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Abstract: One-pot synthesis of (E)-5-[bromo(phenyl)methylene]-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole
(9) from propargylic alcohol 5 and p-toluamide (6) was achieved via gold(III)-catalyzed propargylic
substitution, followed by gold(III)-catalyzed bromocyclization. The structure of 9 was confirmed by
an X-ray crystallographic analysis.
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1. Introduction

Oxazolines are important skeletons found in biologically active natural compounds [1,2],
and they have been utilized as useful synthetic intermediates or reagents [3–5]. Therefore,
extensive efforts have been made to develop synthetic methods for these compounds over
several decades. Most of them are based on cyclization from propargylic amides 3 to
oxazolines 4 in the presence of transition metals [6,7] or other reagents [8,9]. However,
there were no reports of oxazoline 4 synthesis by propargylic substitution reaction followed
by cyclization from propargylic alcohol 1 with amide 2 (Scheme 1).
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1. Introduction 
Oxazolines are important skeletons found in biologically active natural compounds 

[1,2], and they have been utilized as useful synthetic intermediates or reagents [3–5]. 
Therefore, extensive efforts have been made to develop synthetic methods for these com-
pounds over several decades. Most of them are based on cyclization from propargylic am-
ides 3 to oxazolines 4 in the presence of transition metals [6,7] or other reagents [8,9]. 
However, there were no reports of oxazoline 4 synthesis by propargylic substitution reac-
tion followed by cyclization from propargylic alcohol 1 with amide 2 (Scheme 1). 
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Scheme 1. Synthesis of functionalized oxazoline. 

We have developed efficient synthesis of cyclic compounds (indenes/dihydropy-
rans/oxazole) from propargylic alcohols through the strategic use of gold catalysts. More 
recently, we have developed an efficient synthesis of oxazoline 8 via a gold(III)-catalyzed 
propargylic substitution reaction followed by gold(I)-catalyzed cyclization from propar-
gylic alcohol 5 and amide 6 [10] (Scheme 2, Equation 1). This is the first example of oxa-
zoline synthesis by sequential reactions (propargylic substitution reaction/cyclization re-
action) from propargylic alcohols 5 and amides 6. In the present study, we planned a 
gold(III)-catalyzed propargylic substitution reaction followed by halogen-mediated cy-
clization to obtain halogenated oxazolines 9 from propargylic alcohol 5 with amide 6 
(Scheme 2, Equation 2). Halogenated oxazolines [11,12] are very useful structural motifs 
because they can be converted to functionalized oxazoles [13,14], which are found as 
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Scheme 1. Synthesis of functionalized oxazoline.

We have developed efficient synthesis of cyclic compounds (indenes/dihydropyrans/
oxazole) from propargylic alcohols through the strategic use of gold catalysts. More
recently, we have developed an efficient synthesis of oxazoline 8 via a gold(III)-catalyzed
propargylic substitution reaction followed by gold(I)-catalyzed cyclization from propargylic
alcohol 5 and amide 6 [10] (Scheme 2, Equation (1)). This is the first example of oxazoline
synthesis by sequential reactions (propargylic substitution reaction/cyclization reaction)
from propargylic alcohols 5 and amides 6. In the present study, we planned a gold(III)-
catalyzed propargylic substitution reaction followed by halogen-mediated cyclization
to obtain halogenated oxazolines 9 from propargylic alcohol 5 with amide 6 (Scheme 2,
Equation (2)). Halogenated oxazolines [11,12] are very useful structural motifs because
they can be converted to functionalized oxazoles [13,14], which are found as structural
parts of natural products and synthetic intermediates [1–5]. Here, we present a one-
pot synthesis of (E)-5-[bromo(phenyl)methylene]-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole
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(9) from propargylic alcohol 5 and p-toluamide (6) via a gold(III)-catalyzed propargylic
substitution reaction followed by gold(III)-catalyzed bromocyclization.
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Scheme 2. Equation (1): One-pot synthesis of oxazoline 8 via gold(III)-catalyzed propargylic sub-
stitution reaction followed by gold(I)-catalyzed cyclization (previous work); Equation (2): one-pot
synthesis of bromooxazoline 9 via gold(III)-catalyzed propargylic substitution reaction followed by
gold(III)-catalyzed bromocyclization (this work).

2. Results and Discussion
2.1. Chemistry

The reaction conditions in the initial propargylic substitution reaction of propargylic alco-
hol 5 and p-toluamide (6) were those identified in our previous work (5 mol% AuBr3/15 mol%
AgOTf in toluene, reflux, 20 min). Various bromine sources (N-bromosuccinimide: NBS,
1,3-dibromo-5,5-dimethylhydantoin, and dibromoisocyanuric acid) were investigated for
the cyclization of propargylic amide 7 (Scheme 3). When bromocyclization was conducted
using either 1,3-dibromo-5,5-dimethylhydantoin or dibromoisocyanuric acid as the bromine
source, the yield of product 9 was low in both cases. Finally, treatment of propargylic
alcohol 5 with p-toluamide (6) in the presence of AuBr3 (5 mol%) and AgOTf (15 mol%) in
toluene refluxing for 20 min gave propargylic amide 7, and then addition of NBS (2 eq) re-
sulted in gold(III)-catalyzed bromocyclization [15] to furnish bromooxazoline 9 in 54% yield
in one pot. (When the intermediate propargyl amide 7 was isolated and reacted with NBS
at 0 ◦C in toluene without gold catalyst, the bromocyclization did not proceed. Therefore,
it is considered that the gold catalyst activated NBS, resulting in the bromocyclization).
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The NMR spectroscopic data supported the formation of bromooxazoline 9, and the
expected structure was confirmed by means of X-ray crystallographic analysis [16]. The E
configuration of the double bond could be verified by the X-ray crystal structure data of
compound 9.

2.2. X-ray Structure Analysis

X-ray analysis of a single crystal of bromooxazoline 9 grown via slow diffusion of
dichloromethane solvent at room temperature revealed a monoclinic crystal structure and a
P21/c space group (Table 1). The torsional angle between the p-tolyl ring and the oxazoline
ring is 5.99◦, and that between the oxazoline ring and the phenyl ring is 13.85◦, indicating
that three rings are slightly twisted in bromooxazoline 9 (Figure 1A). The crystal packing
was driven by the combination of the intermolecular π–π stacking interaction (3.4 Å)
(Figure 1B red line) between the oxazoline ring and the tolyl group and the intermolecular
CH–N interactions (2.5 Å) (Figure 1B green line) between the C–H of the phenyl group and
the nitrogen atom of the oxazoline ring. Very interestingly, the intermolecular two CH–Br
interactions between the bromine atom and hydrogen atom of the phenyl group (3.0 Å) and
the bromine atom and hydrogen atom of the tolyl group (3.0 Å) were observed (Figure 1C
blue line) [17,18].

Table 1. Summary of the crystallographic data and refinement statistics for bromooxazoline 9.

Parameter Data

Identification C23H18BrNO
Formula weight 404.29
Temperature/K 293(2)
Crystal system monoclinic

Space group P21/c

Unit cell dimensions
a/Å 10.0295(2) α/◦ 90

b/Å 22.6360(5) β/◦ 99.839(2)
c/Å 8.09410(10) γ/◦ 90

Volume/Å3 1810.56(6)
Z 8

Dcalc./g cm−3 1.483
µ/mm−1 3.172

F(000) 824.0
Crystal size/mm−1 0.22 × 0.15 × 0.12

Radiation CuKα (λ = 1.54184)
2Θ range for data collection/◦ 3.906 to 77.142

Index range −12 ≤ h ≤ 12, −26 ≤ k ≤ 27, −7 ≤ l ≤ 9
Reflections collected 13,128

Independent reflections 3560 [Rint = 0.0265, Rsigma = 0.0242]
Data/restrains/parameters 3560/0/236

Goodness-of-fit on F2 1.179
Final R indexes (I) R1 = 0.0380, wR2 = 0.1053

Final R indexes (all data) R1 = 0.0385, wR2 = 0.1056
Largest diff. peak/hole/e Å−3 1.309/−0.460

We compared the X-ray crystal structure diagrams of the previously reported com-
pound, (Z)-5-benzyline-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole (8, magenta; see Equation (1),
Scheme 2) [13], and the newly synthesized (E)-5-[bromo(phenyl)methylene]-4-phenyl-2-
(p-tolyl)-4,5-dihydrooxazole (9, yellow) in Figure 2. The tolyl-oxazoline-phenyl rings of
oxazoline 8 are nearly co-planar. That is, the torsion angles of the tolyl-oxazoline and
oxazoline-phenyl rings are 0.30 and 0.01 degrees, respectively. In contrast, the torsion angle
of the oxazoline-phenyl rings in bromoxazoline 9 is 0.01 degrees, while the torsional angle
of the oxazoline-phenyl rings in 9 is 13.85 degrees. The major difference between oxazoline
8 and bromoxazoline 9 is the torsion angle between the oxazole and phenyl rings. That is,
bromoxazoline 9 is slightly more twisted than oxazoline 8.
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Figure 1. (A) ORTEP diagram of (E)-5-[bromo(phenyl)methylene]-4-phenyl-2-(p-tolyl)-4,5-
dihydrooxazole (9) with thermal ellipsoids at the 50% probability level. (B,C) Packing diagram
of 9 for interaction. (a) Blue = nitrogen; (b) white = hydrogen; (c) red = oxygen; (d) grey = carbon;
and (e) orange = bromide. Interaction colors: (f) red line = π–π stacking interaction; (g) green line =
CH–N interaction; and (g) blue line = CH–Br interaction.
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Figure 2. Comparison between bromooxazoline 9 and oxazoline 8 (see, Equation (1), Scheme 2) [16].
Yellow: (E)-5-[bromo(phenyl)methylene]-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole (9). Magenta: (Z)-5-
benzyline-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole (8).
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3. Materials and Methods
3.1. General Information

1H and 13C NMR spectra were recorded using a BRUKER AV-300 spectrometer in
CDCl3. Chemical shifts (δ) were reported in parts per million (ppm) on an internal standard
(tetramethylsilane, 0.0 ppm for 1H, CDCl3, 77.0 ppm for 13C). Infrared (IR) spectra were
recorded with a Shimadzu FTIR-8200A. Mass spectra were recorded on JEOL JMS-700
spectrometers. Single crystal X-ray crystallography data were recorded on Rigaku XtaLAB
SynergyCustom. Melting points were recorded at BUCHI melting point M-565. Merck
silica gel 60 (1.09385) and Merck silica gel 60 F254 were used for column chromatography
and thin layer chromatography (TLC), respectively.

3.2. Synthesis of (E)-5-[Bromo(phenyl)methylene]-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole (9)

AuBr3 (4.8 mg, 0.011 mmol, 5 mol%) and AgOTf (8.3 mg, 0.032 mmol, 15 mol%)
were added at room temperature to a solution of 1,3-diphenylprop-2-yn-1-ol (5) (45 mg,
0.22 mmol) and p-toluamide (6) (32 mg, 0.24 mmol) in toluene (5 mL), and the mixture was
heated at reflux for 20 min. After confirming consumption of the starting alcohol 5 and the
production of propargylic amide 7, N-bromosuccinimide (77 mg, 0.43 mmol) was added to
the reaction mixture at 0 ◦C. The reaction mixture was stirred at 0 ◦C for 20 h. The crude
product was subjected to column chromatography on silica gel (hexane:AcOEt = 5:1) to
give bromooxazoline 9 (47 mg, 54%).

Mp. 141–140 ◦C (CH2Cl2); IR (KBr) 3751, 3649, 1670, 1638, 1319, 1304 cm−1; 1H-NMR
(300 MHz, CDCl3) δ 7.88 (2H, d, J = 8.1 Hz), 7.76 (2H, d, J = 8.1 Hz), 7.43–7.30 (8H, m),
7.25–7.22 (2H, m), 6.01 (1H, s), 2.39 (3H, s); 13C-NMR (75 MHz, CDCl3) δ 161.9, 152.7,
142.8, 137.8, 135.9, 129.3, 128.7, 128.6, 128.3, 128.1, 128.0, 123.2, 101.5, 76.3, 21.6; HRMS (EI)
m/z calcd for C23H18

79BrNO [M]+ 403.0572, found 403.0574. The supporting 1H-NMR,
13C-NMR, IR, and mass spectra are presented in the Supplementary Material Files.

4. Conclusions

We were able to synthesize (E)-5-[bromo(phenyl)methylene]-4-phenyl-2-(p-tolyl)-4,5-
dihydrooxazole (9) by gold(III)-catalyzed propargylic substitution reaction followed by
gold(III)-catalyzed bromocyclization in one pot from propargyl alcohol 5 and amide 6.
We are currently examining the application of this method to the synthesis of various
(E)-5-[bromo(phenyl)methylene]-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole derivatives.

Supplementary Materials: 1H, 13C-NMR, IR, HRMS and X-ray data (CCDC-2321720) of (E)-5-
[bromo(phenyl)methylene]-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole (9).
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