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Abstract: 4-(4-nitrophenyl)thiomorpholine, the title compound, has been used as a precursor for
the corresponding 4-thiomorpholinoaniline, which is a useful building block in medicinal chemistry.
The crystal and molecular structures of the title compound, however, have not been described
thus far. We synthesized the title compound by means of a nucleophilic aromatic substitution
reaction of 4-fluoronitrobenzene and thiomorpholine and structurally characterized it by X-ray
crystallography, DFT calculations, and Hirshfeld surface analysis. In the crystal, the molecule exhibits
an approximately CS-symmetric structure, with the nitrogen-bound 4-nitrophenyl group in a quasi
axial position on the six-membered thiomorpholine ring in a low-energy chair conformation. The
solid-state structure of the title compound is markedly different from that of its morpholine analogue.
This can be ascribed to the formation of centrosymmetric dimers through intermolecular C–H···O
weak hydrogen bonds involving the methylene groups adjacent to the sulfur atom and face-to-face
aromatic stacking.

Keywords: thiomorpholine; nucleophilic aromatic substitution; crystal structure; Hirshfeld surface
analysis; DFT calculation; hydrogen bonding

1. Introduction

The title compound 4-(4-nitrophenyl)thiomorpholine (1) has been widely used as a pre-
cursor in medicinal chemistry, for example, in the fields of antidiabetic [1] and antimigraine
drugs [2], kinase inhibitors [3–5], reverse transcriptase inhibitors [6], and antibiotic [7], anti-
fungal [8–10], and antimycobacterial agents [11]. After the reduction of the nitro group in 1,
the resulting 4-thiomorpholinoaniline can be used as a building block in amide-coupling
reactions. In drug development, the thiomorpholine group serves as a replacement of the
morpholine group, with the sulfur atom increasing the lipophilicity and representing a
metabolically soft spot due to easy oxidation. The latter property has also been used to
prepare the corresponding sulfoxides and sulfones [6]. Compound 1 has attracted our
interest as a precursor in the course of our studies on antimycobacterial squaramides [12].
To the best of our knowledge and based on a search of the Cambridge Structural Database
(CSD) [13] via WebCSD in February of 2024, a crystal structure of 1 has not been published
thus far. In this contribution, we report the structural characterization of 1 by X-ray crys-
tallography, augmented by Hirshfeld surface analysis and DFT calculations on the free
molecule.

2. Results and Discussion
2.1. Synthesis

We readily obtained compound 1 in a good yield in a nucleophilic substitution reaction
of 4-fluoronitrobenzene and thiomorpholine by heating them in acetonitrile in the presence

Molbank 2024, 2024, M1795. https://doi.org/10.3390/M1795 https://www.mdpi.com/journal/molbank

https://doi.org/10.3390/M1795
https://doi.org/10.3390/M1795
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molbank
https://www.mdpi.com
https://orcid.org/0000-0003-0357-3173
https://orcid.org/0000-0003-3438-4666
https://doi.org/10.3390/M1795
https://www.mdpi.com/journal/molbank
https://www.mdpi.com/article/10.3390/M1795?type=check_update&version=1


Molbank 2024, 2024, M1795 2 of 8

of a base (Scheme 1). The product was identified by 1H and 13C NMR spectroscopy
(Figures S1 and S2). Similar methods for the synthesis of 1 from 4-fluoronitrobenzene
and thiomorpholine using different solvents and conditions have been disclosed in the
patent literature [2,6]. The reaction also proved to be suitable for combinatorial synthesis
of 1 and its derivatives [14]. In analogy, compound 1 could also be synthesized by the
heating of 4-chloronitrobenzene and thiomorpholine in 1-butanol [8–10,15]. More recently,
the preparation of 1 by a transition metal-free N-arylation of thiomorpholine with (4-
nitrophenyl)(phenyl)iodonium triflate has been demonstrated [16].
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Scheme 1. Synthesis of 1 from 4-fluoronitrobenzene and thiomorpholine (TEA: triethylamine).

2.2. Solid-State Structure

Plate-shaped dark-yellow crystals of 1 were obtained from a solution in chloroform-d.
The melting point of 142 ◦C agrees with that reported for 1 from ethanol in the literature
(140–142 ◦C) [15]. Figure 1 shows the molecular structure of 1 in the crystal, as determined
by X-ray crystallography. Table 1 lists selected geometric parameters. As expected, the
thiomorpholine ring adopts a low-energy chair conformation. The C2–S1–C6 bond an-
gle is smaller by ca. 10◦ than the regular tetrahedral angle of 109.5◦. The 4-nitrophenyl
group attached to N4 resides in a quasi axial position of the saturated six-membered
ring. The molecular structure exhibits virtual CS point group symmetry with an r.m.s.
deviation of 0.06 Å. Interestingly, the morpholino analogue of 1 likewise shows a nearly
CS-symmetric structure in the crystal but with the 4-nitrophenyl group occupying a quasi
equatorial position on the morpholine ring [17–19]. The structure overlay plot shown in
Figure 1b illustrates the difference. The crystal structure of 1 features centrosymmetric
dimers of the molecules through C–H···O weak hydrogen bonds [20] between the methy-
lene groups adjacent to the sulfur and the two nitro oxygen atoms of the symmetry-related
molecule (Table 2), resulting in an R2

2(8) motif [21], as well as face-to-face aromatic stacking
(Figure 1c). The mean planes of the benzene rings are separated by 3.29 Å and the corre-
sponding ring centroids by 4.26 Å. In the crystal, the dimers form close-packed layers with
six-point coordination (Figure 2). The crystal packing is dense, as revealed by a calculated
packing index of 74.4% [22].

To gain insight into the preferred conformation of the free molecule of 1, we performed
DFT calculations. Figure 1d shows the optimized molecular structure superimposed
with the molecular structure in the crystal, and Table 1 compares selected geometric
parameters. The 4-nitrophenyl group occupies a quasi equatorial position in the DFT-
calculated structure rather than its quasi axial position in the crystal. Moreover, it is tilted
with respect to the thiomorpholine ring, breaking the approximate molecular CS symmetry
encountered in the crystal (see the C–C–N–C torsion angles listed in Table 1). This suggests
that the intermolecular interactions in the solid state have a bearing on the molecular
conformation of 1.
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Figure 1. (a) Displacement ellipsoid plot (50% probability level) of 1. Hydrogen atoms are shown by
small spheres of arbitrary radii. (b) Structure overlay plot of 1 (yellow) and its morpholine analogue
(red, CSD ref. code: YAYCIM01 [17]). (c) Centrosymmetric dimer of 1 in the crystal. Dashed lines
represent C–H···O weak hydrogen bonds. (d) Structure overlay plot of 1 in the crystal (yellow)
and the DFT-optimized structure (green). The structures in (b,d) are each overlaid at the respective
methylene carbon atoms of the saturated rings. Hydrogen atoms are omitted for clarity in (b,d).

Table 1. Selected bond lengths, angles, and torsion angles for 1 (Å, ◦).

X-ray DFT

C2–C3 1.5249(18) 1.527
C2–S1 1.8193(13) 1.818
C3–N4 1.4681(16) 1.459
C5–C6 1.5271(18) 1.523
C5–N4 1.4632(16) 1.466
C6–S1 1.8178(15) 1.819
C7–N4 1.3804(15) 1.390

S1–C2–C3 111.06(9) 113.53
N4–C3–C2 111.58(10) 111.93
N4–C5–C6 111.24(11) 112.93
S1–C6–C5 111.60(9) 111.96
C5–N4–C3 111.49(10) 114.28
C6–S1–C2 99.56(6) 96.49

C3–N4–C7–C8 14.86(12) 10.93
C5–N4–C7–C12 –21.08(13) 41.71

Table 2. Selected hydrogen bond parameters for 1 (Å, ◦) 1.

D–H···A d(D–H) d(H–A) d(D···A) <(DHA)

C2–H2B···O1a 1.100(16) 2.313(16) 3.4086(15) 173.4(12)
C6–H6A···O2a 1.072(18) 2.498(18) 3.5126(16) 157.5(14)
C8–H8···O1b 1.075(15) 2.249(15) 3.3023(15) 165.9(12)

1 Symmetry codes: (a) −x + 1, −y + 1, −z + 1; and (b) −x + 1, y − 1/2, −z + 1/2.
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Figure 2. Crystal structure of 1, viewed (a) along the crystallographic c-axis direction, showing the
sheet structure of the close-packed dimers, and (b) along the [101] direction, illustrating the close
packing of the dimers within the sheets. Color scheme: C, grey; N, blue; O, red; and S, yellow.
Hydrogen atoms are omitted for clarity.

To evaluate the crystal packing environment of the molecules in the crystal structure
of 1 as a whole, we generated and visualized the Hirshfeld surface, mapped with the
normalized contact distance (dnorm), as shown in Figure 3a [23]. The two C–H···O weak
hydrogen bonds discussed in the previous paragraph show up as red areas (indicating
contacts shorter than the van der Waals distance). An additional lateral red area on the
Hirshfeld surface reveals a still shorter intermolecular C–H···O contact between the C8–
H8 moiety of the phenyl ring and a nitro group oxygen atom (Table 2). The associated
Hirshfeld surface fingerprint plot of the contact distance between the closest atom outside
the surface (de) versus that of the nearest atom inside the surface (di), as depicted in
Figure 3b, shows that, aside from the O···H contacts discussed above, S···H, C···H, and
H···H contacts dominate the crystal structure. A feature characteristic of the C···C contacts
from π···π stacking is not pronounced in the fingerprint plot. Contacts indicative of
chalcogen bonding are not encountered.
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Figure 3. (a) Hirshfeld surface plot for 1 mapped with dnorm (red areas indicate short contacts).
Dashes lines represent C–H···O weak hydrogen bonds. Color scheme for the atoms: C, grey; H, white;
N, blue; O, red; and S, yellow. (b) Hirshfeld surface fingerprint plot de versus di for 1.
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3. Materials and Methods
3.1. General

All chemicals were of reagent-grade quality and used as received. Solvents were
distilled before use. The NMR spectra were recorded on an Agilent Technologies 400 MHz
VNMRS spectrometer and evaluated using MestReNova (Mestrelab Research S.L., Santiago
de Compostela, Spain). Chemical shifts are reported relative to the residual solvent peak of
chloroform-d (δH = 7.24 ppm; δC = 77.05 ppm) as the internal standard. The HRMS anal-
ysis was performed on a Thermo ScientificTM Q ExactiveTM GC OrbitrapTM GC-MS/MS
instrument. The sample was dissolved in methanol. The melting point was determined on
a Reichert Thermovar® hot stage and is reported uncorrected.

3.2. Synthesis

Thiomorpholine (1 mL, 10 mmol) and triethylamine (7 mL, 50 mmol) were placed
in a 50 mL flask equipped with a reflux condenser, and 4-fluoronitrobenzene (10 mmol)
dissolved in 15 mL of acetonitrile was added. The reaction mixture was stirred and heated
to 85 ◦C for 12 h. After cooling to room temperature, 50 mL of deionized water were added,
and the mixture was extracted with ethyl acetate (3 × 60 mL). The combined organic phases
were dried over anhydrous sodium sulfate, and the solvent was removed under reduced
pressure to yield 2.14 g (9.5 mmol, 95%) of 1. 1H NMR (402 MHz, chloroform-d) δ 8.08
(m, 2H), 6.75 (m, 2H), 3.82 (m, 4H), 2.68 (m, 4H) ppm. 13C NMR (101 MHz, chloroform-d)
δ 153.5, 138.1, 126.2, 112.8, 50.3, 25.8 ppm. HRMS (EI+): m/z 224.061650, calculated for
[C10H12N2O2S]+ 224.061400.

3.3. X-ray Crystallography

Crystals of 1 suitable for a single-crystal X-ray diffraction analysis grew from a solution
in chloroform-d in a standard NMR tube when the solvent evaporated slowly at ambient
conditions. The crystals were coated with perfluoropolyether PFO-XR75 and mounted
using a MiTeGen cryo-loop. The X-ray diffraction data were collected on a Bruker AXS
D8 Venture diffractometer, equipped with an Incoatec IµS Diamond microfocus X-ray
source, Incoatec multilayer optics, and a CMOS Photon III detector. The APEX4 software
was used to operate the diffractometer and evaluate the diffraction data [24]. The data
were processed with the SAINT software [25] and corrected for absorption effects with
SADABS-2016/2 [26], using the Gaussian method based on indexed crystal faces.

The crystal structure was solved with SHELXT [27], and an initial independent atom
model (IAM) refinement was carried out with SHELXL-2019/3 [28]. The structure was sub-
sequently refined using NoSpherA2 [29,30] in Olex2 [31,32], with the Hirshfeld partioning
of the electron density calculated using ORCA 5.0 [33] (B3LYP [34,35]/de2-TZVPP [36]).
Anisotropic atomic displacement parameters were introduced for non-hydrogen atoms.
The structure pictures were generated with Mercury [37]. The packing index was calculated
with Platon [38]. The Hirshfeld surface analysis was conducted with CrystalExplorer [39].

Crystal data and refinement details for 1: C10H12N2O2S, Mr = 224.285, T = 100(2) K,
λ = 0.71073 Å, monoclinic, space group P21/c, a = 13.3525(5), b = 10.3755(4), c = 7.4464(3)
Å, β = 96.325(2)◦, V = 1025.34(7) Å3, Z = 4, ρcalc = 1.453 g cm−3, µcalc = 0.296 mm−1,
F(000) = 472.78, crystal size = 0.153 × 0.055 × 0.031 mm, θ range = 2.49–30.53◦, 114,201 re-
flections collected, 3136 reflections unique, Rint = 0.0839, observed reflections [I > 2σ(I)] 2478,
0 restraints, 184 parameters, R1 [I > 2σ(I)] = 0.0324, wR2 (all data) = 0.0811, ∆ρmax = 0.3886 eÅ−3,
and ∆ρmin = −0.4092 eÅ−3.

3.4. Computational Methods

DFT calculations were performed using ORCA 5.0 [33] with a B3LYP/G (VWN5)
hybrid functional (20% HF exchange) [34,36,40], using a def2-TZVPP basis set [36] with an
auxiliary def2/J basis [41]. The optimization of the structure used the BFGS method from
an initial Hessian according to Almlöf’s model, with a very tight self-consistent field conver-
gence threshold [42]. The calculations were made on the free molecule of 1. The optimized
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local minimum-energy structure exhibited only positive modes. The Cartesian coordinates
of the DFT-optimized structure of 1 can be found in the Supplementary Materials. The
structure pictures were generated with Mercury [37].

4. Conclusions

We have determined the crystal and molecular structure of 1 by X-ray crystallography.
In contrast to the previously known structure, the morpholino analogue, the approxi-
mately CS-symmetric molecules of 1 exhibit a bent conformation in the crystal and pack
centrosymmetrically as dimers through C–H···O weak hydrogen bonds between the methy-
lene groups attached to the sulfur and the oxygen atoms of a nitro group in an adjacent
molecule. The DFT calculations of the energy-minimized structure of the isolated molecule
indicate that intermolecular interactions and packing effects affect the conformation of 1 in
the solid state. The capacity of the 4-phenylthiomorpholine group to participate in weak
interactions such as C–H···O hydrogen bonds revealed in the crystal structure of 1 may
have implications for target binding.

Supplementary Materials: 1H and 13C NMR spectra, GC-MS analysis, Cartesian coordinates of the
DFT-calculated molecular structure of 1.
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