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Abstract: The ocean resources have been rapidly depleted in the recent decade, and the complemen-
tary role of aquaculture to food security has become more critical than ever before. Water quality is
one of the key factors in determining the success of aquaculture and real-time water quality mon-
itoring is an important process for aquaculture. This paper proposes a low-cost and easy-to-build
artificial intelligence (AI) buoy system that autonomously measures the related water quality data
and instantly forwards them via wireless channels to the shore server. Furthermore, the data provide
aquaculture staff with real-time water quality information and also assists server-side AI programs in
implementing machine learning techniques to further provide short-term water quality predictions.
In particular, we aim to provide a low-cost design by combining simple electronic devices and
server-side AI programs for the proposed buoy system to measure water velocity. As a result, the cost
for the practical implementation is approximately USD 2015 only to facilitate the proposed AI buoy
system to measure the real-time data of dissolved oxygen, salinity, water temperature, and velocity.
In addition, the AI buoy system also offers short-term estimations of water temperature and velocity,
with mean square errors of 0.021 ◦C and 0.92 cm/s, respectively. Furthermore, we replaced the use of
expensive current meters with a flow sensor tube of only USD 100 to measure water velocity.

Keywords: artificial intelligence; offshore aquaculture; wireless communications; machine learning;
water quality

1. Introduction

In the past decade, global warming, climate change, ocean pollution, overfishing,
etc., have caused marine catches to be rapidly attenuated [1–5]. This phenomenon reflects
the problems mentioned earlier regarding the rapid depletion of marine resources. In
the long run, the depletion of marine catches will inevitably lead to food shortages and
even the possibility of endangering the survivability of human beings. With this threat
to food security, many researchers in different fields have been profoundly motivated
and challenged to focus and seek feasible countermeasures and technologies [5–7] to
stabilize and increase food production. Their studies and physical experiments revealed
that offshore cage cultures in aquaculture have a significant role in compensating for the
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depletion of marine catches [8–10]. Moreover, to further enhance aquaculture production,
many governments and groups have been devoted to developing new technologies and
devices for aquaculture in recent years [11–18]. For ease of reading, we briefly list the
technologies of [11–18] in Table 1.

Table 1. Technologies of [11–18].

Reference Number Technologies

[11] LoRa
[12] CDMA, Zigbee
[13] Machine vision
[14] I2C, GSM, Wi-Fi
[15] IoT
[16] LoRa
[17] PLC, NB-IoT
[18] GSM, Wi-Fi

Various studies and literature works show water quality as one of the key factors
affecting the quality and quantity of aquaculture [19–24] production. In addition, real-time
water quality monitoring is the first step to facilitating suitable and conducive aquacul-
ture [25] environment. The essential parameters of water quality for successful aquaculture
production includes water temperature, dissolved oxygen (DO), salinity, turbidity, pH,
and conductivity [26,27]. Oxygen is essential for the respiration of all biological creatures,
including various marine and estuarine organisms. Moreover, the feed intake of fishes
in high DO environments is significantly higher than those in low DO [24]. Hence, in
the monitoring, DO is an indicator of water quality in coastal areas. In addition, DO
levels are highly dependent on physio-chemical parameters, including temperature and
salinity, necessitating the monitoring of these water quality parameters [23]. For example,
the low water temperature may reduce the amount of food intake for some farmed fish
species [20,21]. Concerning the feeding requirements for offshore cage culture, water ve-
locity and direction are also necessary [28] since faster water velocity can drive floating
fish food out of the cages [13,22]. Hence, without real-time monitoring of water quality
such as low water temperature and rapid water velocity [19], farming efforts may lead
to food waste, increasing production costs, and even water pollution. With all the given
premises for successful aquaculture operations, water quality monitoring in real time can
contribute to the success of aquaculture farming [17,18]. However, traditional methods
and devices are challenging to install or operate in a typical or standard aquaculture farm
environment, and they usually come with higher costs. Therefore, integrating real-time
water quality monitoring that is feasible and with reduced cost in its implementation is a
vital and compelling design consideration.

Recently, the focus of investigations concerning wireless communications and the
Internet of Things (IoT) are aiming to improve in real-time in terms of monitoring of Zigbee,
a technology of sensor network that collects water quality measurements of fish cages and
then sends them to the terrestrial server via the 3G phone system [12]. The authors in [17]
utilized Raspberry Pi, a WiFi-based microprocessor platform, to construct a wireless sensor
network to monitor water quality of the aquaculture site. On the other hand, another
popular microprocessor platform, Arduino, has also been used to build an IoT network
to measure water quality [18]. Similarly, a WiFi communication-based IoT system was
also proposed in [29] to facilitate real-time water quality monitoring. However, unlike the
work of [17], it can concurrently measure DO together with ammonia, pH, temperature,
salinity, nitrates, and carbonates. Furthermore, in [30], the authors used a hybrid wireless-
wired approach to design a practical underwater sensor network for offshore cages, which
reaches up to 30-meter depth and mitigates wire breakage problems common to offshore
cages. Parra et al. proposed a low-cost sensor network to monitor fish behavior and water
quality in aquaculture tanks during the feeding process [31]. Their system can prevent
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unnecessary information from being sent from the node to the database, thus, reducing
power consumption. The various research results mentioned earlier pointed out the benefits
of monitoring water quality. Although the benefits are promising, the distance of the cages
from the shore measures several kilometers, which challenges, restricts, and limits the
advantages of these technologies.

The measurement of water velocity, as mentioned above, is an essential consideration
for offshore aquaculture and can be achieved by deploying precise but expensive flow
meters. However, these high-cost flow meters might not be affordable for regular fish
farmers. Therefore, many researchers were motivated to investigate and design low-cost
and affordable technologies for water velocity measurement to help ease the burden for
farmers in acquiring such innovations. In the work of Marchant et al. [32], the authors built
an electronic accelerometer in a spherical ball and then nailed the ball to the seabed. With
this set-up, the action of the current flow on the ball causes angle deviation of the sphere,
which also renders the accelerometer to generate the corresponding angle deflection data
to be stored in the memory card of the ball. After recording the angle data for a prescribed
period, the spherical ball is taken back to the shore for memory-card data retrieval and
to compute the corresponding sea water velocity. On the other hand, Beddows et al. [33]
used the Arduino platform to build a low-cost logger, which can measure and record the
water velocity in a harsh water environment for a longer duration. However, the methods
in [32,33] cannot provide real-time water velocity information, limiting their capabilities
when implemented in the offshore aquaculture environment.

Recently, artificial intelligence (AI) technologies have been successfully applied in
various fields, such as aquaculture [28], Internet of Things (IoT) [34], green communica-
tions [35], unmanned aerial vehicles (UAV) [36], and traffic control [37]. In the recent
decade, Aquaculture 4.0 has also become the world trend [15,38], which provides the
benefits of intelligent automation. The successful applications of AI and the world trend
of Aquaculture 4.0 represent a big motivation in developing AI systems to improve the
performance of offshore aquaculture. In this paper, the author proposes a low-cost buoy
system with AI integration [34,39] to monitor the water quality of offshore cages. The
paper’s primary purpose is to develop a buoy system that uses AI technologies to automate
water quality measurement and with added prediction capability using short-term data on
water temperature and velocity. In addition, the authors carefully considered a low cost
and easy to build or deploy buoy system as one of the considerations in its design and
architecture. Furthermore, the monitoring results for water velocity, direction, temperature,
and other seawater parameters are more complex due to weather conditions offshore.
These complex results make it more difficult to predict seawater parameter values. AI is a
promising approach to deal with these complex problems. Its strength lies in not knowing
the relation between seawater parameters and the kind of their combination causing the
complex result due to weather conditions. AI systems are programmed to use external
data to learn. It is flexible enough to adapt the connections of the models and then use the
generated knowledge to achieve specific goals which makes it a very popular data-driven
approach. Accordingly, in training the AI models for the proposed buoy systems, we
collected long-term data at Haikou Port, Pingtung, Taiwan, with 734,000 water temperature
and 36,237 velocity data. After the AI model training, the proposed buoy system now
behaves similar to an expert in predicting short-term water temperature and velocity.

Aside from the prediction capability of the proposed AI buoy system, its main mod-
ules contain a sensor measurement mechanism, wireless communication module, power
and control module, and three server-side AI programs. Three procedures come with the
proposed buoy system. First, are the RS-485 based sensors [40], including the flow sensor
tube, which measures the corresponding water quality data specifically dissolved oxygen
(DO), salinity, and the accelerometer’s deflection angles. The second is a buoy that uses
Long Range (LoRa) remote modules [16] to transmit the measurement data back to the
shore server for storage. As a result, the data provides aquaculture staff with real-time
water quality information of offshore cages. Lastly, the server-side uses data to train AI
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programs, which offer short-term predictions on water temperature and velocity informa-
tion. With the help of the prediction information, aquaculture staff can intelligently decide
the amount of bait to feed fish. This approach can enhance the production performance of
offshore aquaculture, which will eventually save bait cost, and reduce ocean pollution. The
contributions of the this proposed AI buoy system are as follows:

• The proposed AI buoy system is designed and implemented to achieve a low-cost
and easy-to-build architecture that deals with the difficulty of installation in the water
environment.

• RS-485 with an industry interface standard is integrated into the buoy to enhance the
stability of sensor measurement. In addition, to adapt to the dynamics of the interface
standard, the proposed buoy allows the aquaculture staff to switch to different sensors
for various water quality parameter monitoring.

• Integrating LoRa for the wireless communications mechanism requires low power
consumption for the proposed AI buoy operation in transmitting the water quality
measurement data, considering it is several kilometers away from the shore server.

• The measurement data stored at the shore server are utilized for the machine learning
algorithm training using the server-side AI programs. The training results provide AI
models for intelligent water quality prediction on water temperature and velocity. In
addition, the data measured by the flow sensor tube are also utilized to assist the AI
regression in estimating water velocity, thereby achieving low-cost water flow meter
design and implementation.

The remainder of the paper is organized as follows. The architecture of the proposed
buoy system and its operation flow are presented in Section 2. Section 3 discusses the
hardware modules of the proposed system. Server-end AI programs deployed at the shore
server are detailed in Section 4. Section 5 discusses the implementation results. Finally,
conclusions are drawn in Section 6.

2. Architecture and Operation Flow

In this section, we first introduce the architecture of the proposed buoy system and
then illustrate its operation flow. Figures 1 and 2 show its architecture and implementation
results, respectively.

Figure 1. Architecture of the proposed offshore buoy.
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Figure 2. Proposed offshore buoy: main body and flow sensor tube.

2.1. Architecture

As shown in Figure 1, the hardware architecture of the proposed AI buoy is mainly
composed of a solar panel, a control box, two lifebuoys, a steel skeleton, sensors, and a
water flow sensing tube. In addition, three server-side AI programs are also built at the
shore server of the system. The components are further explained in the following items:

• Solar panel: The solar panel converts the irradiated energy of the sun into electrical
energy and then stores the energy in the battery, thereby functioning as a power
source for the offshore buoy.

• Waterproof control box: The control box was designed to provide space for the kernel
devices of the offshore buoy. The devices included are the Arduino which controls the
entire function of the buoy, and the LoRa module, which is responsible for wireless
communication transmissions.

• Lifebuoys: The two lifebuoys provide the needed buoyancy for the offshore buoy to
float on the water surface.

• Steel skeleton: The steel skeleton combines the control box, lifebuoys, and other
associated items as a buoy.

• Sensors: Measure water quality data such as temperature, DO, and salinity.
• Water flow sensing tube: An electronic accelerometer is installed to measure water

velocity and direction using the flow tube. In addition, the flow tube is hung under
the steel skeleton.

• Server-side AI programs: Three AI programs were deployed at the shore server to
predict water temperature within the eight-hour duration, for water velocity within
the four-hour duration.

Since our primary goals are to facilitate low-cost and easy-to-build features, we
avoided complicated structures and time-consuming construction methods in the whole
design of the buoy system. To make these possible, feasible and inexpensive materials are
adopted to achieve the low-cost goal.

2.2. Operation Flow

The operation flow of the proposed buoy system can be divided into two parts: data
measurement and storage and water quality prediction. For the data measurement and
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storage, the buoy placed on the pond or offshore automatically activates at a designated
time. Then, the Arduino chip inside the buoy will command the sensors to measure
water quality and reads the time data through the Global Position System (GPS) module.
Finally, the data (water quality and time) are merged and sent back to the shore server
for storage via the LoRa device. Once the requirements are completed, the buoy will
return to sleep mode. Meanwhile, for the water quality prediction, the AI programs at the
server use the data stored to estimate the current water velocity and predict the changes
in the water temperature and velocity over the next several hours as designated. The
prediction information of these AI programs are accessed using a mobile application (APP)
to provide users with information regarding the current status and future water quality
trends. Further, to better understand these concepts, we provided visuals on the operation
flow, data measurement and storage in Figure 3.

à

à

à

Figure 3. Operation flow of the proposed buoy.

3. Hardware Modules

The key hardware components of the proposed buoy system are the control box, solar
panel, and sensors. Likewise, an Arduino chip, a LoRa remote module, a solar controller, a
Lithium-ion (Li) battery, and a GPS module were integrated in the control box. The details
of their functionalities are discussed below.

3.1. Control Box

The buoy needs to be deployed in the water for an extended period of time. Therefore,
using an acrylic board as a material to build the control box will achieve the waterproof
requirement of the buoy. Figure 4 shows the control box and its internal modules. The
following are the internal modules of the control box:

(1) Arduino Chip

Arduino is a popular micro-control chip owing to its low cost and ease of use. In
particular, its flexibility enables different hardware modules and application libraries to
be directly integrated, which helps the more straightforward implementation of the sys-
tem requirements. Moreover, the compatibility of several Arduino platforms for different
application environments and conditions make it a very convenient platform for practical
implementation. Inside the control box of the proposed buoy, Arduino Mega 2560 manages
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the control and communication units. The platform of Arduino Mega 2560 has 54 in-
put/output pins and is connected with a 16 MHz crystal oscillator. Furthermore, the
platform is equipped with a bootloader mechanism that enables a program to be directly
downloaded via the USB interface. For the Arduino platform’s electrical power source,
a Lithium-ion battery (demonstrated below) with DC 12 Volts (V) is supplied. The input
voltage of Arduino Mega 2560 can range from DC 7 to 12 V.

The Arduino platform’s primary function is to control the proposed buoy. Its control
work can be divided into two phases: active and sleeping. The Arduino Mega 2560 first
instructs the sensors to measure the water quality, such as temperature and velocity, during
the active phase. Next, it collects the measurement data and sends them to the shore server
using the LoRa wireless communication device. After that, the Arduino will wait for a
short time to receive the acknowledgment from the server; this mechanism confirms if the
data transmission is successful. After successful communication, the Arduino Mega 2560
now switches the offshore buoy into the sleeping phase for power saving. Later, based on
a schedule, it will again wake up the buoy for another data collection round or another
active phase cycle. Based on a practical demand, the period considered is 30-min for the
proposed buoy system.

Figure 4. Control box of the proposed AI buoy.

(2) LoRa Remote Module

LoRa is a popular wireless network widely used in the Internet of Things (IoT) [16].
According to the official sheet of LoRa, its longest transmission distance is 15 km and with
a maximum data rate of 300 kbps. The offshore cage and the shore server distance are
several kilometers away in an aquaculture farm envirnment. Furthermore, the size of the
measurement data for water quality is less than 1 kbits, making LoRa a feasible device for
the wireless communication network of the proposed buoy system. In addition, some of
its advantages include low power consumption, low cost, and no communication fees or
charges. These are the reasons for adopting LoRa as the communication device for the
proposed buoy using S76S and S76G of Acsip.
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(3) Lithium-ion Battery and Solar Controller

In the proposed buoy, we use a Lithium-ion battery, DP-1206A of Doublepow, to
supply the electrical power of the offshore buoy deployed at the offshore cage. The
battery’s capacity is 21AH, and its operating voltage ranges from 8.5–12.6 V with a charging
current range of 1–5 amperes (A). To ensure that the battery can provide the daily power
demand, a solar panel, D-30 of Solar World, is utilized and is shown in Figures 1 and 2.
The battery is maximally configured in terms of output power, output voltage, and output
current of 30 watts, 18.18 V, and 1.65 A, respectively, for the battery charging requirements.
In addition, a solar controller, JL-30A of Solar World, is also utilized to connect the Li
battery and the solar panel to protect the battery from overcurrent and to provide a stable
5 V operating voltage needed for the Arduino platform.

(4) GPS Module

The GPS signal contains the time information to provide the time stamp for the water
quality measurement data. The timestamp provides the exact time and day when the water
quality data were measured. A NEO-7M UBLOX GPS module was deployed to receive the
GPS signal. This GPS module has low power consumption, high sensitivity, short sampling
and receiving time, low cost, and can be connected to DC 3.3/5 V. Furthermore, its SMA
antenna interface can be connected to a variety of antennas. We used an antenna with 7 dBi
gain to connect to the GPS module, which is placed on the outside of the control box to
enhance the receiving performance of the GPS module.

3.2. Solar Panel

The goal of the solar panel is to convert and charge the sun’s irradiated energy to
the battery to enable the proposed buoy system to perform its daily duties. The detailed
electrical specification for the proposed buoy system is in Section 3.1.

3.3. Sensors

In this paper, the water quality parameters measured by the proposed buoy system
are water temperature, water velocity and flow direction, DO, and salinity. We used the
EPK-P1FDo-AL DO and EPK-I1SA-SL salinity sensors, which are the products of eKoPro
and are capable of measuring water temperature. To position the two sensors under the
water surface, we suspended the sensors under the bottom of the steel skeleton of the
proposed offshore buoy. Furthermore, to ensure that the sensors are stable and have a
universal interface standard for the transmission of measurements, we adopted RS-485 [40]
industry interface. According to RS-485’s protocol, its stable transmission distance can
reach 1200 m and its maximum number of modules connected in series to the same logger
is 32. With this capability, we can deploy a logger instead of multiple loggers, which meets
our goal of cost-saving while reducing the space requirements of the buoy. We considered
RS-485 for its flexibility to adapt to future expansion using added measurement parameters.

On the other hand, a water flow sensing tube is suspended under the steel skeleton of
the proposed buoy and its interior contains an Arduino chip and an electronic accelerometer.
The water flow sensing tube uses the Adafruit ADXL345 electronic accelerometer to obtain
the offset angles. Note that the offset angles are caused by the corresponding water velocity
and flow direction. Meanwhile, the Arduino chip of the sensing tube sends the data of
offset angles back to the Arduino chip deployed at the control box and then to the shore
server for the regression estimation of water velocity. The regression estimation of water
velocity will be discussed in detail in the next section.

4. Server-Side AI Programs

This section provides the details of the three server-side AI programs coded in Python
and operated at the shore server. The shore server was built using the My-SQL database
for data storage received from the offshore buoy. The data are water temperature, water
velocity, and accelerometer’s deflection angles used to train a corresponding AI program
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individually. The results of the training provide water quality prediction. The following
are further discussions of the three AI components.

4.1. Prediction for Water Temperature

This component is the first AI program with a prediction function for short-term water
temperature. The following machine learning models were adopted, and we provided the
methods for the implementation, and experiment results were generated.

(1) Long Short-Term Memory (LSTM)

Short-term water temperatures do not change very often and are thus considered a
short-term time series with mutual correlation features. Studies have shown that long short-
term memory (LSTM) [41], a machine learning model, is suitable for time-series-related
problems. It uses the mechanisms of the hidden layers to retrieve information from the
correlations between time series. Figure 5 shows the multilayer structure and the widely
used cell structure for LSTM. LSTM is a variant form of gated recurrent neural network
(RNN), and proposed by Hochreiter and Schmidhuber in 1997 [42]. In addition, LSTM can
overcome the problem of gradient disappearance or explosion, which usually appears at
the conventional RNN while using an excessive number of layers in the time dimension.
In particular, due to the gated control architecture, LSTM can suitably tune the self-loop
weights and dynamically regulate the accumulated time scale. Among the gates of the
LSTM, the input gate determines whether the inputs can be imported into the memory cell.
Further, the memory cell can be linearly self-looping, whose weight is controlled by the
forgetting gate. As for the output, its on–off is determined by the output gate. The gate
units as mentioned earlier are the sigmoid functions, denoted as σ. The overall computation
of an LSTM cell can be expressed as follows,

it = σ(Wih + bi),

ft = σ(W f h + b f ),

ot = σ(Woh + bo),

ct = tanh(Wch + bc),

mt = ftmt−1 + itct,

ht = tanh(otmt) (1)

where it, ft, ot denote the values of input gate, forget gate, and output gates, respectively;
Wi, W f , Wo represent their corresponding weight matrices and bi, b f , bo are the corre-
sponding bias vectors; tanh(·) is the hyperbolic tangent function; h = [hT

t−1 xt]T is the new
hidden layer vector, xt is the input at time t, and (·) denotes the transpose operation; and ct
and mt denote the cell’s new state vector and new memory vector, respectively. It is worth
noting that the key mechanism of LSTM is the memory cell, which will remember the last
input data of a time interval, making it suitable for solving the time-series problems such
as the predicting water temperature and velocity.

(2) Prediction Results of Water Temperature

To predict water temperature, we designed an AI program to construct an LSTM-
based network. We incorporated one of the hidden layers with 16 neurons in this network.
Furthermore, we adopted the LSTM package of TensorFlow and the adaptive moment
estimation (Adam) optimizer for the network. Further, the network is trained using
100 epochs and a dataset size of 734,000 water temperature data stored at the shore server.
On the other hand, we use the other 314,573 water temperature data for testing the network.
Given the space limitation of the figures, only 1700 tested results were shown in Figure 6,
including the actual water temperatures and the prediction results of the network. For the
mean-squared error (MSE), the result shows an in-between value of 0.021 ◦C . Most fish
species are not sensitive to slight changes in water temperature, therefore, based on the
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results of Figure 6, the water temperature AI prediction program is a suitable method to
implement the practical requirements in an offshore aquaculture environment.

Stage 1 Stage 2 Stage L
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Figure 5. The multilaryer architecture and cell structure of long short-term memory (LSTM).

4.2. Prediction Results for Water Velocity

Another AI function was constructed using an LSTM-based AI network to predict
water velocity. Instead of a single hidden layer, two hidden layers were integrated for this
other set of LSTM network since changes in the water velocity are relatively faster than that
of water temperature. Furthermore, the number of neurons for the first and second layers
are 96 and 64, respectively. We trained the new network using 100 epochs with a dataset of
36,237 water velocity data taken from the shore server. The other 15,531 water velocity data
are used to test the network, and the prediction results are presented in Figure 7. Since the
space for the figures is limited, only 900 results were captured in Figure 7. The result for
MSE using the actual and the prediction value is 0.92 cm/s, which again implies that the
AI program for water velocity prediction is suitable for offshore aquaculture.
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Figure 6. Prediction results of water temperature.

Figure 7. Prediction results of water velocity.

4.3. Nonlinear Regression for Water Velocity Versus Accelerometer’S Depletion Angles

Instead of using an expensive flow meter for measuring current water velocity, we
proposed a low-cost mechanism using a flow sensor tube. Figure 2 shows that the flow tube
is hung under the steel skeleton of the offshore buoy. Furthermore, an Arduino Mega 2560
board and an electronic accelerometer are installed in the proposed flow tube. To measure
water velocity, the Arduino Mega 2560 board first receives a command message from the
control box and then instructs the accelerometer to measure the tube’s offset angles in the
seawater. Then, the Arduino Meaga 2560 board sends the offset angle data back to the
control box. Lastly, the data will be combined with other data such as water temperature
and will be forwarded to the shore server for storage.

This offset angle data stored in the server will serve as the dataset to train a new AI
program to perform the regression method for water velocity. We adopted the Scikit-learn
package of TensorFlow to train the AI model using 560 offset angle data. The other 240 offset
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angle data were used to assess the feasibility of the flow tube and the results are shown in
Figure 8. Furthermore, the MSE result of the regression is about 6.18 cm/s. On the other
hand, the cost of the flow sensor tube is under USD 100. Therefore, considering the low-cost
requirement of using the flow sensor tube and the MSE performance of the AI program,
our proposed flow sensor tube is a viable and promising tool for offshore aquaculture.
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Figure 8. Regression of water velocity.

5. Implementation Results and Discussions

To ensure that our proposed offshore buoy works in a real aquaculture environment,
we deployed it at the offshore cages at Haikou Port, Pingtung, Taiwan, at a 2 km distance
from the shore. The proposed buoy was in a fixed position near and outside the four cages
to ensure that the ocean waves did not affect the devices that could lead to its dismantling
since the flow sensor tube is just hung under the buoy. We set the distance between our
proposed buoy and the nearest cage to about 15 m. On the other hand, the My-SQL server
on the shore was deployed at the National Taiwan Ocean University. During the data
collection, 734,000 water temperature and 36,237 velocity data were collected in the server
and further utilized to train AI models to perform water quality prediction functions. The
prediction results are shown in Figures 6 and 7, respectively. As an additional feature,
a mobile application (APP) was also integrated to provide a monitoring interface for
aquaculture staff. Some of the APP interfaces and prediction results are shown in Figure 9.

In Figure 9a, we presented the system’s capacity to directly provide real-time water
quality information from the offshore cage location. Furthermore, to offer comprehensive
content, we integrated a web crawler in the APP to fetch local weather data from Taiwan
Central Weather Bureau to provide additional valuable information to the aquaculture
staff. With the integration of AI functions (discussed in Section 4), the short-term prediction
information for water temperature and velocity are plotted at the top and bottom parts of
Figure 9b.

In terms of costs, the main electronic equipment (including Arduino, accelerometer,
GPS module, LoRa, battery, etc.), steel skeleton, control box, and two lifebuoys cost only
about USD 1,469, 316, 150, and 79, respectively. Therefore, the total hardware cost for the
proposed buoy system is approximately USD 2015, which could be attributed as practical
and suitable for adoption in offshore aquaculture.
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Figure 9. Smart water quality prediction, (a) current information, cage monitoring (at the top half
part): water temperature, water velocity, dissolved oxygen, and salinity (from left to right and top
to bottom), and weather information (at the lower half part): temperature, daily rainfall, humidity,
wind speed, wind direction, maximum showers per hour (from left to right and top to bottom), and
(b) prediction information, water temperature (at the top half part), and water velocity (at the lower
half part).

6. Conclusions

This paper focused on designing and implementing a low-cost, easy-to-build AI buoy
system. The proposed buoy system autonomously measures temperature, velocity, DO,
and salinity as water quality parameters and then forwards the collected data to the shore
server for storage using a wireless communication channel. The water quality data provides
aquaculture staff with real-time information and with prediction capabilities providing
short-term information on water quality. To deliver a low-cost system, we combined low-
priced electronic devices and AI functions to complete the architecture of our proposed
buoy system to facilitate water velocity measurement.

The proposed buoy system for collecting water temperature and velocity measurement
data facilitated the inclusion of prediction capabilities. The prediction results were further
utilized to develop another AI function to estimate the feeding requirement for offshore
cages using water velocity. This added knowledge of feeding amounts can assist the
aquaculture staff in determining the suitable amounts of bait. This approach can lessen bait
waste which lowers feeding costs and reduces ocean pollution.

7. Patents

The proposed buoy system has been applied as a patent in Taiwan, whose information
is “ARTIFICIAL INTELLIGENCE BUOY, No. M-625369”.
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