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Abstract: Anthocyanin accumulation is regulated by specific genes during fruit ripening. Currently,
peel coloration of mango fruit in response to exogenous ethylene and the underlying molecular
mechanism remain largely unknown. The role of MiMYB8 on suppressing peel coloration in posthar-
vest ‘Guifei’ mango was investigated by physiology detection, RNA-seq, qRT-PCR, bioinformatics
analysis, yeast one-hybrid, dual-luciferase reporter assay, and transient overexpression. Results
showed that compared with the control, low concentration of exogenous ethylene (ETH, 500 mg·L−1)
significantly promoted peel coloration of mango fruit (cv. Guifei). However, a higher concentration
of ETH (1000 mg·L−1) suppressed color transformation, which is associated with higher chlorophyll
content, lower a* value, anthocyanin content, and phenylalanine ammonia-lyase (PAL) activity of
mango fruit. M. indica myeloblastosis8 MiMYB8 and MiPAL1 were differentially expressed during
storage. MiMYB8 was highly similar to those found in other plant species related to anthocyanin
biosynthesis and was located in the nucleus. MiMYB8 suppressed the transcription of MiPAL1 by
binding directly to its promoter. Transient overexpression of MiMYB8 in tobacco leaves and mango
fruit inhibited anthocyanin accumulation by decreasing PAL activity and down-regulating the gene
expression. Our observations suggest that MiMYB8 may act as repressor of anthocyanin synthesis by
negatively modulating the MiPAL gene during ripening of mango fruit, which provides us with a
theoretical basis for the scientific use of exogenous ethylene in practice.

Keywords: mango fruit; exogenous ethylene; anthocyanin synthesis; MYB TFs; fruit ripening

1. Introduction

Anthocyanins, a type of flavonoid, are present in a variety of plants and provide
numerous benefits to plant life. Additionally, anthocyanins facilitate pollination and repro-
duction, and aid in protecting plants from environmental stress [1,2]. The enzyme cascade
beginning with phenylalanine leads to the formation of anthocyanins. The process of an-
thocyanin biosynthesis is mediated by several enzymes including chalcone synthase (CHS),
UDP-glucose/flavonoid 3-O-glucosyltransferase (UFGT), phenylalanine ammonia-lyase
(PAL), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), and anthocyanin
synthase, which work together to produce these compounds [3,4].

Transcription factors play a crucial role in regulating anthocyanin biosynthesis [5]. In
eggplant, a COP1 interactive protein positively regulates anthocyanin accumulation and
fruit size [6]. The V-Myb myeloblastosis viral oncogene homolog (MYB) transcription factors
(TFs) family is extensively abundant in plant species, which is responsible for regulating
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the expression of a series of structural genes [7]. Upon detailed analysis, 22 subgroups
of R2R3-MYB have been identified, and each exhibits distinct characteristics [8,9]. An
increasing number of studies indicate that MYB transcription factors are involved in plant
anthocyanin synthesis; for example, homologs of MdMYB1 have been identified in apples
and are known to be major activators of anthocyanin synthesis [10]. CmMYB21 is identified
to act as a repressor of anthocyanin synthesis, thus inhibiting the production of pigments
in chrysanthemum [11].

V-Myb myeloblastosis viral oncogene homolog (MYB) transcription factors (TFs) con-
trol the expression of anthocyanin biosynthesis in response to different stimuli, which may
be internal or external. Higher temperatures and nitrate levels suppress the expression of
the activators; while exposure to light, lower temperatures, jasmonic acid, and ethylene
induce its expression, thus promoting anthocyanin synthesis [12,13]. Research has shown
that when ethylene is applied, the expression of PpMYB10 and PpMYB114—activators
of the R2R3-MYB—is decreased, and the expression of the R2R3-MYB repressor such as
PpMYB140 is increased, leading to reduced synthesis of anthocyanins in pear fruit [14].
Figueroa et al. (2021) [15] reported that ethylene application at the immature stage of Fra-
garia chiloensis fruit represses anthocyanin biosynthesis with a concomitant accumulation
of lignin. This suggests that the effect of ethylene in regulating anthocyanin biosynthesis
may vary significantly between different species, warranting further investigation.

In recent years, an increasing number of MYB transcription factors have been identified,
which activate genes related to anthocyanin biosynthesis [16,17]. The transcriptional levels
of VvMYBA6, VvMYBA7, VvMYBA1, and VvMYBA5 were analyzed in the grape variety
‘Yan’, and a positive correlation with anthocyanin synthesis was discovered [18]. It was
observed that the overexpression of VviMyb4-like in tobacco plants had an inhibitory effect
on anthocyanin biosynthesis [19]. Expression of VviMyb4a and VviMyb4b in grapevine
demonstrated their ability to repress genes related to the general phenylpropanoid pathway,
while VviMybC2-L and VviMybC2-L3 resulted in decreased synthesis of anthocyanins [20].
The MDMYB1 transcription factor is involved in the increased production of anthocyanin
in apple [21]. Nevertheless, the exact role of MYB transcription factors in the production of
anthocyanins in mango fruit in response to exogenous ethylene remains largely unknown.

Mango (Mangifera indica L.) is one of the most delicious tropical fruits and is catego-
rized as a climacteric fruit. Mangoes ripen quickly during storage at ambient temperature
and have a short shelf life [22,23]. Ethylene plays important roles in initiating and coordi-
nating diverse processes such as color development, softening, and aroma formation [24].
The purpose of the current research was to explore the potential role of MYB transcription
factor in the regulation of anthocyanin biosynthesis in response to exogenous ethylene. In
this study, we examine the effects of different concentrations of exogenous ethylene on peel
color change and pigment contents in ‘Guifei’ mango fruit, and look into the potential role
of MiMYB8 transcription factor (TFs), as well as interaction with MiPAL1 in the regula-
tion of anthocyanin biosynthesis. This research explored the possibility that the repressor
transcription factor may be involved as mediators of anthocyanin biosynthesis.

2. Results
2.1. The Effect of Exogenous Ethylene (ETH) on Peel Coloration in Mango Fruit

The effects of varying concentrations of ETH on the peel color of mango stored at
20 ◦C were studied (Figure 1). The peels of fruit treated with a low concentration of ETH
(500 mg·L−1) displayed a notable change in color after 12 d and 18 d. However, the green
color of fruits treated with a higher concentration of ETH (1000 mg·L−1) was observed,
which could be attributed to several factors including a decrease in a* value, an increase in
chlorophyll content, and a decrease in anthocyanin content (Figure 1B,C,E). Additionally,
there was a reduction in Phenylalanine ammonia-lyase activity (PAL) (p < 0.05) in fruits
treated with a concentration of ETH compared to untreated control fruits (Figure 1D).
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Figure 1. Changes in appearance and color traits related to anthocyanin biosynthesis during storage
of mango fruit at 20 ◦C. (A) Peel appearance. (B) Chroma value. (C) Chlorophyll content. (D) Pheny-
lalanine ammonia-lyase activity (PAL). (E) Anthocyanin content. Results represent the mean and
standard error of three biological replicates and are statistically significant (p < 0.05), as indicated by
lower-case letters according to Duncan’s multiple range test.

2.2. Transcriptomic Expression Analysis of MiPAL in Mango Fruit

To explore the changes in the expression pattern of the Phenylalanine ammonia-
lyase activity (PAL) gene in mango fruit during storage, we analyzed RNA-seq data and
performed qRT-PCR analysis. Venn diagram and heat map depicted 9 PAL genes that were
differentially expressed based on the FPKM (Fragments per Kilobase Million) data. The
RNA sequencing data revealed that the expression levels of both PAL1 and PAL2 genes
were higher in the control group compared to the treatment group. The down-regulation of
expression was mainly prominent on the 18th day (Figure 2A,B). The results of qRT-PCR
also showed that MiPAL1 was significantly down-regulated after 18 d, which coincided with
the results of RNA-seq data (Figure 2C). MiPAL2 was also down-regulated, but no obvious
difference was observed among different treatments on day 18 (Figure 2D), indicating that
MiPAL1 plays a crucial role in suppressing peel coloration in the ripening of mango fruit.

2.3. Transcriptomic Expression Analysis of MiMYB in Mango Fruit

Figure 3A,B exhibits the expression differences of MYB genes between the control
group and treatments. A total of 26 DEGs were identified across all three comparison
groups (Figure 3B). A histogram showed that the CK6d vs. H-ETH6d comparison group
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had the highest count of down-regulated and up-regulated MYB genes, with 45 and 36,
respectively (Figure 3B).
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Figure 2. Analysis of differentially expressed genes (DEGs) and expression patterns of MiPAL genes
during storage of mango fruit. (A) Venn diagram. (B) Heat map visualizing differentially expressed
genes and FPKM data relating to MiPAL gene. (C) qRT-PCR analysis of MiPAL1. (D) qRT-PCR
analysis of MiPAL2 in mango fruits stored at 20 ◦C. Letters a and b on the bars above indicated
statistically significant differences between treatments (p < 0.05).

The qRT-PCR analysis revealed a significant decrease in expression levels of MiMYB5,
MiMYB6, and MiMYB8 after 18 d of ETH treatment (Figure 3C–E). Notably, the down-
regulation was most prominent in MiMYB8, which is consistent with the results from RNA-
seq analysis, and this further emphasizes the involvement of the MYB gene in response to
exogenous ethylene in mango fruit.

2.4. Phylogenetic Analysis and Subcellular Localization of MiMYB8 Gene

To construct a phylogenetic analysis, we selected the sequences, particularly for MYB
genes. In the case of Arabidopsis, known for its abundance of MYB genes, we arranged
sequences based on their functional distinctions, expression patterns, and potential inter-
actions with other genes or proteins. Furthermore, we integrate sequences from closely
related species to enrich the evolutionary context and reduce the redundancy. The phyloge-
netic tree constructed from MiMYB8 from mango, as well as AtMyb61, AtMYB58, AtMYB52,
AtMYB3, AtMYB90, AtMYB14, AtMYB111, AtMYB78, VvMYB60, VvMYB17, SmMYB2, Md-
MYB30, and MdMYB36 from other species, revealed that most of the Arabidopsis thaliana
MYBs clustered together. Furthermore, MiMYB8 from mango was also found within this
cluster. This confirmed that MiMYB8 belonged to the R2R3-MYB family, as previously
assumed, and suggests that MiMYB8 has a similar function, likely due to the analogous
conserved domains present among these MYBs (Figure 4A).
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Figure 3. Analysis of differentially expressed genes (DEGs) and expression patterns of MiMYB
TFs during storage of mango fruit. (A) Venn diagram. (B) A comparison of the number of up-
regulated and down-regulated genes. The qRT-PCR analysis of the expression patterns of MiMYB5 (C),
MiMYB6 (D), and MiMYB8 (E). The letters a, b and c above bars indicate statistically significant
differences between the respective treatments (p < 0.05).

To investigate the expression site of MiMYB in mango, the C-terminal regions of
MiMYB8 were fused with green fluorescence protein (GFP) and then expressed transiently
in the leaf of Nicotiana benthamiana epidermal cells under the control of promoter CaMV
35S (Figure 4B). The GFP signal of the control (pCAMBIA1302 GFP) was perceived in both
the nucleus and cytoplasm, while the GFP signals of pCAMBIA1302-MiMYB8 GFP were
present exclusively in the nuclei (Figure 4C). This demonstrated that MiMYB8 acts as a
nuclear protein, playing a dominant role in the anthocyanin biosynthesis of mango.

2.5. Interaction of MiMYB8 and MiPAL1 Genes

A dual luciferase assay was conducted to investigate the effect of MiMYB8 on MiPAL1
promoter activity in vivo using tobacco (N. benthamiana) leaves. Initially, we analyzed
the promoter region of MiPAL1 and MiMYB8 genes in postharvest mangoes. Within the
1513 bp MiPAL1 promoter region, seven MYB binding sites were identified, including
MYC, chs-CMA2a, and MBS motifs (Figure 5C). Subsequently, we assessed the ability
of the MiPAL1 promoter to drive gene expression in tobacco cells. For this purpose,
the pGreenII 0800-Luc vector containing the MiPAL1 promoter sequence was transiently
transformed into tobacco leaves alongside a control vector (pGreenII 62) and monitored
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for luciferase activity. The results revealed a strong expression of luciferase, indicating
the effective functionality of the MiPAL1 promoter in driving gene expression in tobacco
cells. Following the evaluation of MiPAL1 promoter activity, we investigated the impact of
MiMYB8 expression on MiPAL1 promoter function. The 35S-MiMYB8 vector, comprising
the MiMYB8 gene, was co-transformed into tobacco leaves along with the pGreenII 0800-
Luc vector containing the MiPAL1 promoter sequence and the control vector. Remarkably,
the co-expression of MiMYB8 resulted in a significantly lower relative ratio of firefly (LUC)
to Renilla (REN) luciferase compared to the control (Figure 5A,B). This observation suggests
that MiMYB8 specifically binds to the MiPAL1 promoter and effectively suppresses the
activity of the MiPAL1 gene, reducing its ability to drive gene expression in tobacco cells.
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In Y1H analysis, the transformed yeast Y187 was found to grow normally on SD/-Trp/-
His medium, pHIS2-MiPAL1pro. However, no growth was observed when 10 mM 3-AT
was added. This result suggests that 3-aminotriazole (3-AT) at a concentration of 10 mM
can inhibit the self-activation of the MiPAL1 promoter. Furthermore, co-transformed yeast
cells with pGADT7-53 and pHIS2 (a negative control), pHIS2-MiPAL1pro and pGADT7-
MiMYB8 constructs also grew well on the medium (Trp/SD/Leu). Moreover, Y187 yeast
cells co-transformed with pGADT7-MiMYB8 constructs and pHIS2-MiPAL1pro were still
able to grow normally on 10 mM 3-AT SD/-Leu/-Trp/His medium (Figure 5D,E). These
results indicate that the MiMYB8 protein is capable of binding to the MiPAL1 promoter.
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Figure 5. MiMYB8 can directly bind to the MiPAL1 promoter. (A) Illustration of the effector and
reporter vectors used in the luciferase (Luc) transaction assay. (B) The ratio of LUC to REN shows the
activity of MiMYB8 on the MiPAL1 promoter after the transformation of young Nicotiana benthamiana
leaves. The values represent the mean of four biological replicates, and the vertical bars represent the
standard error. (C) Homeopathic element analysis of MiPAL1 promoter. (D) Determination of the
self-activation concentration of the MiPAL1 promoter. (E) Yeast one-hybrid assays between MiMYB8
TFs and the promoter of MiPAL1. The letters a and b above bars indicate statistically significant
differences between the respective treatments (p < 0.05).

2.6. Transient Overexpression (OE) of MiMYB8 in Tobacco Leaf

Agro-infiltration of the Nicotiana benthamiana plant was used to investigate the function
of MiMYB8 on anthocyanin synthesis, wherein a 35S-promoter-driven construct of this
gene was individually inserted into the leaves of the plants. The result demonstrated
that an expression level for MiMYB8 was significantly increased on the 3rd and 6th day
post-injection (Figure 6A); however, overexpression of MiMYB8 decreased both expression
levels and phenylalanine ammonia-lyase activity of MiPAL1 compared with the control
(Figure 6B,C).
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Figure 6. Overexpressing MiMYB8 in Nicotiana benthamiana leaves suppresses MiPAL1 expression and
activity. (A) MiMYB8 expression levels. (B) MiPAL1 expression levels. (C) Phenylalanine ammonia-
lyase activity in OE-MiMYB8 leaves. The letters a and b above the bars indicate statistically significant
differences for the respective treatments (p < 0.05).

2.7. Transient Overexpression (OE) of MiMYB8 in Mango Fruit

The results of overexpressing MiMYB8 on MiPAL1 expression levels, PAL activity,
and anthocyanin content of mango flesh discs on 3 d and 6 d post-treatment were seen
and compared in (Figure 7). The control fruit discs were significantly darker in color,
indicating higher anthocyanin contents, than those of the overexpressed MiMYB8 disc
(Figure 7A). In addition, OE-MiMYB8 treatment down-regulated the expression of the
MiPAL1 gene (Figure 7B), and there was a significant decrease in both PAL enzyme activity
and anthocyanin content in OE-MiMYB8 fruit compared to the control fruits after 3 d and
6 d, especially on day 3 (Figure 7D,E). The overexpression of MiMYB8 in mango resulted
in a noticeable decrease in anthocyanin content, leading to lighter coloration compared
to the control. This reduction was accompanied by a down-regulation of the MiPAL1
gene expression, suggesting that MiMYB8 may regulate genes involved in anthocyanin
biosynthesis. Additionally, the decrease in PAL enzyme activity further supports the
idea that MiMYB8 negatively influences the anthocyanin biosynthetic pathway. These
findings highlight the significant role of MiMYB8 in controlling anthocyanin accumulation
in mango fruit and suggest that manipulating its expression levels could be a promising
strategy for altering fruit pigmentation traits. Thus, it appears that MiMYB8 is involved in
the inhibition of anthocyanin biosynthesis under exposure to higher levels of exogenous
ethylene in mango fruit.
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Figure 7. Overexpressing MiMYB8 in mango flesh discs suppresses anthocyanin accumulation.
(A) The appearance of mango flesh discs on days 0, 3, and 6 following the OE-MiMYB8 gene.
(B) MiMYB8 expression levels. (C) MiPAL1 expression levels. (D) Phenylalanine ammonia-lyase
activity. (E) Anthocyanin content. The letters a and b above bars indicate statistically significant
differences for the respective treatments (p < 0.05).

3. Discussion

Mango skin color is an essential trait for marketability and aesthetics. As the color of
the peel impacts consumer preferences, the accumulation of anthocyanin within the skin of
mangoes has been found to improve quality, pathogen resistance, and cold tolerance [25].
Mangoes treated with ETH may appear to have a normal peel color; however, the qual-
ity of the mangoes can be adversely affected due to an excessive level of maturity [26].
MYB proteins play a critical role in modulating anthocyanin biosynthesis, acting both
as activators and inhibitors of this process. Members of this family have been found in
some horticultural plant species that positively control temporal and spatial production
of anthocyanins through the phenyl-propane metabolic pathway [27]. However, recent
studies have highlighted that there is increasing evidence that they may also exert negative
regulation [28,29]. In the present study, the transcription factor, MiMYB8 was identified
as a repressor of anthocyanin biosynthesis in the ‘Guifei’ mango, confirming its negative
regulatory role.
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Ethylene (C2H4) is a gaseous natural plant hormone that can have both beneficial
and detrimental effects on fruit ripening [30,31]. In this study, the lower concentration of
ethylene treatment resulted in a relatively quicker decrease in chlorophyll content and a
slight rise in PAL activity (Figure 1). Transcriptomic analysis led to the identification of two
genes, MiPAL1 and MiPAL2, which are closely linked to the biosynthesis of anthocyanins
(Figure 2). These findings are consistent with previous studies investigating the function
of CsPAL4, which is a gene highly expressed in buds and young leaves and involved
in the biosynthesis of anthocyanins in purple-leaf tea and Arabidopsis [32]. Analysis of
RNA sequencing has revealed several MiMYB transcription factors (MiMYB5, MiMYB6,
and MiMYB8) that can boost anthocyanin biosynthesis through upregulation of the gene
encoding phenylalanine ammonia-lyase (PAL). Previous studies have identified VvMYB15
as a transcription factor that plays a role in activating genes (VvPAL3 DcPAL3) associated
with anthocyanin biosynthesis in grapevines and carrots, specifically by increasing the
expression of PAL enzyme [33,34]; our results are consistent with these findings.

The qRT-PCR analysis revealed that the expression of three key anthocyanin repressors
MiMYB5, MiMYB6 and MiMYB8 had a high correlation with accumulation of anthocyanin
(Figure 3). This confirms similar results from other studies into repressors of anthocyanin
production, such as FaMYB1 in strawberries and PpMYB18 in peaches, which were both
found to be highly expressed in developmental stages and anthocyanin-rich tissues [35].
These findings suggest that there is a feedback loop involved in the regulation of antho-
cyanin biosynthesis. MdMYB16 is a MYB repressor found in apples that appears to show
expression levels that are negatively correlated with anthocyanin biosynthetic genes, antho-
cyanin accumulation, and other positive regulators. This effect is likely caused by its ability
to bind to and repress the function of its regulatory motif, thereby directly inhibiting antho-
cyanin biosynthesis [36]. MYB repressors are activated by activators, thereby generating
negative feedback.

To verify the function of MiMYB8 in anthocyanin biosynthesis of mango fruit, subcel-
lular localization of pCAMBIA1302-MiMYB8-GFP was detected and found to be localized
in the nucleus (Figure 4), indicating that MiMYB8 is nuclear proteins. To further confirm
that MIMYB8 interact with MIPAL1 in vivo, dual luciferase and YIH assays were conducted
(Figure 5). The results demonstrated that MiMYB8 inhibited anthocyanin biosynthesis by
binding to MIPAL1 and disrupting the MYB-PAL complex, thereby disrupting the transcrip-
tion of the anthocyanin biosynthetic gene. The findings of Yang et al. (2021) [37] regarding
the subcellular localization of a protein are echoed in the current research, which suggests
that the functional analogy between these two proteins could lead to pigmentation patterns.

The overexpression of the MiMYB8 gene in tobacco and mango plants was studied
to confirm their roles in anthocyanin biosynthesis (Figures 6 and 7). Results revealed that
the expression level of MiMYB8 was significantly increased; however, the expression of
MiPAL1, PAL activity, and anthocyanin content decreased in both tobacco leaf and mango
discs. Thus, these results proposed that MiMYB8 acts as an inhibitory regulator of antho-
cyanin biosynthesis, which is consistent with genes such as SlMYB-ATV in tomatoes [38],
PtMYB182 in poplar [39], and VvMYBC2-L1 in grapevine [40] that act as negative regulators
of both anthocyanin and phenylpropanoid accumulation. Overall, our results demon-
strated that the MiMYB8 transcription factor plays a role in the inhibition of anthocyanin
biosynthesis under exposure to higher levels of exogenous ethylene in mango fruit.

4. Materials and Methods
4.1. Plant Materials and Treatment

Commercially matured (around 110 d after the full-bloom stage) mango (Mangifera
indica L.) fruits were carefully and manually harvested from Lingshui County, specifically
in Yingzhou town, which is located at coordinates (108◦37′–111◦03′ W and 18◦10′–20◦10′ N),
in Hainan, China. Throughout the growth period of mangoes in Yingzhou, spanning from
December to April, the average temperature maintains around 22 ◦C, and is accompanied
by approximately 88% relative humidity. These freshly harvested fruits were transported
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to the laboratory at ambient temperature, ranging between 20 ◦C and 25 ◦C, within 3 h.
A total of 500 fruits, similar in size and without any external damage, were soaked in a
(0.1%) sodium hypochlorite solution, and dried at room temperature (25 ◦C, RH 90%). To
elucidate the color response to exogenous ethylene, we selected concentrations of 500 and
1000 mg·L−1 of ethephon, which is commonly employed in practice. These mango fruits
were grouped into three lots randomly (150 mango fruit for each group) and immersed in
(pure water as control), 500 and 1000 mg·L−1 ethephon solution for 10 min, respectively.
After allowing the fruits to dehydrate naturally at room temperature, they were carefully
enclosed within unsealed polyethylene bags measuring 0.02 mm in thickness (brand:
Xingfengr®, origin: China, dimensions: 20 × 30 cm). Subsequently, the packaged fruits
were placed inside a controlled climatic cabinet set to maintain a temperature of 20 ◦C and
a relative humidity of 90% for duration of 18 d. Afterwards, each group was divided into
two parts: one part (30 fruit) was used for monitoring the peel color change of mango fruit,
and the other part (about 120 fruit) was used for the measurement of other indicators. Three
groups of fruits were sampled at 3 days interval. Mango flesh and peel were separated at
each sampling time point, and then frozen in liquid nitrogen, ground into powder, and
kept at −80 ◦C for further use. Each experiment consisted of three biological replicates
with three uniformly sized fruits.

4.2. Measurement of Peel Color Characteristics of Mango Fruit

Using the Wang et al. (2023) [28] method, peel color measurements were conducted
using a colorimeter (CR-10PLUS, Osaka, Japan) on four randomly selected equatorial sites
across each mango’s skin. Two measurements were taken on the shady side, and the
average was calculated for the following analysis. The raw data obtained comprised values
for a* (indicating redness or greenness) and b* (representing yellowness or blueness). The
Chrome value (C*) was determined using the formula C* = a*ˆ2 + b*ˆ2. The chroma a* value
indicating luminosity ranging from 0 (black) to 100 (white). The chroma b* value indicating
luminosity ranging from 0 (green) to 100 (red).

The chlorophyll content was measured according to the method of Chen et al. (2022) [41].
A 0.5 g sample of frozen peel powder cooled to 4 ◦C was extracted in the dark with an
80% acetone solution. This mixture was centrifuged three times at 12,000× g for 30 min;
afterwards, absorbance was measured for the solution at three different wavelengths (470,
645, and 663 nm) using a UV752N spectrophotometer (YoKe Instrument Co., Ltd., Shanghai,
China). The extracted chlorophyll content was finally calculated from the absorbance
measurements.

For determination of anthocyanin content, a total of 0.5 g of frozen peel powder
cooled to 4 ◦C was put into an 8 mL tube containing a 1% hydrochloric acid-methanol
solution. The extraction procedure was conducted at 4 ◦C for 24 h. After this period, the
solution was centrifuged for 15 min and 3 mL of the extract was generated. The extract was
then transferred into the light cuvette, whose diameter should be 1 cm and the values of
absorbance were measured at 530 nm and 600 nm. To ensure accuracy, the procedure was
repeated three times, with separate hydrochloric acid (1%) and methanol solutions used as
a blank control for each repetition. This method was adopted by Zhang et al. (2001) [42] for
determining the anthocyanin content in the samples.

4.3. Determination of PAL Enzyme Activity

The reaction mixture for measuring the PAL activity was prepared by mixing of peel
tissue sample (0.5 g) with 5 mL of pre-cooled pH 8.8 buffer (at 4 ◦C), and Borate buffer (3 mL,
50 mmol L−1, and pH 8.8) with 500 µL of crude enzyme. This mixture was homogenized
and then centrifuged at 12,000× g for 20 min at 4 ◦C. After this, L-phenylalanine (0.5 mL,
20 mmol L−1) was added to the supernatant of the mixture and the centrifuge tube was
incubated at 37 ◦C for 10 min for further analysis. The reaction was further incubated
for 1 h and then terminated with trichloroacetic acid (0.6 mL per 100 mL). The activity
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of PAL was measured at 290 nm (A290), with an optical density increase of 2.9 × 10−7

(0.01 OD) [43].

4.4. Analysis of Differentially Expressed Genes (DEGs)

Individual libraries were prepared with barcodes and pooled for commercial sequenc-
ing on an Illumina HiSeq2500 platform by Gene Denovo Biotechnology Co. (Guangzhou,
China). An FPKM (fragment per kilobase of transcript per million mapped reads) value was
calculated for each transcript to quantify its relative abundance using StringTie software
(version 2020). FPKM values were used to identify differentially expressed genes (DEGs)
between the control and treated mango fruit. The genes with the parameter of false dis-
covery rate (FDR) below 0.05 and absolute fold change ≥ 2 were considered differentially
expressed genes [44].

4.5. RNA Extraction and qRT-PCR Analysis

An improved CTAB method established in our laboratory was employed to isolate
total RNA from frozen peel samples, assessed for degradation or contamination via 1%
agarose gel electrophoresis, and then used to synthesize cDNA [45]. HiScript Prime
Script™ (Nanjing, China’s), 1st Strand cDNA Synthesis Kit can be utilized. RT-qPCR was
then executed on the cDNA using (SYBR) Premix Ex Taq (HiScript R, Nanjing, China),
according to the provided procedure. Quantitative RT-PCR was done using qPCR SuperMix
and CFX96 Real-Time PCR system, with primers designed by Primer Explorer V5 tool
(https://primerexplorer.jp/e/) URL (accessed on 20 March 2022). The analysis of RT-PCR
was conducted on MiActin with CFX96 real-time PCR system. The primers were organized
through Taihe Biotech Co. (Shanghai, China), which is mentioned in (Table S1). The
protocol included 95 ◦C for 5 min (denaturation) → 95 ◦C for 5 s (denaturation) → 60 ◦C
for 30 s (annealing) → 72 ◦C for 10 s (extension) X 40 cycles. Relative abundances were
calculated using the 2−∆∆Ct method that was declared by Livak and Schmittgen (2001) [46].

4.6. Gene Cloning and Promoter Analysis

We can use the DNA primers listed in Tables S1 and S2 to amplify specific sequences in
the DNA. The transcriptomic database was explored for sequences of MiPAL and MiMYB
flavonoid-related genes. The PCR-amplified coding sequences were then translated and
sequenced using NCBI Open Reading Frame Finder and DNAMAN software (version
12.1). The coding sequences of MiMYB8 (Cluster-23630.11139_1R) are being examined.
The MiPAL1 promoter sequence was analyzed for putative cis-acting elements through
an online database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ URL
(accessed on 25 October 2021).

4.7. Subcellular Localization Analysis

Five-week-old tobacco (Nicotiana tabacum) plant leaves were agro-infiltrated by using
Agrobacterium tumefaciens GV3101 containing recombinant vector pCAMBIA1302-MiMYB8-
GFP, generated by amplifying the coding region of MiMYB8 cDNA, respectively, using
polymerase chain reaction (PCR) lacking stop codon, and ligating them into the vector
pCAMBIA1302-GFP. Alongside, a control vector was also infiltrated. A total of 48 h after
transformation, the A. tumefaciens lines were suspended at an optical density of 1.0 in the
infiltration buffer. To observe the fluorescence of green fluorescent protein (GFP), a Leica
DM6000B Fluorescence Microscope (Leica, Hong Kong, China) was used, along with DAPI
(Real Times, Hong Kong, China) to confirm nuclear localization.

4.8. MiPAL1 Promoter Amplification and Yeast One-Hybrid (Y1H) Assay

Y1H assay was conducted on the Y187 strain cells, following the manufacturer’s pro-
tocols. In the experiment, the coding sequences (CDS) for the three MYB genes, MiMYB5,
MiMYB6, and MiMYB8, were implanted into the vector (pGADT7) to construct the re-
combinant plasmids with labels MiMYB5-AD, MiMYB6-AD, and MiMYB8-AD. Y187 cells

https://primerexplorer.jp/e/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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were co-transformed with recombinant plasmids pHIS2-PAL: MiMYB5-AD, pHIS2-PAL:
MiMYB6-AD, and pHIS2-PAL: MiMYB8-AD to measure the interactions between MiMYB5,
MiMYB6, and MiMYB8 genes and the MiPAL1 promoter. Media that lacked Leu, Trp,
and His, and were added with 3AT (Trp/SD/Leu/His/3AT) were used to analyze the
interactions. The sequences of the MiPAL1 promoter used in the pHIS2 vector to generate
pHIS2-PAL can be found in (Table S2).

4.9. Dual-Luciferase Reporter (DLR) Assays

Genomic DNA was used to amplify the MiPAL1 promoter (−1443 bp upstream from
the ATG start site), and MiMYB8 coding region, which was then inserted into the respective
vectors pGreenII-0800 and pGreenII 62-SK. This generated the MiPAL1pro-Luc reporter
plasmid and 35S-MiMYB8 effector plasmids. Plasmids containing transcription factor and
negative control pGreenII-62SK plasmids were transformed into Agrobacterium tumefaciens
(GV310) and introduced into the leaves of tobacco (3 weeks old). After two days, the effect
of the transcription factor on the promoter was measured using a kit (Dual-Luciferase®

Reporter Assay). The REN and LUC activities were utilized to determine the degree
of promoter activation, with biological replicates for each transcription factor-promoter
interaction.

4.10. Transient Overexpression (OE) of MiMYB8 in Tobacco Leaf

For transient overexpression, we used the method described by Liu et al. (2021) [47]
with slight modifications. We cloned the CDS sequence of MiMYB8 and inserted it into the
overexpression vector pGreen II 62-SK to create the fusion vector SK-MiMYB8. Primers
for transient overexpression in tobacco (Nicotiana benthamiana, NB) were designed and are
listed in Table S2.

Overnight incubation in LB medium with appropriate antibiotics (50 mg mL−1 of
kanamycin and 25 µL.mL−1 of rifampicin) was employed to transform two constructs
into Agrobacterium tumefaciens GV3101. The cultures were subsequently adjusted to an
optical density (OD600 = 0.75), employing an infiltration buffer composed of 10 mM MES,
10 mM MgCl2, and 150 mM acetosyringone, and adjusted to a pH of 5.6. Following this
adjustment, the cultures were permitted to incubate at room temperature (28 ◦C) for 2–3 d.

After preparing the suspensions, 500 mL of Agrobacterium tumefaciens GV3101
suspension (designated Empty) and Agrobacterium tumefaciens GV3101 carrying 35S-
MiMYB8 suspension (designated OE-MiMYB8), were injected into the leaf’s back using a
needleless syringe with gentle rubbing, respectively. The tobacco plants were then placed
in a lighted growth chamber with a temperature of 22 ± 0.5 ◦C and a relative humidity
of 60–65%. This phase was characterized by a light/dark cycle of 16:8 h, and it spanned
duration of 1 d. Subsequently, samples were collected after 3 d and 6 d. Each group
consisted of three replicates with 10 strains in each replicate. PAL activity and transcription
level in tobacco were assessed as the same as in Section 4.10.

4.11. Transient Overexpression (OE) of MiMYB8 Gene in Mango Fruit

Commercially ripe ‘Guifei’ mangoes were harvested and divided into two groups,
each containing 30 fruits. The peels of mangoes were cut into discs with a diameter of 6 mm
and a thickness of 1 mm. These mango discs were then soaked in equilibrated suspensions
for 2–3 h, placed on a non-resistant solid medium (50 mM acetosyringone) and sealed with
a plastic wrap to cultivate in the dark at 25 ◦C for 6 d. Samples were taken every 3 d twice.
The content of anthocyanin and the activity of PAL were subsequently determined, and
MiPAL1 and MiMYB8 expression were assessed.

4.12. Statistical Analyses

The Sigma Stat (version 4.0) was used to analyze the Triplicate assay data using a
one-way ANOVA test. Duncan’s Multiple Range Test was used to compare the means
and standard errors (SEs) of the data and determine if any significant differences existed
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between the groups. A p-value of less than 0.05 indicates that there is a statistically
significant difference between the compared groups or data sets.

5. Conclusions

The results show that ethylene at low concentration was effective in promoting the
coloration of mango peel, whereas the high ethylene concentration had an inhibitory effect
on the coloring process; as evidenced by a lower chroma a* value, increased chlorophyll
content, reduced anthocyanin content and decreased PAL activity in comparison to the
control. The MiMYB8, acting as a nuclear protein, could bind to the MiPAL1 promoter
and significantly suppress its transcription to inhibit anthocyanin accumulation and peel
coloration during ripening of mango fruit. Consequently, we conclude that MiMYB8 is a key
negative regulator of anthocyanin biosynthesis in mango fruit peel. A better understanding
of this process could be immensely valuable and provide researchers with insights for
further exploration.
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