFB1
emerged as a central node in the network across both the Asian and the European groups,
contributing to all enriched pathways: immune pathways, tissue remodeling, TGF beta
signaling pathways, and stress response. The role of TGFB1 in tissue remodeling, partic-
ularly its interaction with fibroblasts, is implicated in pterygium tissue remodeling [115].
Given the association of TGFB1 with inflammation and its pro- and anti-inflammatory
responses [116], it likely plays multi-functional roles in pterygium pathology, encompassing
inflammation, stress response, and tissue remodeling.

In contrast, an additional dissimilarity between the Asian and the European pterygium
groups emerged in PPI analysis, specifically involving oxidative phosphorylation. While
the Asian and the European pterygiums shared general patterns in inflammation, tissue
remodeling, and stress response, oxidative phosphorylation was significantly enriched only
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in the European pterygiums. Furthermore, the lollipop plot and the heatmap illustrated an
overall upregulation of oxidative phosphorylation in the European pterygiums, particularly
with the significant downregulation of complex IV in the Asian samples and its upreg-
ulation in the European samples (Figure 6B,C). A previous study also found differences
in oxidative phosphorylation between Caucasian and Hispanic pterygiums [117]. Conse-
quently, ethnic variations in pterygium pathology demonstrated significant differences
in energy-associated pathways, specifically oxidative phosphorylation. This observation
could contribute to the inconsistent patterns observed in the Asian and the European
pterygium pathogeneses.

The limitation of this study lies in its lack of consideration for clinical aspects. Al-
though this study primarily focused on deciphering inflammatory patterns detectable
during the progression of pterygiums from a basic research perspective, directly applying
the findings to clinical practice may pose challenges. Nevertheless, even so, when contem-
plating clinical treatment for pterygium-associated inflammation, treatment may not be
required in the early stages of a pterygium. However, topical antibiotic therapy could be
applied to suppress pterygium inflammation or progression. Additionally, in cases where
the progression is rapid, it is believed that the use of anti-inflammatory agents such as
vasoconstrictors and steroids can slow down its advancement.

4. Materials and Methods
4.1. Patient Samples

In our sample collection, we obtained pterygium tissues from Korean patients, which
were categorized as Asian pterygiums for comparison with the other data categorized as
European pterygiums. The sample collection was approved by the Institutional Review
Board of Kyung Hee University Hospital at Gangdong (IRB No. 2022-04-006) and was con-
ducted in accordance with the official regulations for clinical research and the Declaration
of Helsinki. The Asian cases consisted of six patients diagnosed with primary pterygiums
who underwent elective pterygium excision. These patients provided written informed
consent. Excluded from the study were patients with recurrent pterygiums, conjunctival
tumors, or ocular surface inflammation. All Asian patients were in good health and ranged
in age from 61 to 72 years, including three males and three females. Conventional excision
of pterygiums was performed under local anesthesia. Whole pterygial tissues, including
pterygial heads and bodies, were collected from the nasal limbus, and a small section of
conjunctival tissue was collected as a control. Finally, the tissues were transferred to 2 mL
Eppendorf tubes (Eppendorf, Hamburg, Germany) and stored at −80 ◦C for subsequent
total RNA extraction. Therefore, we obtained six pterygial tissues and six conjunctival
tissues, where each patient contributed both a pterygial and a conjunctival sample. Also,
we downloaded publicly available data from the Gene Expression Omnibus (GEO), whose
accession number was GSE155776 [118], and considered these data as the European ptery-
giums. The European data included eight human conjunctival pterygium samples and
eight healthy conjunctival samples as controls. Their clinical details pertaining to the study
patients are described in Table 2.

Table 2. Clinical and demographic information for patients.

Case NO Age
Mean (std) Sex Tissue

(Diagnosis) Race

1 61 F Primary pterygium/healthy conjunctiva Asian (Korea)
2 65 F Primary pterygium/healthy conjunctiva Asian (Korea)
3 61 M Primary pterygium/healthy conjunctiva Asian (Korea)
4 72 M Primary pterygium/healthy conjunctiva Asian (Korea)
5 72 M Primary pterygium/healthy conjunctiva Asian (Korea)
6 64 F Primary pterygium/healthy conjunctiva Asian (Korea)

7–14 57.6 (8.5) 6/2 (M/F) Primary pterygium European (Germany)
15–22 55.8 (7.9) 6/2 (M/F) Healthy conjunctiva European (Germany)
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4.2. RNA-Seq Preparation and Preprocessing

For the Asian data, gene expression levels were obtained for 12 samples, consisting
of 6 independent libraries for the pterygiums and their corresponding controls. A qual-
ity control process including FASTQC (v0.11.7) was performed on the sequencing data
before aligning the reads. The STAR-HTSeq workflow, containing STAR (v2.7.3a) [119]
and HTSeq-count (v0.12.4) [120], was used to map the sequencing reads to the reference
genome (GRCH38) along with its annotation. After having the read counts, gene expression
levels were normalized and differentially analyzed using the DESeq2 package [121], with
normalization as VST (variance stabilizing transformation).

4.3. Differential and Enrichment Analysis

ComBat batch correction [122] in the sva package [123] was executed to mitigate bias
in the data from the European and the Asian samples independently. While recognizing
ethnic differences and distinct sample origins as potential batch effects, we performed batch
correction with European and Asian designations as batch variables. Principal component
analysis (PCA) was implicated with regularized-logarithm transformation and PCA func-
tion within the DESeq2 R package (ver. 1.38.3). Also, the differential analysis of ‘Pterygium
vs. Control’ using inflammation-associated genes of both groups was carried out through
DESeq2, and volcano plots depicting differentially expressed genes were generated by
EnhancedVolcano (ver. 1.16.0) [124]. Additionally, enriched functional pathways for either
the Asian or the European pterygiums were searched through Gene Ontology (GO) analy-
sis using enrichGO from the ClusterProfiler R package (ver. 4.6.2) [125], and associations
between enriched functional pathways were captured by gene set enrichment analysis
(GSEA) (ver. 4.3.2) [126], followed by its visualization through Cytoscape, an open-source
platform to visualize networks, along with EnrichmentMap, a visualization tool specifically
designed for enrichment analysis [127]. A protein–protein interaction (PPI) network was
illustrated using STRING, which provides potential associations between proteins in net-
work format, utilizing differentially expressed inflammatory genes [128]. In the analyses
(i.e., Volcano, GO, GSEA, and PPI), a gene list intimately associated with inflammation
was selectively applied as acquired from the Molecular Signatures Database (MSigDB) [33].
For this gene list, we curated a list by collecting genes associated with a biological process
(BP) of a category, ontology gene sets, focusing on homo sapiens for source species with all
contributors, while looking up “inflammation” as a keyword on the MSigDB. For further
analyses such as gene expression profile heatmaps and inflammatory-specific pathway
enrichment analysis, the custom-made core inflammatory gene list and their corresponding
inflammatory pathways and modules were adopted from [12], and also, fast gene set
enrichment analysis (fGSEA) [129] was implemented. Additionally, MitoCarta 3.0 was
applied to visualize patterns of oxidative phosphorylation conducted by fGSEA, while
customized mitochondrial genes obtained from Guarnieri et al. (2023) were utilized for
gene expression profile heatmaps related to oxidative phosphorylation [130,131].

4.4. Correlation Analysis between Inflammatory-Modules

QLattice [30], a machine learning-based regression and classification tool, was used
to conduct correlation analysis between inflammatory pathways and their modules. This
analysis displayed the top ten regression models while applying Pearson’s correlation. The
computation utilized normalized enrichment scores (NESs) of inflammatory pathways and
their modules between pterygiums and controls for the Asian and the European samples.
After computing NESs of the inflammatory pathways compared to the controls for each
pterygium sample, and for all pterygium samples compared to the controls in each ethnic
group, we used the NESs of the inflammatory pathway as output and created a model with
the NESs of its modules as input.
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5. Conclusions

In conclusion, the inflammatory pathway played a crucial role in both the Asian and
the European pterygiums, exhibiting commonalities and differences. The upregulation of
antioxidant genes in response to oxidative stress and DNA damage suggested the relevance
of oxidative stress and DNA damage to pterygium progression. The downregulation of the
genes participating in the three major inflammatory signaling pathways, the JAK/STAT,
MAPK, and NF-kappa B signaling pathways, indicated that the impairment of these
pathways would be associated with pterygiums. Moreover, autophagy and antioxidants
were relatively more active in the Asian pterygiums, while relatively more active stress
responses against oxidative stress were observed in the European pterygiums. OxPhos
could potentially be a source of these differences.
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