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Abstract: Nanoparticles (NPs) have shown significant potential for pulmonary administration of
therapeutics for the treatment of chronic lung diseases in a localized and sustained manner. Nebuliza-
tion is a suitable method of NP delivery, particularly in patients whose ability to breathe is impaired
due to lung diseases. However, there are limited studies evaluating the physicochemical properties
of NPs after they are passed through a nebulizer. High shear stress generated during nebulization
could potentially affect the surface properties of NPs, resulting in the loss of encapsulated drugs and
alteration in the release kinetics. Herein, we thoroughly examined the physicochemical properties as
well as the therapeutic effectiveness of Infasurf lung surfactant (IFS)-coated PLGA NPs previously
developed by us after passing through a commercial Aeroneb® vibrating-mesh nebulizer. Nebuliza-
tion did not alter the size, surface charge, IFS coating and bi-phasic release pattern exhibited by the
NPs. However, there was a temporary reduction in the initial release of encapsulated therapeutics
in the nebulized compared to non-nebulized NPs. This underscores the importance of evaluating
the drug release kinetics of NPs using the inhalation method of choice to ensure suitability for the
intended medical application. The cellular uptake studies demonstrated that both nebulized and
non-nebulized NPs were less readily taken up by alveolar macrophages compared to lung cancer
cells, confirming the IFS coating retention. Overall, nebulization did not significantly compromise
the physicochemical properties as well as therapeutic efficacy of the prepared nanotherapeutics.

Keywords: Aeroneb; pulmonary drug delivery; nebulizer; vibrating-mesh nebulizer; aerosol; cancer;
biomimetic; lung surfactant; macrophage

1. Introduction

Pulmonary drug delivery has emerged as a patient-compliant and non-invasive
method of providing localized and systemic therapies to treat both pulmonary and non-
pulmonary diseases [1]. This method of delivering therapies is suitable for treating various
pulmonary diseases, such as chronic obstructive pulmonary disorder (COPD) and asthma,
as it offers quick onset of action and minimal systemic side-effects as therapeutics are
delivered directly to the lungs [2]. The lungs possesses a large surface area exceeding
100 m2 with an extremely thin alveolar epithelium ranging from 0.2 to 1 µm in thickness,
which favors solute exchange and allows faster drug absorption and rapid drug onset
following pulmonary administration [3,4]. Moreover, the relatively lower concentrations
of drug-metabolizing enzymes in the lungs enhances drug bioavailability [5,6], while the
non-invasiveness of the pulmonary route of delivery enhances patient compliance [7].

Therapeutics, upon inhalation, are deposited in the mucosal lining, from where they
are subsequently carried via mucociliary advection and molecular diffusion to the lungs [8].
However, drugs administered via inhalation as aerosols or fine dry powders are often
associated with poor retention properties and a shorter half-life, necessitating frequent
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dosing which may lead to increased local toxicity [9–11]. Additionally, most drugs ex-
hibit limited water solubility and, therefore, cannot be aerosolized [4,12,13]. To overcome
these limitations, nanotechnology-based drug delivery platforms are being increasingly
explored [13–15]. In these platforms, drugs can be encapsulated within polymer or lipid
nanocarriers, which are comparatively easier to disperse in aqueous solutions for aerosoliza-
tion. Polymeric nanoparticles (NPs), in particular, facilitate controlled and sustained release
of therapeutics via diffusion and polymer degradation, resulting in prolonged pharma-
cological effects at the desired site of action [9,16]. Additionally, polymers can readily be
subjected to surface modifications and/or co-polymerized to augment the selectivity of
polymeric NPs to further improve their therapeutic efficacy [15]. Beck-Broichsitter et al.
successfully encapsulated sildenafil within a biodegradable and biocompatible polymer
like poly(D,L-lactide-co-glycolide) (PLGA), showcasing a controlled and sustained release
of the therapeutics in the treatment of pulmonary hypertension [16]. Similarly, Xu et al.
developed methoxy poly(ethylene glycol)-poly(ethylenimine)-poly(l-glutamate) (mPEG-
OEI-PLG) nanoparticles for co-delivery of doxorubicin and cisplatinum via pulmonary
administration for lung cancer therapy [17].

Among the different approaches used for aerosol drug delivery, nebulization is an
attractive option as it enables direct delivery of the inhaled nanotherapeutics in the form
of fine droplets deep into the alveoli [18,19]. Nebulizers’ low inspiratory flow and normal
ventilatory pattern are especially advantageous for delivering therapeutics to patients with
lung cancer who experience difficulty with breathing. Upon aerosolization, nanoparticles
with an average diameter below 1 micron form droplets with a mass median aerodynamic
diameter ranging from 1 to 5 µm; this range is optimal for deposition of inhaled NPs deep in
the alveolar region [20,21]. Gravitational settling, aerosol diffusion and inertial impaction
are other factors that govern deposition, along with the physiochemical properties of
nanoformulations [8]. We have previously reported that our PLGA NPs (average diameter:
160 nm) formed aerosol droplets in the 4–6 µm range upon nebulization, which would be
appropriate for deposition in the distal lung consisting of the terminal bronchioles and
alveoli [15].

However, materials arriving at the luminal surface of the alveoli tend to be actively
eliminated by alveolar macrophages present in this region [22,23]. Multiple attempts have
been made to alter the surface of polymeric NPs to prevent phagocytosis by alveolar
macrophages so that they can be retained in the alveoli for longer periods of time for sus-
tained therapy [24,25]. Pulmonary surfactants secreted by Type II alveolar cells in the lungs
comprise a mixture of 80% of phospholipids, 10% of neutral lipids and 10% of surfactant
proteins [26,27]. The phospholipids present in pulmonary surfactants have been found
to form a protective barrier, thereby minimizing the internalization of nanoparticles by
alveolar macrophages [28]. ONY Biotech’s Infasurf® is a calf lung-derived lung surfac-
tant that mimics the native lung surfactant produced by conducting the airways of the
human lungs, and was therefore chosen for this research to shield NPs from clearance by
macrophages [29]. We have recently reported the development of a biomimetic nanoplat-
form consisting of Infasurf® lung surfactant-coated PLGA NPs, which was successful in
evading alveolar macrophage uptake of NPs in vitro and improved NP retention following
inhalation in vivo in mice [30]. Although single polymer/lipid NPs and hybrid NPs have
been synthesized and characterized for delivering drugs to the lungs, there are limited
studies that investigated the impact of nebulization on the physical and chemical attributes
of these formulations. Detailed investigation on the effects of nebulization is necessary
to ensure that the high shear stress developed during the nebulization process does not
cause shear degradation of NPs [31], thereby resulting in the potential loss of coatings
and encapsulated therapeutics, and changes in release behavior. To our knowledge, no
studies have been performed to evaluate and compare the physicochemical, stability and
in vitro effects of hybrid NP formulations consisting of multiple layers of lipids or polymers
pre- and post-nebulization. The present work focuses on evaluating our Infasurf® lung
surfactant (IFS, ONY biotech, Amherst, NY, USA)-coated PLGA NPs (IFS_PLGA NPs)



Int. J. Mol. Sci. 2024, 25, 5028 3 of 16

after passing through a commercial Aeroneb® (Kent Scientific Corporation, Torrington, CT,
USA) vibrating-mesh nebulizer. The PLGA core of these NPs contains paclitaxel (PTX), a
potent anti-cancer drug which is used as a first-line treatment in lung cancer. PTX binds
to microtubules in cells and induces cell cycle arrest, leading to apoptosis [32]. Due to
its poor water solubility, PTX has been encapsulated within drug delivery vehicles such
as micelles and albumin nanoparticles for therapy. Genexol-PM, Nanoxel and Abraxane
are examples of commercially available PTX-based nanoformulations that are delivered
intravenously [33]. The IFS_PLGA NPs described herein offer an alternative method of
delivering therapies directly to the deep lung tissue by nebulization. The encapsulation of
PTX within these NPs for anti-cancer drug delivery was explored herein. However, these
NPs can also be used to deliver other anti-cancer agents for the treatment of lung cancer.

2. Results and Discussion
2.1. Fabrication and Evaluation of Nebulized NPs

The IFS_PLGA NPs were successfully prepared by employing a two-step approach,
wherein the PLGA NP core was first prepared by solvent evaporation, following which
a thin film of lung surfactant was adsorbed on the surface of the PLGA NP core via
hydration and sonication to form the final formulation (Figure 1). This adsorption is
facilitated by electrostatic interactions between the positive charges of the zwitterionic
dipalmitoylphosphatidylcholine (DPPC), a major component of the lung surfactant, and
the negative surface charge of the polymeric core [34,35].
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Figure 1. Schematic diagram illustrating the preparation of IFS_PLGA NPs. PTX is encapsulated
within the polymeric matrix, followed by coating of the formulation by the IFS layer.

During nebulization, the size of particles plays a critical role in influencing the mass
median aerodynamic diameter. A greater number of nanoparticles can be incorporated
within an aerosolized droplet as their size decreases, thus augmenting the deposition of
therapeutics deep into the alveoli [36]. The prepared IFS_PLGA NPs were nebulized using
an Aeroneb® nebulizer. A dynamic light scattering (DLS) instrument was employed to
evaluate the particle size, polydispersity index (PDI) and surface charge of the nebulized
NPs, and these values were compared to the values obtained pre-nebulization. The DLS
measurements, as shown in Figure 2a, demonstrated a minimal increase in particle size
from 140.6 ± 3.87 nm to 142.1 ± 10.81 nm with a relatively stable PDI of 0.29 ± 0.04
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and 0.26 ± 0.01 for the NPs before and after nebulization, respectively. Makled et al.
developed a sildenafil citrate-containing solid lipid nanoparticle for treating pulmonary
hypertension, and they observed similar results wherein the particles retained their sizes
after nebulization, confirming the maintenance of colloidal stability after passing through
a nebulizer [37]. Additionally, the zeta potential of the NPs pre- and post-nebulization
displayed an insignificant overall change of −33.0 ± 1.60 mV and −31.4 ± 2.95 mV,
respectively (Figure 2b). The uncoated PLGA NPs had a zeta potential of about −37.8 mV.
The small, insignificant decrease in zeta potential noted after IFS coating was retained
post nebulization. Since the zeta potential values of the NPs were greater than −30 mV,
these particles were stable. Negatively charged particles have been found to accumulate
more effectively within the pulmonary region compared to positively charged particles [38];
therefore, the negligible variations in zeta potential is favorable for deep lung deposition.
Similar results were observed by Graczyk et al. in their study, wherein they reported no
change in particle size (56 ± 10 nm) and zeta potential (~−44 mV) of a nebulized Rienso
suspension (superparamagnetic iron oxide nanoparticles) [39]. The NP morphologies were
also visualized using Transmission Electron Microscopy (TEM). For the nebulized samples,
the nanosuspension was directly nebulized on the TEM grids before imaging. Nebulization
did not impact the surface morphologies and size of the NPs, as shown in Figure 2c,d. The
TEM images exhibit smaller particle diameters in comparison to the DLS measurements;
this was expected as NPs are subjected to air-drying during TEM sample preparation, while
DLS involves measuring the hydrodynamic diameter of particles in suspension.
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Figure 2. Physicochemical characterization of IFS_PLGA NPs pre- and post-nebulization: (a) NP size
(nm) and polydispersity index (PDI), and (b) Zeta potential (mV) of nebulized and non-nebulized
IFS_PLGA NPs (n = 3). TEM images of IFS_PLGA NPs: (c) pre-nebulization and (d) post-nebulization
(scale: 1 µm).

2.2. Confirmation of the IFS Layer on the Nebulized IFS_PLGA NPs

The IFS-PLGA NP dispersion was passed through the nebulizer, and the nebulized
fraction was evaluated for the presence of IFS coating via estimation of phospholipids using
Stewart’s assay, a colorimetric assay that forms a colored complex between ammonium
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ferrothiocyanate and phospholipids, which can then be quantitatively measured [40].
As described above, Infasurf (IFS layer) is a calf-derived lung surfactant that comprises
phospholipids (90%) and proteins (10%) [41,42]. The quantified phospholipids in the
nebulized fraction were then compared to the non-nebulized formulation. As shown in
Table 1, negligible loss of lipids was observed, confirming the retention of IFS coating on
the NPs after passing through the nebulizer.

Table 1. Estimation of phospholipids pre- and post-nebulization.

Mg of Lipids/Mg of IFS_PLGA NPs

Before nebulization After nebulization

0.53 ± 0.07 0.50 ± 0.03

Additionally, FTIR spectra were obtained to study the impact of nebulization on the
retention of the lipid coating on the polymeric PLGA NPs (Figure 3a). The FTIR spectra
of both nebulized and non-nebulized IFS_PLGA NPs exhibited the characteristic peaks
of IFS, showing the presence of -PO2 antisymmetric stretching double bonds at around
1223 cm−1, -C=O stretching observed at around 1737 cm−1, –CH2 symmetric stretching
observed at 2850 cm−1, –CH2 antisymmetric stretching at 2919 cm−1, –CH3 stretching
between 2955 and 2957 cm−1, and –OH group at 3400 cm−1 [43–45]. Additional peaks
characteristic to PLGA at 1740 cm−1, representing the carbonyl stretching of lactide and
glycolide; at 1221 and 1171 cm−1, attributed to the symmetric and asymmetric stretching
of C–C(=O)–O; and at 1087 cm−1 due to the C-O-C stretching were also observed [46–48].
The FTIR findings affirmed that the nebulized IFS_PLGA NPs maintained their structural
integrity and retained the IFS coating even after passing through the nebulizer.
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Figure 3. FTIR and drug release analysis of IFS_PLGA NPs pre- and post-nebulization. (a) FTIR
spectra of IFS, PLGA and pre- and post-nebulized IFS_PLGA NPs, confirming the retention of all
components after nebulization. (b) The cumulative PTX release profile from encapsulated IFS_PTX
NPs pre- and post-nebulization at 37 ◦C. (c) The effect of nebulization on the release kinetics of the
NP system using rhodamine-B as a model drug.
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2.3. Evaluation of Drug Loading in IFS-Coated NPs and In Vitro Release Behavior

PTX was loaded within the polymeric matrix, followed by IFS coating, as described
in detail in Section 3.2. The drug-loaded NPs (IFS_PTX NPs) were evaluated for their
drug loading capacity and encapsulation efficiency (EE%), which were estimated to be
73.7 ± 5.1% and 2.6 ± 0.98%, respectively, using a previously developed HPLC method [30].

Further investigation was conducted to evaluate the effect of nebulization using the
Aeroneb® vibrating-mesh nebulizer on the release kinetics of the IFS-coated polymeric NP
system. Several studies have shown that the type of nebulizer used has varying effects on
NP systems due to the technology used in the generation of aerosols [49–51]. Jet nebuliz-
ers utilize compressed air to generate aerosols and have been found to be have the most
damaging effects on nanoformulations, particularly liposomes [52,53], while ultrasonic
nebulizers are disadvantageous for thermo-sensitive formulations due to the generation of
heat from piezoelectric crystals that are employed during aerosol generation [54]. Nebuliz-
ers utilizing the vibrating-mesh technology, on the other hand, demonstrated liposomal
stability in the retention of drugs within liposomes [49]. As far as we know, there are no
studies investigating the impact of nebulization on the release kinetics of nanoformulations.
Regarding the present formulation with a two-layer system consisting of an IFS shell and a
PLGA core, we hypothesized that the shear stress developed during nebulization might
affect the NPs’ surface properties and, therefore, the release profile. As shown in Figure 3b,
the nebulized IFS_PTX NPs had a similar drug release profile as the non-nebulized IFS_PTX
NPs. The release kinetics of the IFS_PTX NPs pre- and post-nebulization in PBS at 37 ◦C
demonstrated an initial burst release of 34 ± 10.45% and 19 ± 4.29% within the first hour,
which is attributed to the bi-phasic release profile of the polymer. About 56 ± 2.35% and
42 ± 1.04% of the drug was released from the IFS_PTX NPs pre- and post-nebulization
within 24 h, after which a cumulative release of about 45–49% of the encapsulated drug was
observed for 21 days. However, the nebulized NPs displayed a decrease in the amount of
drug released during the burst release phase; this decrease was observed until day 3, after
which both groups maintained a similar drug release profile until day 21. The lower release
from the nebulized NPs could be attributed to possible changes in membrane integrity and
properties due to the shearing provided by the nebulizer, which could have impacted drug
release. An overall decline in the release profile was observed in both groups of NPs, which
is attributed to the base-catalyzed epimerization and hydrolysis of PTX in an aqueous
solution reported by Sadegh et al. and which was also observed by us previously [30,55].
PTX contains ester groups that are hydrolytically sensitive. In water, the hydroxyl group
in PTX undergoes initial epimerization, followed by base-catalyzed hydrolysis of PTX’s
side chains and remaining ester bonds over time, which leads to the decreased cumulative
release observed by us [56].

Due to the challenges in measuring PTX release from NPs over time, we used the
chemically stable rhodamine-B as a model drug within the IFS_PLGA NPs to assess the
drug release profiles of nebulized and non-nebulized NPs. The EE% of rhodamine-B-
loaded IFS_PLGA NPs was determined to be 45.46 ± 2.10%. As shown in Figure 3c,
a similar overall trend in the release profile was observed for the rhodamine-B-loaded
IFS_PLGA NPs pre- and post-nebulization. Both groups demonstrated an initial burst
release of 30.74 ± 0.75% and 16.17 ± 6.26% of the encapsulated drug in 30 min for the
non-nebulized and nebulized NPs, respectively. This was followed by a sustained release
of about 82.32 ± 1.88% and 83.35 ± 4.99% of the encapsulated drug from the non-nebulized
and nebulized NPs, respectively, within 21 days.

2.4. Nebulization Performance of IFS_PTX NPs Using Aeroneb®

Parameters associated with the type of nebulizer used can affect nebulization perfor-
mance, which, in turn, impacts the nebulization efficiency and therapeutic efficacy [57,58].
The Aeroneb® nebulizer works on the principle of vibrating-mesh technology, wherein
liquid droplets pass through the mesh that is vibrating due to the piezo-element to form
aerosolized droplets [59–61]. IFS_PTX NPs were passed through the nebulizer, and the
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nebulization efficiency, nebulization rate and aerosol output rate were evaluated (Figure 4).
The nebulizer was able to successfully nebulize 2 mL of the NP suspension (1 mg/mL) in
about 7 ± 0.95 min, displaying a nebulization efficiency of 89.03 ± 3.0%. An aerosol output
rate of 261.9 ± 45.1 mg/ min was determined, while approximately 7.5 ± 3.7% of the NP
suspension was estimated to have been lost within the inner walls of the liquid reservoir
and the aerosol output (Table 2).
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Table 2. Nebulization performance of IFS_PTX NPs using Aeroneb®.

Nebulization efficiency (%) 89.03 ± 3.0

Time to nebulize (min) 7 ± 0.95

Fluid output rate (mg/min) 261.99 ± 45.09

Remaining percentage (%) 7.53 ± 3.65

When compared to other nebulizers such as ultrasonic and jet nebulizers, a vibrating-
mesh nebulizer is potentially advantageous for several reasons, namely less noise, excellent
delivery efficiency, low residual dose and minimal change in the drug concentration
during nebulization as there is no temperature change, making it favorable for nebulizing
temperature-sensitive therapeutics [63]. The nebulized IFS_PTX NPs were evaluated for
any change in the drug concentration. No change in the drug concentration was observed,
confirming our formulation was stable enough to withstand the vibrational energy and any
drug loss was prevented during the nebulization process.

2.5. In Vitro Studies of Nebulized NPs

The effect of nebulized blank IFS_PLGA NPs was then studied on A549 lung adenocar-
cinoma cells using MTT assays. The cells were directly nebulized, as shown in Figure 5a,b,
with an NP dispersion ranging from 100 to 1000 µg/mL. As shown in Figure 5c, greater
than 85% cell viability was exhibited by the cells treated with IFS_PLGA NPs for up to a
concentration of 1000 µg/mL, indicating that the NPs were cytocompatible at high con-
centrations. For comparison, the cells were also treated with non-nebulized NPs (NP
suspension directly added to the cells). There was no significant difference in cell viability
between the tested groups.
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effect of the nebulizer on cytocompatibility. (d) Cellular uptake results depicting the uptake kinetics
of nebulized NPs by A549 and NR8383 cells. p-value: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, and
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Furthermore, a cellular uptake study was conducted to determine the nebulization
effects on NP uptake by both A549 and NR8383 cells. For this investigation, coumarin-6
dye was encapsulated within the polymeric matrix of the NP system, as described in
Sections 3.2 and 3.10. Coumarin-6 is relatively stable within encapsulated systems, with no
immediate leakage of the dye into cell culture media. Additionally, it does not produce any
acute cell toxicity [64]. We had previously reported a statistically significant reduction in
alveolar macrophage uptake of our developed IFS_PLGA NPs when compared to PLGA
NPs not coated with IFS, indicating that the biomimetic IFS coating minimized recognition
and subsequent phagocytosis by alveolar macrophages [30]. Figure 5d–f demonstrate
the cellular uptake of nebulized and non-nebulized IFS_PLGA NPs by the A549 and
NR8383 cell lines. As observed previously by our group, significant NP uptake by the
A549 cells was observed when compared to the alveolar macrophages (NR8383) [30]. The
nebulization process did not seem to significantly impact the uptake of NPs by either cell
line. These findings further confirm the retention of the IFS coating on the PLGA NPs
when passing through the vibrating-mesh nebulizer, which prevented NR8383 alveolar
macrophage-mediated phagocytosis of these IFS_PLGA NPs.

2.6. Effect of Nebulization on In Vitro Therapeutic Efficacy

The therapeutic efficacy of nebulized IFS_PTX NPs was subsequently investigated
against the A549 cell line. The cells were dosed either by direct nebulization or by pipet-
ting varying concentrations (100–1000 µg/mL) of IFS_PTX NPs, as described in detail in
Section 3.11. Following 2 h of incubation with the NPs, the cells were washed, and the
medium was replaced. The washing step was performed so that the results obtained would
be solely due to the release of the drug from the NPs taken up within the first two hours
of treatment. As previously observed by our group, a dose-dependent cytotoxic effect
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(Figure 6a–c) was noted when the cells were treated with drug-loaded NPs for 2 h [30].
The method of NP administration, however, had no impact on the cytotoxic effect, further
confirming that the drug release kinetics and therapeutic effects of the LS-coated NPs
were not impacted upon nebulization. Comparable results were also observed by Verma
et al. in their study, wherein no significant changes in cell death was observed when A549
cells were treated with quercetin-loaded magnetic NPs administered via direct pipetting
or nebulization [65]. Vencken et al. also demonstrated that nebulization of microRNA-
17-loaded lipid–polymer hybrid nanoparticles was able to knockdown interleukin (IL)-8,
further confirming that the nebulization process did not have any impact on the therapeutic
efficacy of NPs [66].
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Figure 6. (a) In vitro studies investigating the therapeutic effectiveness of nebulized particles in
comparison with non-nebulized NPs at 48 h and (b) 72 h. (n = 4, mean ± standard deviation).
(c) Live/dead staining of A549 cells after treatment with nebulized and non-nebulized IFS_PTX NPs
at 250 µg/mL (scale bar = 300 µm, magnification = 10×).

3. Materials and Methods
3.1. Materials

PLGA [Poly(D,L-lactide-co-glycolide) or Resomer RG 503 H, at a copolymer ratio of
50:50], cholesterol, PVA [poly (vinyl alcohol), MW: 13,000–23,000], chloroform and PBS
(phosphate-buffered saline: 0.01 M phosphate buffer, 0.0027 M potassium chloride and
0.137 M sodium chloride, pH 7.4) were purchased from Sigma–Aldrich (St. Louis, MO,
USA). Infasurf (Calfactant) was a generous gift from Dr. Edmund Egan and ONY, Inc.
(Amherst, NY, USA). PTX and acetonitrile were procured from Alfa Alesar (Ward Hill, MA,
USA). Analytical-grade chemicals and reagents were used in this research.

NR8383 alveolar macrophage (CRL-2192) and A549 lung adenocarcinoma cells (CCL-
185TM) were purchased from ATCC (Manassas, VA, USA). DMEM [Dulbecco’s minimum
essential medium] was purchased from Sigma–Aldrich (St. Louis, MO, USA). F12-K culture
medium, 0.25% trypsin, FBS [fetal bovine serum] and pen-strep [penicillin–streptomycin
antibiotic] were purchased from Gibco (Grand Island, NY, USA). The bicinchoninic acid
(BCA)® Protein Assay Kit was obtained from Pierce, Rockford, IL, USA.
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3.2. NP Synthesis

The PTX-encapsulated PLGA NPs were prepared via an emulsion–solvent evaporation
technique. In brief, PTX (5 mg) and PLGA (50 mg) were dissolved in 5 mL of chloroform,
which was then added dropwise into 5% w/v PVA solution under constant stirring and
emulsified with the help of a probe sonicator (Fisher Scientific CL-18, Waltham, MA, USA)
for 3 min. To ensure complete removal of the organic solvent, the resultant emulsion
was stirred overnight. The NPs were purified via ultracentrifugation (Optima L-100 XP,
Beckman Coulter, Brea, CA, USA) at 25,000 g at 10 ◦C for 30 min. The NPs were then
lyophilized and stored at −20 ◦C for future use.

Further, the prepared NPs were coated with IFS via thin-film hydration technique.
IFS (5 mg) and cholesterol (molar ratio of lipid to cholesterol = 15:1) dissolved in 2 mL
chloroform was dried into a thin film under reduced pressure at 50 ◦C by employing a
rotary evaporator (R-100, Buchi, New Castle, DE USA). The lipid film obtained was then
hydrated at 50 ◦C for 1 h with 4 mL of 0.5 mg/mL PTX-encapsulated PLGA NP dispersion,
followed by probe sonication for 3 min. The prepared IFS-coated PTX-encapsulated PLGA
NPs (IFS_PTX NPs) were then purified for 24 h using a dialysis bag (12–14 kDa molecular
weight cutoff) that was preequilibrated. The dialysate medium (Milli-Q water) was replaced
every 3–4 h. The purified NPs were then freeze-dried and stored at −20 ◦C until future use.

3.3. Characterization of Particle Size and Morphology of the NPs

The NPs were evaluated for their physicochemical characteristics pre- and post-
nebulization. The NP size, polydispersity index (PDI) and zeta potential (ZP) were mea-
sured by a dynamic light scattering analyzer (DLS) (NanoZS, Malvern, PA, USA). The
shape and morphology of the IFS-coated NPs pre- and post-nebulization were evaluated
by a JEM-F200 transmission electron microscope (TEM) (JEOL, Peabody, MA, USA). In
short, the NP suspension droplets were mounted on carbon-coated TEM grids and air-dried
before visualization under the microscope. For the nebulized samples, NPs dispersed in
MilliQ water (1 mg/mL) were passed through the Aeroneb nebulizer. The nebulized NPs
were then analyzed for their size and morphology in the same manner as described above.

3.4. Confirmation and Quantification of the IFS Coating

Fourier-transform infrared spectroscopy (FTIR) (Jasco FT-IR Spectrophotometer, JASCO,
Easton, MD, USA) was employed to study the retention of the IFS coating on the nebulized
NPs. FTIR spectra were obtained at ambient temperature in the range from 400 to 4000 cm−1

to confirm the incorporation of the polymer, lipid and drug in the final formulation, and
to study potential chemical interactions between them. The OmnicTM FTIR Software was
used to identify and interpret the different functional and vibrational peaks.

Furthermore, Stewart’s phospholipid colorimetric assay was used to confirm and
quantify the IFS coating on the nebulized NPs [40,67]. Briefly, 1 mg/mL of blank NPs
(IFS_PLGA-NPs) were passed through the nebulizer, collected, and then lyophilized. The
lyophilized NPs were then dissolved in chloroform (2 mL) and vigorously vortexed for
1 min with ammonium ferrothiocyanate (2 mL) that was freshly prepared. The resultant
mixture was then allowed to stand for 15 to 20 min to aid in the phase separation. The
extracted phospholipid present in the lower chloroform layer was then measured using a
GenesysTM 50 UV-Vis spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA) at
470 nm.

3.5. Assessment of PTX Encapsulation Efficiency and Loading in IFS-Coated NPs

High-performance liquid chromatography (HPLC) (Schimadzu Corporation, Columbia,
MD, USA) was used to quantify the PTX content in the NPs. A reverse-phase analysis
was performed using an EC 125/4.6 Nucleosil 100-5 C 18 column (4.6 mm × 125 mm,
pore size 5 µm, Macherey-Nagel, Allentown, PA, USA). The mobile phase consisted of a
mixture of acetonitrile and water at a ratio of 50:50, with a flow rate of 1.0 mL/min. The
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column temperature was set at 30 ◦C and the injection volume was 20 µL. PTX detection
was conducted at a wavelength of 227 nm.

Encapsulation efficiency (EE) and drug loading efficiency (LE) were determined by first
breaking down the NPs using acetonitrile and then vortexing the suspension vigorously
to ensure the complete release of the entrapped PTX, after which an equal volume of PBS
was added. The resultant mixture was filtered and then injected into the HPLC. EE is the
fraction of the drug used initially for encapsulation that was loaded into the NPs. LE is
the amount of drug loaded per unit weight of the NPs. The EE and LE were calculated as
shown below:

EE(%) =
Amount of drug in nanoparticles (mg)

Initial amount of drug used (mg)
× 100

LE(%) =
Amount of drug in nanoparticles (mg)

Total amount of NP (mg)
× 100

3.6. In Vitro Drug Release Studies

IFS_PTX NP (2 mg) dispersion in PBS (1 mL) was added to a dialysis bag (molecular
weight cut-off (MWCO) of 12–14 kDa). The bag was immersed in screw-capped tubes
containing 5 mL of PBS, which was then placed on an orbital shaker set to 75 rpm at
37 ± 0.5 ◦C for 21 days. At predefined timepoints, 0.5 mL of the dialysate was collected.
This was replaced with 0.5 mL of pre-warmed PBS. The released PTX from the NPs was
quantified using the HPLC method as detailed above.

The NPs were also evaluated for their release kinetics post nebulization. For this,
1 mg/mL NPs was first passed through the Aeroneb® nebulizer (flow rate: >0.1 mL/min,
volume mean diameter (VMD): 4.0–6.0 µm, residual volume: <0.2 mL), collected, and then
lyophilized to determine the exact amount of particles used per sample. The amount of
drug released from the nebulized NPs was assessed as detailed above, and non-nebulized
NPs were used as a control. Since PTX tends to undergo epimerization and base-catalyzed
hydrolysis when in aqueous media [55], rhodamine-B dye was used as a model drug for
encapsulation within the PLGA NPs in these drug release studies. To synthesize rhodamine-
B-containing NPs, the same preparation steps as described in Section 3.2 were followed,
with the exception that PTX was replaced with 1 mg of rhodamine-B.

3.7. Evaluation of Nebulization Performance of IFS_PTX NPs

The Aeroneb® nebulizer was evaluated for its nebulization performance following
the passage of NPs through it. Briefly, 2 mL of a 1 mg/mL NP suspension was passed
through the nebulizer, and the mass and volume of the collected fraction was assessed. The
nebulizer was then investigated for the following parameters [37]:

Nebulization Efficiency, NE(%)

=
Mass of the collected nebulized fraction (mg)

Total mass of NPs instilled in the nebuliuzer (mg) × 100

Fluid output rate
( mg

min
)

=
Mass of the collected nebulized fraction (mg)

Time taken to nebulize the NPs (min) × 100
(1)

Percentage remaining (%)

=
Mass of fluid remaining in the nebulizer post nebulization (mg)

Total mass of NPs instilled in the nebuliuzer (mg) × 100
(2)

Additionally, drug loss from the IFS_PTX NPs following nebulization was also eval-
uated. A total of 2 mL of 1 mg/mL of IFS_PTX NPs suspension was passed through
the nebulizer, and the collected nebulized fraction was centrifuged. An equal volume of
acetonitrile was added to the supernatant, and the resultant solution was then injected into
the HPLC and quantified as described above in Section 3.5.

The drug loss of the nebulized NPs was calculated as follows:
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Drug Loss(%) =
Amount of drug present in nebulized fraction

Amount of drug present in non − nebulized fraction
× 100 (3)

3.8. Cell Culture Conditions

A549 lung adenocarcinoma cells were cultured in complete DMEM cell culture medium
containing 10% v/v FBS and 1% v/v pen-strep solution. Complete Ham’s F-12 medium
containing 15% v/v FBS and 1% v/v pen-strep solution was used for culturing NR8383
alveolar macrophage cells. The cells were cultured in a 5% CO2 incubator at 37 ◦C.

3.9. In Vitro Cytocompatibility Studies Using IFS_PLGA NPs

The cytocompatibility of the nebulized and non-nebulized NPs was evaluated using
A549 cells by MTT colorimetric assays (Vybrant MTT Cell Proliferation Assay Kit, Thermo
Fisher Scientific, Waltham, MA, USA). The cells were initially seeded at a seeding density of
10 × 103 cells/well in a 12-well plate, followed by 24 h incubation at 37 ◦C to facilitate cell
attachment. Post 24 h, the medium in the wells was removed and varying concentrations of
IFS_PLGA NPs (0, 250, 500 and 1000 µg/mL) suspended in the medium were directly nebu-
lized on the cells. The cells were then allowed to incubate for 24 h at 37 ◦C. For comparison,
cells were also directly treated with non-nebulized NPs at similar NP concentrations. The
untreated cells served as the control in this study. Following 24 h of treatment, the cells
were gently washed using PBS, followed by the addition of the MTT reagent. Absorbance
readings at 540 nm were obtained using a Synergy H1 microplate reader (BioTek, Winooski,
VT, USA). Cell viability was calculated as the survival percentage of treated cells relative to
the untreated control.

3.10. In Vitro Cellular Uptake of IFS_PLGA NPs

The effects of nebulization on the cellular internalization of the prepared NPs were
also determined. For this investigation, IFS_PLGA NPs containing coumarin-6 dye were
prepared as described in Section 3.2, except that PTX was replaced with coumarin-6
(1 mg). Briefly, the A549 and NR8383 cell lines were seeded at a seeding density of
10 × 103 cells/well in a 12-well plate and allowed to attach at 37 ◦C for 24 h. Prior to the
NP treatment, the cells were starved using a serum-free medium for 2 h. They were then
treated with different NP concentrations ranging from 0 to 1000 µg/mL for 2 h. The two
groups studied in this experiment were nebulized and non-nebulized NPs. In the nebulized
NP group, the cells were directly exposed to the NPs that passed through the nebulizer,
while in the non-nebulized group, the cells were directly treated with NPs suspended in
the medium. Cells that were not treated with NPs served as a control. Following gentle
washing in PBS at the end of the experiment, the cells were lysed using Triton X-100. NP
uptake was determined by measuring NP fluorescence intensity, which was normalized to
the total cell protein content quantified with the help of a Pierce BCA protein assay in each
well. Cellular uptake was also qualitatively studied with the help of the EVOS® FL Auto
Imaging System (ThermoFisher Scientific, Waltham, MA, USA). For imaging NP uptake,
cells seeded at 20 × 103 cells/well in a 48-well plate were treated in a similar manner as
mentioned above. Following the NP treatment for 2 h, these cells were washed gently with
PBS, fixed using 4% formaldehyde, and imaged after staining the nuclei with DAPI.

3.11. In Vitro Therapeutic Efficacy Studies

The nebulized drug-loaded NPs (IFS_PTX NPs) were also investigated for anti-cancer
effects with the help of an MTT assay. In this investigation, A549 cells seeded at a density
of 10 × 103 cells/well in a 12-well plate and incubated for 24 h were directly exposed to
different drug-loaded NP concentrations (0, 125, 250 and 500 µg/mL) for 2 h. Post 2 h of
incubation, the treatment medium was discarded, and the cells were washed with PBS to
remove NPs that were not taken up. Then, the cells were incubated for 48 and 72 h in a
drug-free medium. The MTT assay was performed to determine cell viability.
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Additionally, the anti-proliferative activity of nebulized IFS_PTX NPs were also in-
vestigated using LIVE/DEAD staining. Briefly, A549 cells were seeded and treated with
varying concentrations of IFS_PTX NPs for 2 h as described above. After 2 h, as described
above, the treatment medium was removed, and the cells were washed with PBS. Fresh
medium was added, and the cells were incubated for 48 and 72 h. After a specific time
interval, the cells were gently washed twice with PBS and stained with LIVE/DEAD stain
as instructed by the manufacturer. The stained cells were then imaged using the EVOS® FL
Auto Imaging System. Cells receiving no treatment served as the control group.

3.12. Statistical Analysis

All experiments were conducted independently in quadruplicate and the outcomes
were presented as mean ± deviation. Statistical analysis was conducted using the GraphPad
Prism software, with the significance levels denoted as * p < 0.05, ** p < 0.01, *** p < 0.001
and **** p < 0.0001.

4. Conclusions

Pulmonary drug delivery is a convenient and patient-compliant method for delivering
therapies in a localized manner to treat chronic pulmonary conditions, including lung can-
cer. Due to the weakened breathing capacity of patients with lung cancer, synchronization
of inhalation with the inhaler device actuation is challenging. Nebulization of drug-loaded
NPs is an attractive approach for localized delivery of medications for sustained therapy.
In this study, we investigated in detail the physicochemical properties and therapeutic
efficacy of our previously developed IFS-PLGA NPs upon passing through a commercial
Aeroneb® vibrating-mesh nebulizer. Nebulization did not impact the size, surface charge
and retention of the IFS coating of the NPs, which was confirmed by DLS, FTIR and Stew-
art’s assay. However, a decrease in the initial release of the encapsulated therapeutics by
the nebulized NPs was observed up to day 3 when compared to the non-nebulized NPs.
A key contribution of this work to pulmonary drug delivery research is that it highlights
the importance of testing the drug release kinetics of inhalable nanoformulations using a
chosen mode of inhalation during preclinical investigations to ensure that the release is
appropriate for the desired application. Nebulization of NPs through the vibrating-mesh
nebulizer had no significant impact on therapeutic efficacy of the NPs. Cellular uptake
studies confirmed that nebulized NPs were taken up less by alveolar macrophages than
by lung cancer cells, confirming the retention of the IFS coating. Future work will involve
in vivo evaluation of NPs post nebulization to investigate the biodistribution, safety and
therapeutic effects of aerosolized NPs using established tumor models.
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