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Abstract: High-field asymmetric ion mobility spectrometry (FAIMS) spectra of single chemicals
are easy to interpret but identifying specific chemicals within complex mixtures is difficult. This
paper demonstrates that the FAIMS system can detect specific chemicals in complex mixtures.
A homemade FAIMS system is used to analyze pure ethanol, ethyl acetate, acetone, 4-methyl-2-
pentanone, butanone, and their mixtures in order to create datasets. An EfficientNetV2 discriminant
model was constructed, and a blind test set was used to verify whether the deep-learning model is
capable of the required task. The results show that the pre-trained EfficientNetV2 model completed
convergence at a learning rate of 0.1 as well as 200 iterations. Specific substances in complex mixtures
can be effectively identified using the trained model and the homemade FAIMS system. Accuracies of
100%, 96.7%, and 86.7% are obtained for ethanol, ethyl acetate, and acetone in the blind test set, which
are much higher than conventional methods. The deep learning network provides higher accuracy
than traditional FAIMS spectral analysis methods. This simplifies the FAIMS spectral analysis process
and contributes to further development of FAIMS systems.

Keywords: FAIMS; deep learning; mixture; substance recognition; accuracy

1. Introduction

High-field asymmetric ion mobility spectrometry (FAIMS) is a new technology that
uses nonlinear ion mobility variation under high electric fields to separate and recognize
materials. FAIMS offers high sensitivity, fast detection speed, and miniaturization. Thus, it
is expected to become an alternative to mass spectrometry (MS), ion mobility spectroscopy
(IMS), and other analytical techniques [1–4].

FAIMS distinguishes ions using the differences between their ion mobility coefficients
in low and high electric fields. When a sample is detected, FAIMS generates a unique
chromatogram of the substance, which is called a fingerprint spectrum. Fingerprint spectra
represent the compression of multiple FAIMS curves into a three-dimensional image,
where the horizontal dimension represents the compensating voltage (CV), and the vertical
dimension represents the radio frequency (RF) voltage. The intensity of the detected
charged ions is presented using color.

Analysis of FAIMS spectra has become particularly important as FAIMS technology
has developed. In the past, most FAIMS systems, including commercial equipment, focused
on identification of individual chemical substances [5,6], such as benzene, toluene, and
ethanol, for specific applications. Individual chemicals are distinguished well by their
spectral shapes and numerical values. However, identifying specific chemicals within a
mixture of substances is difficult because the ionic manifestations of different substances
may overlap in a nonlinear manner and may be accompanied by the generation of new
ions. In several cases, FAIMS will be used to analyze biological samples, including urine,
feces, etc., which often contain a variety of volatile substances. Therefore, achieving
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substance-specific detection from complex mixtures is critical to further application of the
FAIMS system.

Researchers have typically relied on a simple set of analysis tools that includes princi-
pal component analysis (PCA), linear discriminant analysis (LDA) [7–10], and extraction
of image shapes. Such methods have achieved good results with regard to discriminant
analysis of single substances [11,12] but cannot be implemented well in the analysis of mix-
tures. The research team of Cristina E. Davis used computer vision and natural language
processing to address this problem and demonstrated the ability to maintain high levels of
substance-specific identification despite the presence of other substances [13]. However,
their method requires manual extraction of features from the data, which introduces a
subjective element and is cumbersome.

Machine learning may provide an avenue for the analysis of FAIMS spectra. Recent
discoveries in the fields of deep learning, computer vision, and natural language processing
might be applied to analysis of FAIMS spectra. In particular, these advances may help to
identify specific substances within mixtures. Deep learning has proven to be a great success
in the field of computer vision. The proposed deep learning models such as AlexNet [14],
GoogLeNet [15], VGG [16], ResNet [17], RNN [18], and LSTM [19,20] have enabled deep
learning to show powerful performance in image classification, image detection, and
sequence prediction. The deep learning models’ excellent performance has prompted
researchers to apply them to a number of fields including medicine [21–24], agricul-
ture [25–27], genomics [28–30], sentiment analysis [31–34], and knowledge graphs [35–37].
However, we have not yet seen the application of deep learning in the field of FAIMS. The
purpose of this paper is to combine FAIMS and deep learning and to explore the possible
application of deep learning to FAIMS spectral map analysis.

This study used the EfficientV2 model, which is cutting edge in the field of deep
learning, to test spectra from a homemade FAIMS system. Abandoning traditional data
processing methods such as wavelet transform and PCA dimensionality reduction, the col-
lected spectral data were analyzed and judged in the presence of interfering chemicals. The
final results showed that pre-trained deep learning network models can be established to
identify specific chemicals in mixtures of substances. This supports the further application
of FAIMS to practical detection, especially for analysis of biological samples that contain
multiple substances [38].

2. Materials and Methods
2.1. FAIMS System

A homemade FAIMS system was used for sample acquisition. The entire FAIMS
system is shown in Figure 1. The system was composed of a sampler module, FAIMS chip,
weak current detector, power module, microprocessor controller, and spectrum display
module. The carrier gas blew the sample through the sampler and into the ionization
zone. After ionization by the 10.6 eV photo-discharge UV lamp (PKS106, Heraeus Co., Ltd.,
Hanau, Germany), the charged ions entered the migration zone.

The separation region of the homemade FAIMS experimental platform is composed
of two parallel copper plates, with a size of 15 mm × 10 mm, which is the key structure
to achieve ion separation. By applying high-field asymmetric waveform voltage and
compensation voltage, the ions can pass through the separation region horizontally and
then reach the detection region.

When the electric field intensity is less than 10,000 V/cm, the ion mobility basically
does not change with the change of electric field intensity. However, when the ion is in a
high-field condition (E > 10,000 V/cm), the ion mobility will change with the change of
electric field intensity and presents a nonlinear change trend.
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Figure 1. The homemade FAIMS experimental platform.

The asymmetric square waveform applied on the separation region is shown in
Figure 1 (L and H). The maximum voltage is represented by Umax, and the minimum
voltage is represented by Umin Since the distance between the separation region is constant
(0.2 mm), the voltage can be represented by electric field strength. That is, the maximum
value of electric field strength is Emax and the minimum value is Emin. It is assumed that
the movement time of ions under high-field conditions is t1, the ion mobility is k1, the
movement time under low-field conditions is t2, the ion mobility is k2, and it satisfies the
formula (1):

Emaxt1 = Emint2 = H = L (1)

Then the distance moved by ions in a period can be expressed as follows:

∆S = S1 − S2 = v1t1 − v2t2 = k1Emaxt1 − k2Emint2 = (k1 − k2)H (2)

In formula (2), v1 and S1 represent the velocity and displacement of ions in a high
field, v2 and S2 represent the velocity and displacement of ions in a low field, and ion
mobility k = v/E.

As the high-field asymmetric square waveform load has a relatively fast frequency
(1 MHz), the ions in the separation region will have multiple tiny displacements superim-
posed, and eventually the ions will collide with the plate and be submerged, as shown in
Figure 1 (ions a and c).

When a high-field asymmetric square waveform and a compensation voltage is ap-
plied to the separation region at the same time, the displacement difference of the ions
within a period is neutralized, so that the ion can reach the detection region through the
separation region horizontally, as shown in Figure 1 (ion b).

Different ions correspond to different ion mobility, resulting in different displacement
differences. Finally, specific ions can be screened by modifying the displacement differences
with specific compensation voltage values.

The ions that reached the detection zone were amplified by the weak current detector
and transmitted to the microprocessor controller. The microprocessor controller communi-
cated with the host computer via a serial port. The host computer software was written in
Qt and communicated with the host computer via a serial port. When a sample was tested,
the data acquisition command was sent to the host computer by clicking “Start.” The host
computer received the CV and weak current data via the serial port and displayed a single
curve that represented the sample in the spectral display area in real time. After one data
acquisition process was completed, the host computer entered the idle state, changed the
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RF voltage, and repeated the above operation to complete plotting of multiple FAIMS
curves. After all operations were completed, the data were added to the database and
exported to the data table to facilitate data management. The plot function enabled the
plotting of FAIMS spectra for subsequent data analysis and processing.

2.2. Sample Information

Ethanol (Xilong Chemical Co., Ltd., Shantou, China, 99.7%), ethyl acetate (Guangfu
Technology Development Co., Ltd., Tianjin, China, 99.5%), acetone (Xilong Chemical Co.,
Ltd., Shantou, China, 99.5%), 2-butanone (Xilong Chemical Co., Ltd., Shantou, China,
99.5%), and 4-methyl-2-pentanone (Xilong Chemical Co., Ltd., Shantou, China, 99.0%) were
used as experimental samples. A mixture was made by mixing equal volumes of the above
five pure compounds. The pure compounds and their mixtures were reconfigured before
each experiment.

2.3. Experimental Protocol

Pure compound data acquisition: 0.5 mL of a pure compound was placed in brown
glassware using a pipette. The container was then put into a sampler using high-purity
nitrogen (Ruida Chemical Technology Co., Ltd., Nanning, China, 99.999%) as the carrier
gas. The carrier gas blew the volatile vapor from the headspace of the liquid sample into
the FAIMS instrument for detection. In the homemade FAIMS system, the RF voltage
was ramped from 180 V to 280 V in 10 V steps. The range of the compensating voltage
was −13 V–+13 V and 1000 sampling points were used. Each sample took approximately
4–5 min to measure. Before each sample change, the sampler was purged with the car-
rier gas and the vacant sampler was collected to ensure that the FAIMS system was not
contaminated with the original sample.

Mixed substance data acquisition: 0.5 mL of each pure compound was placed into
brown glassware using a pipette, shaken and mixed well, and assayed as above. A total of
295 spectra were collected during the experiment. All spectra were collected within the
same month and at a temperature of 25 ◦C to ensure the generalizability of the data. Fresh
pure compounds and mixtures were used for each experiment.

The carrier gas flow rate through the sampler was controlled to 1500 mL/min using a
D08-1F flowmeter (Sevenstar Electronic Technology Co., Ltd., Beijing, China). The carrier
gas flow rate affects the acquired FAIMS spectra because higher flow rates blow larger
quantities of volatile samples into the FAIMS system per unit of time. This leads to increases
in the detected current. Therefore, all experimental conditions, except for the choice of
samples, were designed to be consistent. The carrier gas flow rate was 1500 mL/min, the
ballast resistance was 6 MΩ, and the RF voltage step was 10 V.

Computer software written in Qt was used to collect data and draw the spectra. The
resolution of the spectra could be set. Higher resolutions could provide more effective
information but lead to long model training times. The spectra resolution used in the
experiments was 479 × 381. Python 3.7 was used as the programming language and
Pytorch 1.7.0 [39] was the deep learning framework used with the model.

2.4. Principal Component Analysis and Support Vector Machine

Principal component analysis (PCA) is a commonly used method for data dimen-
sionality reduction. It generates low-dimensional new variables by linear combination of
high-dimensional original variables, and the new variables reflect the signal information of
the original variables to the maximum extent [40–42]. Support vector machine (SVM) is
an effective traditional classification model. It uses mathematical methods to find the best
decision surface in a sample, thus separating the sample data [43–45].

2.5. Deep Learning Network

A convolutional neural network (CNN) is a type of deep-learning algorithm that has
proven to be quite successful in the field of computer vision. Unlike traditional FAIMS



Sensors 2021, 21, 6160 5 of 13

spectral analysis methods (PCA or wavelet analysis), CNNs first rely on convolution layers
to extract image features, followed perform down-sampling operations by pooling layers
(this improves the efficiency and robustness of the model), and the data eventually reaches
the output layer via the activation function. The output layer converts the probabilities
for each class label by a logical function. The class label with the highest probability is the
output result [46,47]. CNNs have no need to artificially select features that are subjectively
important, which increases the objectivity of the results to some extent. Figure 2 represents
the basic structure of a CNN.

Figure 2. The structure of a typical convolutional neural network.

In CNNs, the depth of the network, the width of the network, and the input image res-
olution largely determine the performance of the model. Researchers have been exploring
the best architectures for CNNs, such as AlexNet, VGG, GoogLeNet and ResNet. Before
the Google Brain team proposed the EfficientNet network architecture in 2019 [48], previ-
ous architectures achieved better performance by expanding one dimension of the CNN;
unlike previous models, the EfficientNet network determines the optimal values of the
three parameters by using neural architecture search techniques to simultaneously search
the depth, width, and size of the model’s input image resolution. Compared with other
networks, the EfficientNet model ensures higher accuracy while significantly reducing the
parameter size of the model. Proposed by Google in 2021, EfficientNetV2 is an update of
the EfficientNet architecture that offers better efficiency and smaller model parameters [49].
EfficientNet networks have been used to recognize and classify images in other fields
and have achieved excellent performance [50–54]. Based on the high accuracy and small
parameters of EfficientNet, especially the parameter size has unparalleled advantages
compared to other models (hardware resources will be one of the main considerations for
portable analytical instruments), we chose EfficientV2 as the experimental model. This
study used the model to explore whether deep learning can detect specific substances
within mixtures via the FAIMS system.

3. Results and Discussion
3.1. FAIMS Spectra

The FAIMS spectra provide three-dimensional CV, RF voltage, and current data.
Five chemicals commonly found in the detection field were selected for the experiment:
ethanol, ethyl acetate, acetone, 2-butanone, and 4-methyl-2 pentanone. Their correspond-
ing FAIMS spectra are shown in Figure 3. In fact, the recognition of pure compounds can be
easily achieved, whether from the shape of the spectra or the design of the algorithm. The
pure compounds were mixed and placed into FAIMS. The resulting spectra are shown in
Figure 4, where the experiments considered are ethanol + ethyl acetate, ethanol + acetone,
ethanol + acetone + ethyl acetate, acetone + ethyl acetate, ethanol + 4-methyl-2-pentanone,
ethanol + 4-methyl-2-pentanone + ethyl acetate, and 4-methyl-2-2-butanone + ethyl acetate.
The goal of this experiment was to explore whether the deep-learning model could specifi-
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cally identify certain substances within a mixture. All the experimental conditions were
the same as in Sections 2.3 and 2.4.

Figure 3. FAIMS spectra of pure compounds: (a) ethanol, (b) ethyl acetate, (c) acetone, (d) 4-methyl-2-pentanone, and
(e) 2-butanone.

Each sample’s color column range is different in Figures 3 and 4 which is to better
illustrate the differences among the samples. In the experiments, the color columns of
the different samples were in a fixed range (0 pA–350 pA), which was favorable for the
experimental results. The dataset is characterized in Table 1.

Table 1. Characterization of the experimental dataset.

Serial
Number Sample Model

Dataset Number
Blind Test

Set Number

1 ethanol 18 2
2 ethyl acetate 13 2
3 acetone 18 2
4 4-methyl-2-pentanone 18 2
5 2-butanone 19 2
6 ethanol + ethyl acetate 18 2
7 ethanol + acetone 18 2
8 ethanol + acetone + ethyl acetate 18 2
9 acetone + ethyl acetate 17 2

10 ethanol + 4-methyl-2-pentanone 18 2
11 ethanol + 4-methyl-2-pentanone + ethyl acetate 18 2
12 4-methyl-2-pentanone + ethyl acetate 17 2
13 ethanol + 2-butanone 19 2
14 ethanol + 2-butanone + ethyl acetate 18 2
15 2-butanone + ethyl acetate 18 2

Total 265 30
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Figure 4. FAIMS spectra of several mixtures: (a) ethanol + ethyl acetate, (b) ethanol + acetone, (c) ethanol + acetone + ethyl
acetate, (d) acetone + ethyl acetate, (e) ethanol + 4-methyl-2-pentanone, (f) ethanol + 4-methyl-2-pentanone + ethyl
acetate, (g) 4-methyl-2-pentanone + ethyl acetate, (h) ethanol + 2-butanone, (i) ethanol + 2-butanone + ethyl acetate, and
(j) 2-butanone + ethyl acetate.

3.2. CNNs and FAIMS Spectra

FAIMS spectra can be viewed as images. Different substances produce different
FAIMS spectra. Unlike traditional analytical discrimination methods, convolutional neural
network methods preserve local two-dimensional features as well as sequential information.
Since FAIMS spectral data are sequential in nature (any pixel in each row of the FAIMS
spectra is related to the pixels before and after it) the use of CNNs for FAIMS spectral
analysis is further justified. However, it should be noted that the dataset required to train a
deep-learning model is huge. While it was not possible to provide such a huge dataset in
this experiment, transfer learning provided a convenient path. Specifically, a model that
was previously trained on a huge dataset was then trained using a smaller dataset. Within
CNNs, different layers learn different image features. The shallower the layer, the more
generic the features learned. The deeper the layer, the more relevant the features learned
are to a specific task. Therefore, generic features can be pre-trained using a large dataset
and the resulting model later trained for specific tasks [55]. Fine-tuning of pre-trained
models is one way to implement migration learning [56]. In this study, the impacts of
training a completely new model and using a pre-trained model are explored. The results
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show that a fine-tuned, pre-trained model provides better performance than a completely
new model.

3.3. Experimental Results

Pure ethanol and mixtures that contain ethanol are classified as class 1 (serial numbers
1, 6, 7, 8, 11, 13, and 14 in Table 1) samples. Other pure compounds and mixtures that do
not contain ethanol are classified as class 2 (serial numbers 2, 3, 4, 5, 9, 10, 12, and 15 in
Table 1) samples. The same experiment was performed again by classifying the mixtures
as above but first with ethyl acetate and then acetone taking the place of the ethanol. The
dataset obtained according to this method is shown in Table 2. The EfficientNetV2 model
was built using Python and the homemade dataset was used to train the model. Before
feeding the data into the model, the dataset was divided into training, validation, and blind
test sets. The training set was provided to the model in order to train the model parameters.
The validation set was used to test the performance of the model in order to update the
parameters. Finally, after a model that performed well on the validation set was obtained,
a blind test set was used to simulate the real situation. The final results obtained using the
blind test set were considered representative of the real situation [57]. The blind test set
used in the experiment has 30 spectra, and its distribution is shown in the column “Blind
test set number” in Table 1.

Table 2. Data distribution.

Sample Number of Class 1 Samples * Number of Class 2 Samples Total

ethanol 145 120 265
ethyl acetate 137 126 265

acetone 71 194 265
* Class 1 indicates pure compounds of interest to the model as well as mixtures containing the substance of
interest, whereas class 2 indicates other pure compounds as well as mixtures that do not contain the substance.

In this experiment, 80% of the data were used to train the model, 20% of the data
were used to validate the model, and finally an additional blind test set of 30 images was
used to test model performance. When the model produces an output of 0, the sample
contains the substance of interest. In contrast, the sample does not contain the substance
when the output is 1. The hyperparameters that affect the model include the learning rate
(lr) and number of epochs. A smaller learning rate might improve model accuracy but can
cause overfitting. In overfitting, the model performs well on the training set but poorly
in the validation set [58]. Use of too many epochs increases the time required to train the
model and use of too few epochs can lead to non-convergence of the model. It should
be noted that different datasets have different optimal learning rates and the number of
epochs (lr = 0.1 and epochs = 200 in this experimental dataset), must be determined on a
task-specific basis. Due to the small dataset, standard five-fold cross-validation was used
to verify model robustness. Briefly, five-fold cross-validation randomly divides all model
datasets into five equal parts, where four portions are used to train the model and one
portion is used to validate model performance [59]. Each fold will generate an accuracy
rate, and finally, the average of the five results will be the most final evaluation metric of
the model.

It is stated above that the use of pre-trained models is feasible for small-sample
tasks. The impacts of full training and use of pre-trained models that are fine-tuned on
the experimental task are explored in Figure 5. The pre-trained model with fine-tuning
is more accurate than the model with full training. This shows the potential for the
application of transfer learning to FAIMS spectral analysis and indicates a new path for
future FAIMS spectral analysis tasks. The remainder of this paper references the pre-trained,
fine-tuned model.
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Figure 5. Results produced by fine-tuned and fully trained models. (a) Performance on the model validation set and (b) the
number of epochs required for model convergence.

As shown in Figure 5a, the deep-learning model can achieve excellent performance
on the dataset, regardless of whether we seek to distinguish ethanol, ethyl acetate, or
acetone from the mixtures. Average accuracies of 98.1%, 96.7%, and 94.2% are obtained
for ethanol, ethyl acetate, and acetone in the five-fold cross-validation study. This indi-
cates that EfficientNetV2 is a robust algorithm that can detect specific substances within
complex mixtures.

In order to simulate the performance of the model in real situations, the study used
a blind test set to test the model. The blind test contained 30 FAIMS spectra, which were
divided via the method used to construct the model. The results are shown in Table 3.
Ethanol has the highest accuracy rate of 100%, ethyl acetate has almost the same accuracy
rate as in the model validation set, and acetone exhibits a decrease of about 8%. This may
be related to the small amounts of acetone and its mixtures in the samples. All samples
exhibit an accuracy rate that exceeds 85%. A larger dataset may provide better results, but
the data are sufficient to show that applying deep learning to a homemade FAIMS spectra
dataset can enable the detection of specific substances in mixtures.

Table 3. The performance of the blind test set.

Blind Test Set Number of
Real Labels

Number of
Predicted Labels Accuracy

1
other 14 14

100%ethanol 16 16

2
other 14 13

96.7%ethyl acetate 16 17

3
other 22 18

86.7%acetone 8 12

In addition, traditional analysis methods were used to test the data. A normalization
operation was first performed on all images, which sped up the convergence of the model.
PCA was used to downscale the images and select the top 50 principal components as
features, and then an SVM model was used for classification. The results produced using
the entire dataset are shown in Table 4.
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Table 4. Performance of PCA and the SVM.

Sample Training Set Validation Set Blind Dataset

ethanol 74.5% 79.2% 70.0%
ethyl acetate 81.5% 75.0% 66.7%

acetone 85.4% 78.8% 80.0%

Upon comparing Tables 3 and 4, it can be seen that deep learning provides higher
accuracy than traditional PCA + SVM analysis methods. This may be because the mech-
anisms that govern FAIMS are complex. Simple linear methods may not be sufficient
to explain FAIMS spectra well. In Figures 3 and 4, the FAIMS spectra of the different
substances cannot be represented linearly. Neural networks offer better performance on
nonlinear tasks. This is because neural networks can approximate arbitrary functions.
Thus, neural networks are more suitable for FAIMS spectral analysis than linear methods.
More importantly, deep learning does not require data preprocessing or manual extrac-
tion of subjectively important features. The model automatically extracts features, thus
simplifying the use of FAIMS in practical applications.

In short, the experiments show that the deep-learning model can detect specific
compounds within mixtures. In particular, the pre-trained model shows its potential for ap-
plication to FAIMS spectral analysis. The pre-trained deep-learning model is more efficient
and provides more accurate results than traditional FAIMS spectral analysis methods.

3.4. Application

One potential application of this method is for the detection of complex biological sam-
ples. Studies have already shown that diabetic patients have different levels of acetone in
exhaled gas than healthy individuals, which can be used as a biomarker for diabetes [60,61];
dimethyl disulphide in the feces of cholera patients can be used as a biomarker [62,63],
and trimethylaminuria patients have much higher levels of trimethylamine in their urine
and sweat than healthy individuals [64,65]. Samples such as exhaled gas, urine, and fe-
ces contain a large number of different volatiles from which identifying specific disease
markers would be a challenge, which may be possible using deep learning. There is also
the promise of enabling prediction of disease marker concentrations, which can vary at
different stages of disease, and we expect FAIMS to enable early prediction of disease using
deep learning, which would be exciting.

4. Conclusions

This study used a deep-learning model to detect specific substances in complex
mixtures via a homemade FAIMS system. This is the first application of deep learning to
the analysis of FAIMS mixtures for component identification. It demonstrated the transfer
learning techniques has potential for FAIMS spectra analysis. The fine-tuned EfficientNetV2
deep-learning model was used to test for the presence of ethanol, ethyl acetate, and acetone
in complex mixtures using a self-constructed dataset. The results showed that the deep-
learning model could identify specific substances in complex mixtures. In addition to
providing better results than traditional methods, the deep-learning model did not require
data pre-processing or manual feature extraction. This further improves the efficiency of
FAIMS and, to a certain extent, removes human judgment from the process. This makes
the results more objective.

In conclusion, this study used a pre-trained deep-learning model to identify specific
substances within complex mixtures. Model performance is expected to improve as the
dataset is expanded. This result is exciting with regard to future research. We can use
deep learning to experiment on more mixtures and attempt to analyze complex biological
samples. This will promote the development of the field of FAIMS spectral analysis. How-
ever, the model size remains an issue to be addressed. It might be solved by deploying
the model in the cloud. Of course, this study is only a small step forward. In addition
to substance characterization, future work may include the quantification of specific sub-
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stances in mixtures, which can be achieved by collecting the FAIMS spectra of mixtures
that contain different amounts of substances. Future work may also include further cloud
deployment of the model and development of faster, more portable FAIMS systems.
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