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Abstract: Alzheimer’s disease (AD) is characterized by amyloid beta (Aβ) buildup and neuronal
degeneration. An association between low serum vitamin D levels and an increased risk of AD has
been reported in several epidemiological studies. Calcitriol (1,25-dihydroxycholecalciferol) is the
active form of vitamin D, and is generated in the kidney and many other tissues/organs, including
the brain. It is a steroid hormone that regulates important functions like calcium/phosphorous
levels, bone mineralization, and immunomodulation, indicating its broader systemic significance. In
addition, calcitriol confers neuroprotection by mitigating oxidative stress and neuroinflammation,
promoting the clearance of Aβ, myelin formation, neurogenesis, neurotransmission, and autophagy.
The receptors to which calcitriol binds (vitamin D receptors; VDRs) to exert its effects are distributed
over many organs and tissues, representing other significant roles of calcitriol beyond sustaining
bone health. The biological effects of calcitriol are manifested through genomic (classical) and non-
genomic actions through different pathways. The first is a slow genomic effect involving nuclear
VDR directly affecting gene transcription. The association of AD with VDR gene polymorphisms
relies on the changes in vitamin D consumption, which lowers VDR expression, protein stability, and
binding affinity. It leads to the altered expression of genes involved in the neuroprotective effects of
calcitriol. This review summarizes the neuroprotective mechanism of calcitriol and the role of VDR
polymorphisms in AD, and might help develop potential therapeutic strategies and markers for AD
in the future.
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1. Introduction

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease (ND) that
results in progressive damage to the structure and function of neurons. Globally, over
400 million people are affected by AD and it is the main cause of dementia in the el-
derly population [1]. The pathogenesis of AD is multifactorial and is associated with the
deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), neuronal loss ac-
companied with increased oxidative stress, neuroinflammation, and synaptic changes [2,3].
The available Food and Drug Administration (FDA)-approved drugs (Donepezil, Galan-
tamine, Rivastigmine, Memantine, Aduhelm) provide only symptomatic treatment [4] but
a treatment to prevent the disease is lacking. The development of an effective, safe, and
low-cost treatment would undoubtedly have a great global impact.

Various studies have shown an association of vitamin D deficiency with an increased
risk of infections, including COVID-19; asthma; cardiovascular diseases; autoimmune
diseases; hyperlipidemia; diabetes; and cancer [5–9]. The vitamin D status is evaluated
from serum calcifediol levels (longer half-life compared to other vitamin D metabolites)
and a value > 30 ng/mL is considered to be healthy. The recommended dietary allowance
(RDA) of vitamin D for different age groups is 400 IU (0–12 months); 600 IU (up to 70 years),
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and 800 IU (over 70 years) [10]. Calcitriol, the bioactive form of vitamin D, is a fat-soluble
vitamin with antioxidant activity, maintains calcium and phosphorous homeostasis, and
strengthens immune function. Studies indicate a novel link between calcitriol and mito-
chondrial bioenergetics involving calcium channels [11]. Calcitriol displays its effect by
binding to vitamin D receptors (VDRs), which are present in various tissues and organs
such as the skin, brain, parathyroid, skeletal muscles, heart muscles, pancreas, pituitary,
ovaries, testes, and blood cells, but not the kidney and bones [12]. The diverse locations
of VDRs indicate other important functions of calcitriol in the body. The research in the
past two decades has identified calcitriol as a likely neurosteroid [13] and its possible link
with psychiatric disorders and [14,15] NDs was explored [16–18]. The brain is capable of
synthesizing and receiving calcitriol, which is speculated to support synaptic plasticity and
neurotransmission [19,20], and its role in neurogenesis, preventing neuroinflammation, im-
proving cognition, and the clearance of amyloid plaques has been studied [21–24]. It is also
known to protect the CNS from immunopathogenic diseases and inflammasome activation.
Early intervention with calcitriol ameliorates the activation of local microglia/macrophage,
preventing neuroinflammation [24]. Calcitriol improves Aβ clearance by stimulating phago-
cytosis along with reduced monoamine oxidase B (MAO-B) expression [25]. Calcitriol is
known to be present after brain injury and protects the integrity of the blood–brain barrier
(BBB) following acute ischemic stroke [26]. Calcitriol possesses good antioxidant activity,
reduces cell apoptosis, and increases the production of neurotrophic factors [nerve growth
factors (NGFs) and glial cell line derived neurotrophic factors (GDNFs), neurotrophin-
3, Brain-derived neurotrophic factors (BDNFs)] required for the survival and growth of
neurons, which ultimately improves cognition [26,27].

In the present review, we provide an overview of the neuroprotective mechanism
of calcitriol and VDR polymorphisms in AD. Understanding the molecular mechanisms
and the role of genetic variation could be important for developing therapies for NDs in
the future.

2. Methods

The present work gives an inclusive overview of the published scientific research
available on various databases (PubMed, Google Scholar, and Science Direct) up until
January 2024. The search terms used were “calcitriol” or “vitamin D” or “vitamin D
receptor” or “vitamin D transport” with the filter “brain”, “neuroprotection”, “Alzheimer’s
disease”, “VDR polymorphism”, and “English”. Exclusion criteria: the papers not in the
English language were not included.

3. Synthesis and Activation of Vitamin D

Vitamin D prohormone (calciferol; sunshine vitamin) is a collective term for vitamin
D2 (ergocalciferol) and vitamin D3 (cholecalciferol). Vitamin D3 is mainly synthesized in
the skin through the photochemical action of solar ultraviolet type B (UVB) radiation on
7-dehydrocholesterol (7-DHC) (Figure 1). In contrast, the body is unable to produce vitamin
D2 and can only be consumed through the consumption of plants in the diet. Vitamin
D2 has a double bond between C22 and C23 and a methyl group on C24, which is absent
in vitamin D3. This structural difference affects metabolic activity and thus vitamin D3
exhibits a better affinity for vitamin D binding protein (VDBP) and vitamin D receptor
(VDR) [28]. Vitamin D is biologically inert and requires two hydroxylation steps for its
activation. Initially, it is hydroxylated in the liver by cytochrome P450 enzyme (CYP2R1;
25-Hydroxylase) to calcifediol (25-hydroxy vitamin D3; [25(OH)D3]) and further metabo-
lized to calcitriol (1,25-dihydroxy vitamin D3; 1,25(OH)2D3) by CYP27B1 (1α-Hydroxylase)
in the kidneys and other tissues/organs, including the brain.
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Figure 1. Activation of vitamin D to calcitriol. Exposure of skin to sunlight (UV-B) results in conver-
sion of pro-vitamin D3 (7-dehydrocholesterol) to pre-vitamin D3 (Cholecalciferol). Diet/vitamin D 
supplements bind to vitamin D-binding proteins and are transported to liver and hydroxylated by 
25-Hydroxylase to calcifediol. In the kidneys and other tissues/organs including the brain, calci-
fediol is hydroxylated to calcitriol (active form of vitamin D) by 1α-hydroxylase. Calcitriol affects 
different targets through genomic and non-genomic pathways. 

4. Transport of Vitamin D 
The major circulating form of vitamin D is serum calcifediol (half-life of 15–20 days), 

which is in equilibrium with the level of vitamin D stored in muscle and adipose tissues. 
The plasma or serum calcifediol concentration is inversely related to the risk of vascular 
dementia and AD in the elderly [29]. Patients with calcifediol (<10 ng/mL) tend to score 
lower in the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment 
(MoCA), and have an increased risk of developing cognitive impairment calculated by the 
Clinical Dementia Rating (CDR) scale [30]. A meta-analysis on cohort studies using the 
prediction interval (PI) to describe the heterogeneity described an inverse relation be-
tween the calcifediol level and the risk of dementia and AD, consistent with a linear dose–
response relationship. Additionally, the data indicated a decrease in dementia (5%) and 
AD (7%) with each increase of 10 nmol/L of calcifediol [31]. In the past, few other similar 
studies have shown an inverse relation between AD and low calcifediol but a causal asso-
ciation could not be established either due to the small sample groups and the method of 
quantifying the heterogeneity or restricting the categories of the calcifediol level [32–34]. 

As a result, the serum calcifediol is considered a marker to evaluate the vitamin D 
status in the body. Albumin helps in the transport of some vitamin D metabolites but the 
majority (~85%) are transported to various tissues by binding to VDBP, and among them, 
calcifediol has a stronger binding affinity to VDBP compared to the others [35]. When the 
levels of vitamin D exceed the tolerated levels in the body, it is metabolized by CYP24A1 
to inactive metabolites, i.e., 1,24,25(OH)D3, calcitroic acid, and 24,25(OH)2D3. Bioavailable 
vitamin D is the sum of the free and albumin-bound forms, which constitute around 15% 

Figure 1. Activation of vitamin D to calcitriol. Exposure of skin to sunlight (UV-B) results in conver-
sion of pro-vitamin D3 (7-dehydrocholesterol) to pre-vitamin D3 (Cholecalciferol). Diet/vitamin D
supplements bind to vitamin D-binding proteins and are transported to liver and hydroxylated by
25-Hydroxylase to calcifediol. In the kidneys and other tissues/organs including the brain, calcifediol
is hydroxylated to calcitriol (active form of vitamin D) by 1α-hydroxylase. Calcitriol affects different
targets through genomic and non-genomic pathways.

4. Transport of Vitamin D

The major circulating form of vitamin D is serum calcifediol (half-life of 15–20 days),
which is in equilibrium with the level of vitamin D stored in muscle and adipose tissues.
The plasma or serum calcifediol concentration is inversely related to the risk of vascular
dementia and AD in the elderly [29]. Patients with calcifediol (<10 ng/mL) tend to score
lower in the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment
(MoCA), and have an increased risk of developing cognitive impairment calculated by
the Clinical Dementia Rating (CDR) scale [30]. A meta-analysis on cohort studies using
the prediction interval (PI) to describe the heterogeneity described an inverse relation
between the calcifediol level and the risk of dementia and AD, consistent with a linear
dose–response relationship. Additionally, the data indicated a decrease in dementia (5%)
and AD (7%) with each increase of 10 nmol/L of calcifediol [31]. In the past, few other
similar studies have shown an inverse relation between AD and low calcifediol but a
causal association could not be established either due to the small sample groups and
the method of quantifying the heterogeneity or restricting the categories of the calcifediol
level [32–34].

As a result, the serum calcifediol is considered a marker to evaluate the vitamin D
status in the body. Albumin helps in the transport of some vitamin D metabolites but the
majority (~85%) are transported to various tissues by binding to VDBP, and among them,
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calcifediol has a stronger binding affinity to VDBP compared to the others [35]. When the
levels of vitamin D exceed the tolerated levels in the body, it is metabolized by CYP24A1 to
inactive metabolites, i.e., 1,24,25(OH)D3, calcitroic acid, and 24,25(OH)2D3. Bioavailable
vitamin D is the sum of the free and albumin-bound forms, which constitute around 15% in
a healthy person [36]. VDBP is a highly polymorphic serum α2-globulin (52–59 kDa) widely
distributed in various tissues. It performs diverse functions besides binding to vitamin
D, like scavenging endotoxins and actin, binding fatty acids, and mediating the immune
system [37]. The VDBP levels were reported to be altered in disease conditions [38–40] that
affect the total level of vitamin D.

For most cells, it is the unbound calcifediol that enters cells (free hormone hypothe-
sis); however, in some cases (kidney, parathyroid gland, and placenta), VDBP-bound
calcifediol is transported in the cell via a megalin/cubilin complex [41]. An association of
single nucleotide polymorphisms (SNPs) of megalin and VDBP with AD and PD has been
reported, respectively [42,43].

5. Distribution of VDR in Brain

VDR belongs to the zinc finger steroid hormone nuclear receptor family and is widely
distributed in the body [44]. After Sutherland et al. [45] reported the expression of VDR
in AD brains, various studies reported VDR expression in neuroblastoma cell lines [46]
and in the developing and adult brain in various mammalian species [47–49]. The in-
creased expression of VDR with gestational age indicates the importance of vitamin D
in maintaining normal brain development [47]. Vitamin D deficiency in pregnancy has
been associated with various neurological issues like autism, attention deficit hyperactivity
disorder (ADHD), and schizophrenia in infants [15,50–53]. Studies have established the
presence of VDR and CYP27B1 in neurons and glial cells and CYP24A1 in astrocytes was
established [13]. In the hippocampus, VDR is present exclusively in the CA1 and CA2
regions while a minor amount is present in CA3. VDR is concentrated in the nucleus
whereas CYP27B1 is dispersed all over the cytoplasm. Both VDR and CYP27B1 are present
in equivalent amounts in most of the brain regions, with the maximum amount reported
in the hypothalamus and substantia nigra. However, CYP27B1 is exclusively present in
Purkinje neurons (cerebellum) and substantia innominata neurons (basal forebrain) [13].

The key forms of vitamin D [calcifediol, calcitriol and 24,25(OH)2D3] have the ability
to cross the BBB and exist in human cerebrospinal fluid (CSF) [54]. Moreover, the enzymes
for synthesizing (CYP27B1) and catabolizing (CYP24A1) calcifediol are present in the
brain, suggesting in situ synthesis of calcitriol and autoregulated elimination in the brain.
The calcitriol levels in the brain correlate with the plasma calcifediol [55] and remain
unaffected by vitamin D supplementation, again proving the local synthesis of calcitriol in
the brain [56]. Recently, the Ultra-Pressure LC-Tandem Mass Spectra (UPLC-MS) technique
was used to evaluate vitamin D metabolites in the human brain. All the examined regions
contained calcifediol, with the corpus callosum being the richest in calcifediol (334 pg/g).
On the other hand, low levels of calcitriol were spotted in the prefrontal (30 pg/g) and
middle frontal cortices (35 pg/g) only [57].

6. Molecular Mechanism of Action of Calcitriol

The active form of vitamin D is calcitriol, which has a crucial role in brain development
and neuroprotection. Calcitriol exerts its action by binding to VDR through genomic
(classical) pathways (slow response) or non-genomic pathways (rapid response) (Figure 2).
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Figure 2. A schematic for genomic and non-genomic action of calcitriol in brain. Genomic pathways 
occur in the nucleus. Binding of calcitriol to the VDR/RXR complex removes the co-repressors and 
interacts with co-activators on the VDREs located on regulatory regions to promote gene expression. 
The non-genomic action takes place in the cytosol and is initiated by the binding of calcitriol to VDR, 
PDIA3, or both. The binding activates protein kinases, which facilitates influx of calcium through L-
VGCC. Intracellular calcium activates p38MAPK to further modulate downstream signaling. Ab-
breviations: VDR: vitamin D receptor; RXR: retinoic acid receptor; VDRE: vitamin D response ele-
ment; L-VGCC: L-type voltage-gated calcium channel; PDIA3: protein disulphide isomerase family 
member 3; CaM II: Ca2+/calmodulin-dependent protein kinase; PKA: protein kinase A; PI3K: phos-
phatidylinositol-3-kinase, p38MAPK: mitogen-associated kinase; C: calcitriol; Ca2+: calcium; SOD: 
superoxide dismutase; CAT: catalase; HO-1: heme oxygenase; NGF: neurotrophic growth factors; 
BDNF: brain-derived neurotrophic factor; GDNF: glial cell-derived neurotrophic factor; NT: neuro-
trophin. 

6.1. Genomic Action of Calcitriol 
The endocrine action of calcitriol is mediated through VDR. Calcitriol has a high 

binding affinity (~1000 times) for VDR as compared to calcifediol [58] due to the interac-
tions of its three hydroxyl groups with polar amino acids in the ligand binding pocket. 
Yet, the 1000-fold higher serum concentrations of calcifediol (50–250 nM) compared to 
calcitriol compensate for its effective binding to VDR [59]. 

The binding of calcitriol to the VDR leads to the formation of a heterodimeric com-
plex with retinoic acid X receptor (RXR). The protein importin-β, and its ligand, vitamin 
A, help in the transport of RXR to the nucleus, while importin-α assists with the transport 
of VDR to the nucleus, and this process is significantly improved by the mediation of cal-
citriol. The complex is then transported into the nucleus where it binds to vitamin D re-
sponse elements (VDREs) [60] with the release of co-repressors (nuclear receptor co-re-
pressor 2/silencing mediator of retinoic acid and thyroid hormone receptor: 
NcoR2/SMART) and recruitment of coactivators, which increase histone acetylation (ster-
oid receptor co-activator: SRC1) and modify chromatin (lysine demethylase 6B) to 

Figure 2. A schematic for genomic and non-genomic action of calcitriol in brain. Genomic pathways
occur in the nucleus. Binding of calcitriol to the VDR/RXR complex removes the co-repressors and
interacts with co-activators on the VDREs located on regulatory regions to promote gene expression.
The non-genomic action takes place in the cytosol and is initiated by the binding of calcitriol to VDR,
PDIA3, or both. The binding activates protein kinases, which facilitates influx of calcium through
L-VGCC. Intracellular calcium activates p38MAPK to further modulate downstream signaling.
Abbreviations: VDR: vitamin D receptor; RXR: retinoic acid receptor; VDRE: vitamin D response
element; L-VGCC: L-type voltage-gated calcium channel; PDIA3: protein disulphide isomerase
family member 3; CaM II: Ca2+/calmodulin-dependent protein kinase; PKA: protein kinase A; PI3K:
phosphatidylinositol-3-kinase, p38MAPK: mitogen-associated kinase; C: calcitriol; Ca2+: calcium;
SOD: superoxide dismutase; CAT: catalase; HO-1: heme oxygenase; NGF: neurotrophic growth
factors; BDNF: brain-derived neurotrophic factor; GDNF: glial cell-derived neurotrophic factor;
NT: neurotrophin.

6.1. Genomic Action of Calcitriol

The endocrine action of calcitriol is mediated through VDR. Calcitriol has a high
binding affinity (~1000 times) for VDR as compared to calcifediol [58] due to the interactions
of its three hydroxyl groups with polar amino acids in the ligand binding pocket. Yet, the
1000-fold higher serum concentrations of calcifediol (50–250 nM) compared to calcitriol
compensate for its effective binding to VDR [59].

The binding of calcitriol to the VDR leads to the formation of a heterodimeric complex
with retinoic acid X receptor (RXR). The protein importin-β, and its ligand, vitamin A, help
in the transport of RXR to the nucleus, while importin-α assists with the transport of VDR
to the nucleus, and this process is significantly improved by the mediation of calcitriol.
The complex is then transported into the nucleus where it binds to vitamin D response
elements (VDREs) [60] with the release of co-repressors (nuclear receptor co-repressor
2/silencing mediator of retinoic acid and thyroid hormone receptor: NcoR2/SMART)
and recruitment of coactivators, which increase histone acetylation (steroid receptor co-
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activator: SRC1) and modify chromatin (lysine demethylase 6B) to promote the expres-
sion of several genes involved in bone calcium homeostasis [alkaline phosphatase (ALP),
osteopontin (SPP1), stanniocalcin 1 (STC1), Transient receptor potential vanilloid type
6 (TRPV6)], parathyroid hormone (PTH), vitamin D hydroxylases (CYP27A, CYP27B1,
CYP24), calcitriol-responsive endobiotic/xenobiotic metabolizing enzyme (CYP3A4), and
metallothionein 2 (MT2) [61–63]. Such activated genes may further modulate the action of
other genes as a secondary genomic response [64]. Genomic regulation has epigenetic ef-
fects as it modifies the expression of enzymes involved in methylation and acetylation [65].
Additionally, micro-RNA (miR) expression that controls post-transcriptional gene expres-
sion and silencing is also controlled by this mechanism [66]. In short, calcitriol, VDREs, and
modulators bound to the heterodimer-RXR are responsible for the physiological, genetic,
and cell/tissue specificities, respectively. Lastly, the VDR gene product exerts a biological
response [67].

In the brain, calcitriol has been reported to exert multifaceted neuroprotection by
increasing the expression of glial-derived neurotrophic factor (GDNF) in the cortex [68]
and striatum [69], and the enzyme for the synthesis of dopamine, i.e., tyrosine hydroxylase
(TH), and N-cadherin (neural adhesion molecule with role in neurogenesis), which in turn
increase dopaminergic (DA) neurons [70,71]. To maintain ideal neurotransmission, DA neu-
rons stimulate the expression of DA-catabolizing enzymes (catechol-O-methyltransferase:
COMT and monoamine oxidase A (MAOA) by negative feedback [72]. Hence, calcitriol
could be a promising therapy in Parkinson’s disease (PD). Calcitriol was reported to in-
crease serotonin neuronal cells by increasing the expression of the enzyme (tryptophan
hydroxylase-2: TPH2) involved in its synthesis, and suppressing the enzyme involved in
its catabolism (MAOA) and the serotonin reuptake transporter (SERT) [73]. Calcitriol also
downregulated MerTK expression [74], reducing the phagocytosis of myelin and apoptotic
T cells, which is beneficial in the treatment of multiple sclerosis. Amyloid beta has been
known to overturn the expression of VDR in cortical neurons by modulating nerve growth
factor (NGF) synthesis and Ca2+ homeostasis [75].

6.2. Non-Genomic Action of Calcitriol

The non-genomic pathways are rapid compared to the genomic response and are
mediated through specific membrane receptors like VDR and PDIA3 (protein disulfide
isomerase family A member 3) (Figure 2). VDR interacts with various target proteins
such as β-catenin, c-Jun, STAT1, inhibitor of nuclear factor-κB (IκB) kinase (IKK), cAMP
response element-binding protein, and Runt-related transcription factor 1 (RunX 1) in the
non-genomic response in vitro [76,77].

The regulation of Ca2+ channels, activation of protein kinases (protein kinase A:
PKA; protein kinase C: PKC; mitogen-activated protein kinase: MAPK; Phosphoinosi-
tide 3- kinase: PI3K; Ca2+/calmodulin-dependent kinase II: CaMKII) and phospholipase
(Phospholipase A2: PLA2; Phospholipase C; PLC) are some of the non-genomic signal
transduction events triggered by calcitriol. These actions do not require gene transcription.
Additionally, calcitriol, via the non-genomic pathway, indirectly influences the expression
of various genes by interacting with multiple transcription factors (like Aryl hydrocarbon
Receptor: AhR; Nuclear factor kappa: NF-κB; Nuclear factor erythroid-2-related factor 2:
Nrf2, RAR-related orphan receptor alpha and gamma: RORα, RORγ; Signal transducer
and activator of transcription 3: STAT3) [78].

In the microglia, calcitriol exerts the neuroinflammatory response mostly through a
non-genomic mechanism by inhibiting the translocation of NF-κB and phosphorylation of
extracellular signal-related kinase (ERK) [79]. Calcitriol and calcifediol also upregulate the
expression of the anti-inflammatory cytokine (IL-10), which in turn induces suppressor of
cytokine signaling (SOCS) to downregulate pro-inflammatory cytokines [80]. Calcitriol sup-
plementation promoted cell proliferation and reduced senescence in [1α(OH)ase−/−] mice
by upregulating Nrf2, reducing oxidative stress, and inactivating senescence-promoting
genes (p53/p21 and p16/pRb) [81].
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7. Genetic Variants in VDR and Risk of Late-Onset AD (LOAD)

The apolipoprotein E (APOE) gene, present on chromosome 19, has been recognized as
the major risk gene for LOAD, as ~50% of patients diagnosed with LOAD have the APOEε4
gene [82]. This gene causes neurodegeneration by affecting the neuronal cytoskeleton,
inhibiting neurite outgrowth, and stimulating tau phosphorylation [83]. Other genes,
related to cholesterol biosynthesis (CLU, ABCA7), endocytosis, synaptic function (CD2AP,
BIN1, PICALM), and inflammation and the immune response (CR1, CD33, EPHA1, TREM2,
MS4A) have been identified through genome-wide association studies (GWASs) [84].

In the search for additional genetic risk factors for LOAD, studies have reported the
association of VDR gene polymorphisms and cognitive decline in NDs [85–87]. The VDR
gene (100 kb) is located on chromosome 12 (12q13–12q14) and consists of nine exons and
eight introns. Exons 2 and 3 encode the DNA binding site, while exons 4 to 9 encode the
ligand binding site. This locus was reported to be a vulnerable locus linked to LOAD [88].
According to GWASs, VDR is among the most likely risk genes for developing AD [89]. The
association of AD with VDR gene polymorphisms suggests a potential negative impact on
the neuroprotective effect of calcitriol. Changes in vitamin D consumption are said to lower
VDR expression, protein stability, and binding affinity, leading to the altered expression of
genes involved in neuroprotection.

Several single nucleotide polymorphisms (SNPs) have been identified in the VDR gene
with roles in various disease conditions. But VDR gene polymorphisms in most cases do
not affect VDR function, as they do not result in an amino acid change. The main VDR SNPs
studied in relation to AD are ApaI, TaqI, BsmI, and FokI, which lead to changes in vitamin
D utilization, leading to increased neurodegeneration [90]. ApaI (rs7975232; intron 8; G to T
polymorphism), TaqI (rs731236; exon 9; T to C polymorphism), and BsmI (rs1544410; intron
8; A to G polymorphism) are 3′ UTR polymorphisms that increase mRNA stability. The
FokI (rs2228570; exon 2; C to T polymorphism) polymorphism alters the gene’s initiation
sites and modifies the protein’s structure by extending its length by three amino acids. As a
result, two VDR variants exist, and the long version of VDR is called M1 (methionine at
first position; T-allele or the f allele), while the short form is referred to as M4 (methionine
at fourth position; C-allele or F allele). The Cdx2 (rs11568820; promoter region; A to G
polymorphism) polymorphism might affect the transcriptional activity [91], whereas Tru9I
(rs757343; intron 8; G to A polymorphism) is associated with serum vitamin D levels [92]
(Figure 3).

In the aged population (over 75 years old) Apa1 polymorphisms (T allele) and Taq1
polymorphisms (G allele), were found to be associated with AD and also displayed interac-
tions with genes regulating inflammation (interleukin 10: IL-10; dopamine-β hydroxylase:
DBH) [93]. The ApaI polymorphism (A allele) was associated with a 30% lower risk of
AD in Polish and British populations [94], while only the TaqI polymorphism (T allele)
was significantly associated with the risk of AD in a Korean population. However, in an
Iranian population, the ApaI and TaqI polymorphisms were not associated with the risk
of LOAD [95]. ApaI (C allele) and TaqI (T allele) were more frequent in individuals with
mild cognitive impairment (MCI) in a Chilean population. In addition, these polymor-
phisms decreased the expression of p-glycoprotein (p-gp), the transporter of β-amyloid
peptide (Aβ) [96]. Another contrasting result was obtained for the TaqI C allele, which
increased the AD risk in Northwestern European Caucasians (NECs) [93], but exerted a
protective effect in a Southeastern European Caucasian (SEC) population by decreasing the
AD risk by 46% [97], and caused no effect in an elderly Brazilian population [98]. Another
study’s results showed that the TaqI polymorphism (dominant and homozygous) and
BsmI (recessive) and FokI polymorphisms (heterozygous) were linked with increased AD
risk in Caucasian and Asian populations, respectively [87]. A recent study provided a
statistical indication that the ApaI and BsmI polymorphisms were connected to a risk
of MCI, while the TaqI polymorphisms may have been associated with AD risk [87]. In
another study, the risk allele of CDX2 lowered VDR promoter activity in Neuro2A cells [99]
and a strong association between SNP CDX2 and an LOAD patient group was observed.
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The contradictory results obtained from different populations indicate that both genetic
and non-genetic factors such as ethnicity, climate, and environment modify the expression
and response of VDR [87]. This specifies that external factors impacting vitamin D intake
could potentially compromise the efficacy of its neuroprotective mechanism.
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Figure 3. Structure of the VDR gene and position of polymorphisms studied in AD. The VDR gene is
located on chromosome 12 (12q13–12q14). The VDR gene is 100 kb and divided into 8 introns and
9 exons. The first exon contains the gene promoter, exon 2–3 code for the DNA binding domain,
and exon 6–9 for the ligand binding domain. Widely studied polymorphisms in AD include Fok-I
(rs10735810), Apa-I (rs7975232), Bsm-I (rs1544410), Taq-I (rs731236), and Tru9I (rs757343).

The studies to identify a potential link between VDR SNP haplotypes are limited.
Strong linkage disequilibrium (LD) was observed in BsmI, ApaI, and TaqI polymorphisms
that described five haplotypes (Table 1). The frequency of haplotype 1 (CCA) and haplotype
2 (TAG) was the highest (45.5% and 42.4%, respectively) of the other three in an elderly (over
85 years) population [85]. Gezen-Ak et al. [89] found no significant difference between AD
vs. controls when the BsmI, Tru9I, and FokI polymorphic sites were compared. A haplotype
analysis carried out with additional SNPs indicated a significantly higher frequency of the
“TaubF” haplotype (corresponds to alleles of TaqI, ApaI, Tru9I, BsmI, and FokI, respectively)
in the AD patient group, suggesting that this haplotype is a risk factor for AD. The BsmI,
ApaI, and TaqI polymorphisms, located in the 3′-UTR, were identified as risk haplotypes
associated with age-related cognitive decline [85]. In yet another cohort study on SECs, the
TAC (TaqI, BsmI, FokI) and TA (TaqI, BsmI) haplotypes were associated with a nearly 6%
and 8% increase in the LOAD risk, respectively. On the other hand, the CAC (TaqI, BsmI
and FokI) haplotype was protective with a 53% lesser risk of developing AD. Additionally,
SEC female TAC/TC carriers carry a greater risk (approximately 9 to 14%) of developing
AD, suggesting that this haplotype affects vitamin D utilization [97].
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Table 1. VDR haplotypes associated with AD.

FokI ApaI BsmI TaqI Tru9I Ref.

C C A [85]
C C G T A [89]

A C [93]
C A T [97]

8. Conclusions

Various in vitro, in vivo, and epidemiological studies have established that vitamin
D (calcitriol) is required for healthy brain function and its deficiency during pregnancy
might result in several neurological conditions in newborns. The association of circulating
vitamin D levels and AD risk has been proven by Mendelian randomization studies in large
datasets [100], which provide a potential avenue for understanding and preventing the
disease. In AD, calcitriol exerts multi-targeted neuroprotection via both genomic and non-
genomic actions, resulting in Aβ clearance, the promotion of neurogenesis and production
of neurotrophic factors, a decrease in neuroinflammation and oxidative stress, the downreg-
ulation of the expression of L-type calcium channels, and improved cognition [25,101,102].
It is possible that calcitriol’s therapeutic effects will take longer to manifest because of the
slow effects of the genomic pathways; thus, it could be used as a preventive approach in AD.
Nevertheless, controversial outcomes have also been reported in some studies [103–105].
The contradictory results might stem from diverse dosages, the duration of treatment, the
age/sex of the patient, the population size, and the vitamin D level of each patient under
study. Thus, clinical trials need to be planned intricately, considering these variables.

Vitamin D from foods and exposure to sunlight is not adequate in the majority of
cases, and hence, vitamin supplementation is required. Studies have suggested a positive
effect of vitamin D supplementation, especially in people with severe vitamin D deficiency
compared to vitamin D-replete people, and that a vitamin D intake ≥ 4000 IU/day conveys
some health risks [106]. Clinical trials on vitamin D supplementation and cognition have
resulted in conflicting conclusions [107,108]. Clinical trials have varied in terms of the
formulation (cholecalciferol/ergocalciferol/calcium–vitamin D) of vitamin D [109–111].
Cholecalciferol supplementation was found to be more effective [112] and the use of calcium
in the formulation increased intestinal calcium absorption [113]. Moreover, it is important
to study whether low serum calcifediol is the result of the disease or is causing the disease.

The VDR gene is regulated by genetic and environmental factors and the response
to vitamin D supplementation could be affected by VDR polymorphisms, e.g., the FF
genotype of VDR Fok I is associated with a better response to vitamin D supplementa-
tion [114]. Association studies on VDR polymorphisms and the risk of AD might be helpful
in designing custom-made methods for treating NDs like AD. The VDR polymorphisms
ApaI and BsmI predict MCI, while TaqI indicates a risk of AD, with population differences.
As the vitamin D supplementation requirement varies based on the VDR polymorphism,
this presents a possible limitation, as the effectiveness of the treatment may depend on
genetic factors, potentially limiting its applicability across different individuals. Therefore,
further research is needed to confirm these associations, particularly gene-gene interactions
and gene-environment interactions, and interactions with other confounding factors should
be considered.
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