
Citation: Xu, Z.; Li, J.; Meng, Y.;

Zhang, X. CAP-YOLO: Channel

Attention Based Pruning YOLO for

Coal Mine Real-Time Intelligent

Monitoring. Sensors 2022, 22, 4331.

https://doi.org/10.3390/s22124331

Academic Editor: Joonki Paik

Received: 22 April 2022

Accepted: 2 June 2022

Published: 8 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

CAP-YOLO: Channel Attention Based Pruning YOLO for Coal
Mine Real-Time Intelligent Monitoring
Zhi Xu , Jingzhao Li *, Yifan Meng and Xiaoming Zhang

College of Electrical and Information Engineering, Anhui University of Science and Technology,
Huainan 232000, China; xu1995zhi@126.com (Z.X.); ivanmeng@outlook.com (Y.M.);
2017100038@aust.edu.cn (X.Z.)
* Correspondence: jzhli@aust.edu.cn; Tel.: +86-177-7521-9840

Abstract: Real-time coal mine intelligent monitoring for pedestrian identifying and positioning is
an important means to ensure safety in production. Traditional object detection models based on
neural networks require significant computational and storage resources, which results in difficulty
of deploying models on edge devices for real-time intelligent monitoring. To address the above
problems, CAP-YOLO (Channel Attention based Pruning YOLO) and AEPSM (adaptive image
enhancement parameter selection module) are proposed in this paper to achieve real-time intelligent
analysis for coal mine surveillance videos. Firstly, DCAM (Deep Channel Attention Module) is
proposed to evaluate the importance level of channels in YOLOv3. Secondly, the filters corresponding
to the low importance channels are pruned to generate CAP-YOLO, which recovers the accuracy
through fine-tuning. Finally, considering the lighting environments are varied in different coal mine
fields, AEPSM is proposed to select parameters for CLAHE (Contrast Limited Adaptive Histogram
Equalization) under different fields. Experiment results show that the weight size of CAP-YOLO is
8.3× smaller than YOLOv3, but only 7% lower than mAP, and the inference speed of CAP-YOLO
is three times faster than that of YOLOv3. On NVIDIA Jetson TX2, CAP-YOLO realizes 31 FPS
inference speed.

Keywords: channel attention mechanism; model pruning; object detection; image enhancement; YOLO

1. Introduction

Intelligent coal mine video surveillance is an important measure to ensure production
safety. The pedestrians in the monitoring video are detected by AI (Artificial Intelligence)
models and control the equipment or issue alarms according to the pedestrian position,
which can effectively prevent the operating equipment from causing injury to workers.

The CNN (Convolutional Neural Network) has achieved remarkable success in the
field of intelligent image processing, and the accuracy of image classification models based
on CNNs have even surpassed that of human beings [1]. With the excellent performance
of CNNs in feature extraction, various CNN-based object detection models have been
proposed and used in different fields [2,3]. However, traditional object detection models
are usually deployed on cloud servers due to the large demands of computing and storage
resources. When intelligent analysis of monitoring video is required, surveillance video
must be transmitted to cloud servers through the network. Then, the monitoring videos are
analyzed by AI models in cloud servers and return the results of video analysis through
the network. The whole process of cloud computing produces serious transmission latency
because of the limitation of network bandwidth. Meanwhile, transmitting a large amount of
surveillance video also causes serious network congestion [4]. Edge computing is proposed
to decentralize intelligent computing close to the data source for avoiding transmission la-
tency and network congestion. Therefore, deploying object detection models on embedded
platforms can not only avoid the problems caused by cloud computing, but also control
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equipment or alarm devices in real-time according to the video analysis results. However,
it is difficult to deploy AI models on edge due to the constraint of computing and storage
resources of embedded platforms.

To deploy CNN models on embedded platforms, neural network compression meth-
ods have received a lot of attention from researchers. Neural network compression aims to
reduce the number of parameters or calculations through model pruning, weight quantiza-
tion, knowledge distillation, or other methods, to greatly improve real-time performance [5].
Model pruning improves the inference speed by removing redundant neurons [6–8]. The
pruning approaches for CNN can be roughly divided into non-structured pruning and
structured pruning. The inference speed is difficult to accelerate because of the irregular
memory access of the non-structure pruned model, unless using specialized hardware or
libraries [9]. Structured pruning prevents the structure of CNN by directly removing whole
filters [8]. However, it is necessary to evaluate the importance of the pruned filters/channels
or weights for the two pruning methods. We only focus on structured pruning in this paper.

Currently, there are various approaches to evaluate the importance of filters or chan-
nels for structured pruning [7,8,10]. Attention mechanism [11,12] is used to enhance the
important information and suppress unnecessary information [13]. It was widely used
in NLP (Natural Language Processing) at first, and then it has been introduced into the
computer vision field [14]. Attention mechanism improves the performance of computer
vision by important feature enhancement [15]. The output scale value of attention mecha-
nism represents the enhancement value and the importance level of the features. Therefore,
some researchers have designed channel attention modules for model pruning. Channel
attention mechanisms evaluate the importance level of channels, and the filters correspond-
ing to low-importance channels will be pruned [16]. However, the application of attention
mechanism in pruning object detection models is rare. Moreover, the high complexity of
the object detection model requires an advanced channel attention module for evaluating
channel importance levels.

YOLO is a classical one-stage object detection model [2]. It has the advantages of
high real-time performance and fewer parameters compared with two-stage models [17].
In order to deploy YOLO on embedded platforms, researchers have undertaken a lot of
work to reduce the number of parameters and calculations [18–21]. However, how to
identify redundant channels or filters is still a challenge. CLAHE is usually combined
with object detection models [22] for improving detection performance. However, the
lighting environments in coal mines are complex and variable, and the lighting condi-
tions in different monitoring areas are also different. Therefore, it is necessary to set the
parameters of CLAHE according to monitoring fields. Unfortunately, the parameters
of CLAHE are usually fixed, which makes it difficult to adapt to various places in coal
mines. Moreover, the GAN (Generative Adversarial Network) based image augmentation
algorithms require huge computing resources leading to serious degradation of real-time
performance [23]. Meanwhile, the datasets for training GAN are difficult to obtain in coal
mines. Hence, GAN-based image augmentation algorithms are not suitable for coal mine
real-time intelligence monitoring.

To solve the abovementioned problems, we proposed CAP-YOLO and AEPSM for
coal mine real-time intelligent monitoring. First, DCAM (Deep Channel Attention Module)
is designed for evaluating the importance level of channels. Then, we removed the filters
corresponding to low-importance channels in YOLOv3 to form CAP-YOLO. Meanwhile,
fine-tuning is used to recover the accuracy of CAP-YOLO. Finally, the AEPSM is designed
and combined with the Backbone of CAP-YOLO, which has the ability to adaptively select
parameters of CLAHE according to environments.

The main contributions of this paper are summarized as follows:

(1) DCAM is designed for evaluating the importance level of channels in feature maps.
(2) The coal mine pedestrian dataset was established for transfer learning YOLOv3. Then,

the YOLOv3 was pruned with the guidance of DCAM for forming CAP-YOLO.
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(3) For the complex lighting environments in coal mines, AEPSM proposed and combined
with the Backbone of CAP-YOLO to perceive the lighting environment, to set the
parameters of CLAHE for improving the accuracy of object detection.

The remainder of this paper is organized as follows. Related methods about model
pruning and attention mechanisms are introduced in Section 2. In Section 3, DCAM,
AEPSM, and pruning approaches are proposed. Section 4 provides an experiment and
comparison of the proposed approaches. Finally, we conclude this paper in Section 5.

2. Related Methods
2.1. Model Pruning

Model pruning is an important means to reduce the number of model parameters
and calculations. An early study of model pruning was mainly undertaken to prune the
weights, and the importance level of weights was evaluated by their magnitude [24,25].
This is a non-structured pruning, and it destroys the structure of CNN. Therefore, this
approach reduces the number of parameters, but does not provide acceleration unless
special hardware and libraries are used. Structured pruning, which focuses on finding
and removing whole filters, is a hardware-friendly and coarse-grained method, and it
has received a lot of attention recently. Hence, how to evaluate the importance level of
channels or filters is a hot research topic of structured pruning. Hu, H. and Peng, R. [26]
evaluated the importance level of filters using APoZ (Average Percentage of Zeros) of the
output feature maps. They argue that the higher the APoZ the less important the filter is.
Liu, Z. and Li, J. [27] thought that the scale factor of BN (Batch Normalization) reflects the
importance of the corresponding filter. Therefore, they evaluated the importance level of
filters using the L1-norm of scale factors. The proposed method completed a 20× reduction
in model size and a 5× reduction in computing operations. Li, H. and Kadav [28] used the
L1-norm of filter weights as the importance criteria for filters. The papers [29,30] proposed
that the importance of features is related to its entropy, and the higher the value of entropy,
the more information the filter outputs. Hence, they pruned the filters which have a low
value of entropy. He, Y., Zhang. X. and Sun, J. [10] evaluated the importance level of
filters using LASSO (least absolute shrinkage and selection operator) regression. Then,
they reconstructed the network according to the least squares. The method they proposed
accelerated the VGG-16 by five times, and only a 0.3% drop in accuracy was observed.
Luo, J.H. et al. [6] thought that the importance level of filters is reflected in the output
of the next layer. They used the greedy method to prune filters in training and inference
stages, which reduced the size of the VGG-16 model to 5.05 MB, and the accuracy was only
reduced by 1%. The aforementioned researchers have studied the importance identification
methods for filters or channels. However, they did not further investigate the pruning
process and methods.

For the problem that the importance level of filters/channels is difficult to evaluate,
He, Y.H. and Han, S. [31] proposed an auto-pruning method using reinforcement learning.
However, this method has complex model construction and requires a huge amount of
calculation. Therefore, this approach is not applicable for object detection models with
larger model sizes. The papers [7,32] evaluated the importance level of filters using the
L2-norm of the weights of filters. The selected pruning filters were set to 0 and retraining,
and then they evaluated the filters again. This method achieves an excellent pruning
effect; however, the approach requires multiple training for models. Luo, J.H. and Wu,
J. [33] have designed a model to achieve importance evaluation and pruning automatically
based on deep learning. However, the end-to-end approach has difficultly converging in
practical situations.

The abovementioned approaches prune CNN models from different perspectives,
laying the foundation for researchers to prune more complex object detection models. The
papers [5,8,34] evaluated the importance of filters in YOLOv3 using the scale factors of BN
layers. Then, they remove the filters with low importance and use various optimization to
recover the accuracy of models. Chen, Y., Li, R. and Li, R.F. [35] think that the larger shift
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factors of BN layers are more indicative of the importance of filters relative to the scale
factors. They combine scale and shift factors to prune YOLOv3, which obtains a better
pruning performance than that of SlimYOLOv3 [8]. Chen, S. et al. [36] use depth-width
convolution to replace the traditional convolution in YOLOv3 at first. Then, they pruned
YOLOv3 based on the value of scale factors of BN layers. Finally, the knowledge distillation
is used to further compress the model and obtain the Tiny YOLO-Lite model. Although
this model has the ability to detect SAR (Synthetic Aperture Radar) ships in real-time,
it is difficult to deploy in coal mines because of the complex lighting environment. The
papers [18–21] have deployed object detection models on embedded platforms using model
pruning, which has been widely used in many fields such as industry, agriculture, and so
on. The above approaches mainly use the scale factors of BN layers as the criteria of filter
importance. However, the values of scale factors in the Backbone are generally larger than
those of other parts when the pre-trained weights are transformed and learned for a special
task, which limits the pruning ratio. Therefore, it is unreasonable to use the scale factors of
BN layers to evaluate importance level of filters in model pruning.

2.2. Attention Mechanism

The attention mechanism can improve the importance information and suppress
unnecessary information, to enhance the performance of models [11,12]. Therefore, the
attention mechanism is widely used in NLP [37], image classification [13], and object
detection [14] fields. Hu, J. et al. [15] proposed SENet (Squeeze-and-Excitation Networks)
to model the channel-wise relationships of CNN and adjust the feature response values
of each channel. However, SENet ignores the spatial attention in feature maps. The SGE
(Spatial Group-wise Enhance) module [38] is proposed to enhance semantics information
and suppress noise, but the channel attention is ignored. The BAM (Bottleneck Attention
Module) and CBAM (Convolutional Block Attention Module) have been proposed in [39,40],
respectively, and the experiments illustrate that combining spatial and channel attention is
superior to using either of them. C. Tang et al. [41]. have proposed a Channel Attention
Module to promise the effectiveness of DeFusionNET, but the Channel-downscaling is
used in channel attention modules for dimensionality reduction, which causes information
loss of the input features. X. Lu et al. [42] have improved the detection accuracy of SSD
for small objects by combing spatial and channel attention. Xue et al. [43] have proposed
MAF-YOLO (multi-modal attention fusion YOLO) based on a dual attention module, to
obtain more information from small objects. The attention mechanism is also used to
improve the performance of YOLOv4 [44]. To sum up, the attention mechanism improves
the model performance, but it also results in the disadvantages of increasing computation
and model size. This disadvantage makes the model optimized by attention mechanisms
that are difficult to deploy on edge devices.

For the channels of feature maps in CNN, the more important the channels have,
the larger the scale value of the attention mechanism outputs. Therefore, the importance
level of channels in a model can be evaluated by attention mechanisms, which could
guide the model pruning. Yamamoto et al. [45] proposed the channel attention module
PCAS (Pruning Channels with Attention Statistics) for evaluating channel importance and
pruning the filters corresponding to low-importance channels. SENet is also used as a
criterion of channel importance for model pruning [46]. However, the construction of SENet
and PCAS is mainly composed of MLP, which has a weaker image feature extraction ability
than that of CNN. Meanwhile, feature dimensionality reduction in SENet and PCAS leads to
the serious loss of information. Therefore, SENet and PCAS have difficulty extracting more
channel information. The CASCA is proposed in [16]. The authors combine spatial and
channel attention to identify the redundant channels. Compared with other approaches, this
method achieves higher accuracy at the same pruning ratio. Shi, R. et al. [47] evaluate the
redundant channels in YOLOv3-tiny by combing spatial and channel attention. They have
pruned YOLOv3-tiny according to the scale value of the attention module and deployed
the pruned model on embedded platforms. However, compared with YOLOv3, YOLOv3-
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tiny has low detection accuracy, especially for small objects. Hence, the performance
YOLOv3-tiny limits the accuracy of the proposed model. Currently, the attention modules
for evaluating channel importance are simple in design, and it is difficult to effectively
analyze the importance level of each channel in the feature map. To address those problems,
we propose a new attention module to evaluate channel importance and illustrate the
advantages by comparing with other methods in the experiment.

3. Methods
3.1. Review of the YOLOv3 Object Detection Model

YOLOv3 [2] is a classical one-stage object detection model. The structure of YOLOv3
can be roughly divided into the Input, Backbone, Neck, and Predict parts, as shown in
Figure 1. The Backbone is used to extract the features of the input image and is mainly
composed of five Resblocks. The main function of the Neck is feature fusion and extraction,
so that YOLOv3 obtains multi-scale detection ability. The Predict part is used to integrate
the features of the Neck and output the location and classification of the objects. YOLOv3
has excellent real-time performance and accuracy compared with other object detection
models [3,17], and the construction of YOLOv3 is simple but effective. Therefore, YOLOv3
is convenient for evolution and is already applied in various fields.
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Figure 1. Structure of YOLOv3, where the CBL represents the combination of Convolutional, Batch
Normalize, and LeakyRelu activation function. Resblock denotes the residual structure. The outputs
of YOLOv3 are represented by yolo1, yolo2, and yolo3, which represent different output scales.

YOLOv3 has excellent accuracy and real-time performance, but the requirement of
calculations makes it still difficult to deploy on edge devices. Hence, YOLOv3 only performs
high real-time performance on advanced GPU platforms that have powerful computing
ability. For the coal mine surveillance video processing, there is no need to detect multiple
types of objects, so it will have sufficient generalization ability even if the filters are pruned.
To this end, we designed a channel attention module to identify the redundant channels,
and the filters corresponding to those channels were removed for improving the real-time
performance and reducing the model size.

3.2. Deep Channel Attention Module (DCAM)

The channel attention module is used to perceive the importance level of each channel
in the feature map, enhance the important channels, and suppress the redundant chan-
nels [16,41]. In previous works, some proposed attention modules such as BAM and CBAM
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integrate the spatial and channel attention for improving model performance. However, the
fusion attention can interfere with channel importance evaluation. Moreover, completely
prohibiting the information interaction between channels also led to the inability to perceive
global information. In order to solve those problems and avoid dimensionality reduction
such as SENet, the group convolutional and Group Normalization (GN) are used to extract
features and normalization, respectively. Meanwhile, the replacement of BN by GN can
eliminate the influence of batch size [16]. The channel attention module we proposed is
named DCAM (Deep Channel Attention Module). The structure of DCAM is shown in
Figure 2.
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For the input feature map X, (X ∈ RC×W×H), we perform the convolution operation
with the kernel size of 3× 3:

Xc1 = fcov1(X) (1)

where Xc1, (X ∈ RC×W×H), C is the number of channels, W and H are the size of feature
maps, fcov denotes convolution operation.

Then, the maximum pooling and average pooling are used to extract features of Xc1
from two perspectives:

Xmax1 = fmaxpool(Xc1) (2)

Xavg1 = favgpool(Xc1) (3)

where Xmax1 ∈ RC×H/2×W/2, Xavg1 ∈ RC×H/2×W/2. The maximum pooling is used to
extract the important information while the average pooling is adopted to extract the global
information.

We use the convolution operation with the kernel size of 1× 1 to integrate Xmax1 and
Xavg1, and the fusion feature is normalized by the GN layer:

Xc2 = GN( fcov2(Xmax1) + fconv3(Xavg1)) (4)

where Xc2 ∈ RC×H/2×W/2. We set the GN layer with groups = 4, which causes the module
to have a certain ability of information interaction in channels.

We further extract the features of Xc2 by convolution operation:

Xc3 = fcov4(Xc2) (5)

where Xc3 ∈ RC×H/2×W/2. Xc3 is half the size of the input feature map, but the number of
channels is still C. After multiple feature extraction, the information of the input feature
map is compressed into Xc3.
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The adaptive maximum pooling and adaptive average pooling are used to integrate
the features of Xc3, while the GN layer is used to normalize the features:

Xc4 = GN( fmaxpool(Xc3)) + GN( favgpool(Xc3)) (6)

where Xc4 ∈ RC×1×1. The size of Xc4 is C× 1× 1, and the most representative features in
each channel of the input feature maps are extracted in Xc4.

The information of Xc4 is extracted by convolution operation, and the features are nor-
malized by GN. Finally, the scale value of DCAM is output by the active function sigmoid:

AC = σ(GN( fcov5Xc4)) (7)

where σ represents the sigmoid function, AC ∈ RC×1×1. Each element in AC represents the
importance level of its corresponding channel.

DCAM uses multiple convolution and pooling to obtain deeper features of the input
channels. The computational process of DCAM is more complex than other channel
attention modules. However, the DCAM is not computationally intensive because of the
use of group convolution. Meanwhile, the DCAM is only used to evaluate the importance
level of channels, and it will be removed after pruning the model. Therefore, DCAM does
not affect the real-time performance.

3.3. CAP-YOLO (Channel Attention Based Pruning YOLO)

BN has the effect of improving generalization ability and accelerating the convergence
of the training process. Hence, BN is widely used in object detection models. The scale
factors of BN represent the importance of the corresponding filters to a certain extent.
Meanwhile, the value of scale factors was conveniently obtained. Therefore, the pruning
methods based on BN scale factors are easy to implement. However, when coal mine
pedestrian dataset is used for transfer learning YOLOv3 based on the pre-trained weights,
the BN scale factors of Neck is significantly less than that of Backbone. The phenomenon is
shown in Figure 3: the values of uneven distribution in BN scale factors seriously constrain
the maximum pruning ratio (the computing method of the maximum pruning ratio is
shown below).
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Evaluating the importance level of channels by DCAM avoids the influence of pre-
trained weights on maximum pruning ratio, because the training process of DCAM and
the pre-trained weights are separated. When DCAM is trained, the weights of YOLOv3
are fixed, and only the parameters of DCAM are gradually trained from the initial state
to the convergent state for minimizing loss function. Therefore, the computational power
required to train the DCAM is lower than training the entire model.

For preventing over-pruning, the maximum pruning ratio is computed by:

Plimit = arg(Im(min(Im(l)max))sort)/N (8)

where Im(l)max represents the maximum importance value of the filters or channels in the
l-th convolution layer; Im()sort denotes the list of Im which is listed from small to large;
N is the total number of evaluated channles. The larger the Im(l)max, the more important
the filter or channel is. The main function of Plimit is to prevent removing all filters of a
convolution layer.

For YOLOv3, we primarily prune the Backbone and Neck. Resblock is the main
component of Backbone. Before pruning the Resblock, we insert DCAM behind the first
convolutional layer of the Resblock to form the Res-attention module as shown in Figure 4.
The DCAM evaluates the channel importance level of the first convolutional layer according
to the output feature maps.
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The DCAM is inserted into YOLOv3 to form the YOLO-DCAM. Then, we trained
YOLO-DCAM after fixing the pre-trained weights of YOLOv3. After training convergence,
the images of the training set are inferred, and the average of the output of DCAM is
calculated as the importance level of channels:

Im(l, j) =
1
D

D

∑
i=0

DCAMl,j(i) (9)

where j denotes the j-th channel in l-th later. i represents the i-th image of the training set,
D denotes the training set.
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The pruning percentage ptr (ptr < plimit) is set according to the evaluation result, and
the pruning threshold is calculated by:

pth = Im(ptr × N)sort (10)

when the value of channel importance corresponding to a filter is less than pth, the filter is
removed. Moreover, with the pruning of a layer, the output channels in the feature map of
this layer are reduced. Therefore, the corresponding channels of the filters in the next layer
also need to be removed. The pruning process of the l-th layer is shown in Figure 5.
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The pruning process is summarized as follows. Firstly, the DCAM is inserted into
YOLOv3 to form YOLO-DCAM. Secondly, the pre-trained weights of YOLOv3 in YOLO-
DCAM are fixed, then we train the YOLO-DCAM until convergence. Thirdly, the im-
portance level of channels is evaluated by (8), and the filters corresponding to the low
importance are removed to form CAP-YOLO. Finally, we fine-tune the CAP-YOLO for
recovering accuracy. The pruning process is shown in Algorithm 1.

Algorithm 1: Pruning Process

1 Initialize YOLO-DCAM
2 Load the parameters of YOLOv3 to YOLO-DCAM
3 Fix the YOLOv3’s parameters of YOLO-DCAM
4 Training YOLO-DCAM

5
for img to D:

Im(l, j) = Im(l, j) + SCAMl,j(img)

6
for l to L: //L is the number of total layers of pruning layers in YOLOv3
Im(l)max = max(Im(l, j))

7 Get the maximum prune value plimit = min(Im(l)max)
8 Set prune threshold ptr(ptr < plimit )
9 Get CAP-YOLO by prune f iltersi,j whose Im(l, j) < ptr

10 Fine-tune the CAP-YOLO
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3.4. Adaptive Image Enhancement Parameter Selection Module

The lighting environment in different monitoring areas of a coal mine is different.
There is sufficient lighting in some places, while the lighting in some areas is insufficient or
uneven. This phenomenon makes the accuracy of models vary from area to area. CLAHE
is a classical image augmentation algorithm widely used in the field of image analysis.
However, the fixed parameters of CLAHE are difficult to adapt to all areas in a coal mine.
The effect of CLAHE with different parameters is shown in Figure 6.
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Figure 6. Effect of CLAHE with different parameters, where the parameter TG represents the
tileGridSize, which indicates how many parts the image will be segmented into. The parameter of CL
denotes clipLimit, which is the limit value of clips in CLAHE.

From Figure 6, it can be seen that for the CLAHE, the different parameters lead to
different effects for a same image. Therefore, we proposed AEPSM (Adaptive image
Enhancement Parameter Selection Module), which adaptively adjusts the parameters of
CLAHE by perceiving the lighting environment, to improve the accuracy of CAP-YOLO
in various fields of a coal mine. AEPSM further processes the image features extracted by
CAP-YOLO’s Backbone to output the best parameters of CLAHE under the current lighting
environment. The structure of AEPSM is shown in Figure 7.

AEPSM is inserted into CAP-YOLO. In the process of training, the weights of CAP-
YOLO are fixed, and only the parameters of AEPSM are trained. The loss function of the
training processing is the same as YOLOv3 [2]. In the process of inference, the parameters
of CLAHE are generated by APESM and Backbone at first. Then, the parameters are fixed
to this environment and the AEPSM is ignored in the inference process to save computing
resources. The training and inference processes of AEPSM are shown in Figure 8.
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4. Results
4.1. Experiment Environments
4.1.1. Software and Hardware Environments

The hardware and software environments used in the experiment are shown in Table 1.
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Table 1. Experiment environments.

Training and Deployment Platform Embedded Platform

Intel i7-11700k @4.9GHz NVIDIA Jetson TX2
NVIDIA RTX3090 Ubuntu 18.04
RAM 64G Python3.6.8
Ubuntu 18.04 Pytorch 1.10
Python3.6.8 CUDA 11.3
Pytorch 1.10
CUDA 11.3

4.1.2. Dataset

The dataset of COCO is used to train and evaluate our method at first. Meanwhile,
the coal mine pedestrian dataset is built for further training and evaluation of CAP-YOLO
and AEPSM. The coal mine pedestrian dataset includes 10 monitoring areas of the coal
mine, and each area has 600 images, for a total of 6000 images. We divide 4000 pictures
in the dataset into training sets and 2000 pictures into evaluation sets. For improving the
generalization ability of the model, the dataset is extended by flipping, cropping, and
adding Gaussian noise, as shown in Figure 9.
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4.1.3. Details

We follow the default configuration of Darknet to train YOLO-DCAM and CAP-YOLO.
The size of the input images is set to 416× 416. We set SGD as the optimizer with the mo-
mentum = 0.9 and weight_delay = 0.05. The initial learning rate is 0.001, and the decay factor
is set to 0.5, which decays the learning rate per 1000 steps in 30,000–50,000 iterative steps.

4.2. Performance on COCO

The proposed DCAM is used to distinguish the important channels and redundant
channels in YOLOv3. Meanwhile, the performance of YOLOv3 can be improved by DCAM,
due to the DCAM’s ability of enhancing the important channels. In order to evaluate
the DCAM’s ability of feature enhancement and identify important channels, the SENet,
SGE, BAM, and CBAM (the CBAM is set to extract spatial attention first, and then extract
the channel attention, the two attentions combined in a sequential manner) are inserted
into YOLOv3 to form YOLO-SENet, YOLO-SGE, YOLO-CBAM, YOLO-BAM, which are
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compared with YOLO-DCAM and YOLOv3, SSD on the COCO dataset. The results of the
comparison are shown in Table 2.

Table 2. Comparison results of YOLO-DCAM, YOLO-SENet, YOLO-SGE, YOLO-CBAM, YOLO-
BAM, YOLOv3, and SSD.

Model mAP (%) FPS (RTX3090)

YOLO-DCAM 62.3 48
YOLO-SENet 58.7 52
YOLO-SGE 59.4 51

YOLO-CBAM 66.8 55
YOLO-BAM 64.1 57

YOLOv3 55.2 61
SSD 50.1 63

As shown in Table 2, the accuracy of YOLO-DCAM is lower than YOLO-CBAM and
YOLO-BAM, but higher than YOLO-SGE and YOLO-SENet. The results show that DCAM
has better important channel identifying and enhancing abilities than SENet. Compared
with CBAM and BAM, the important information enhancing ability of DCAM is weak,
due to the less frequent communication between channels in DCAM. Therefore, the ability
of DCAM in spatial information enhancement is lower than that of CBAM and BAM.
However, the main function of DCAM is to evaluate the importance level of channels and
guide the pruning process. Then, the different channel evaluation approaches are used
to guide the pruning process on YOLOv3, and the effects of those pruning methods are
validated based on COCO.

We compare the CAP-YOLO with the following pruning methods: (1) Slim-YOLO [15].
(2) The pruning model is based on SENet, which named YOLO-SENet-prune. (3) The
pruning model is based on BAM, which is named YOLO-BAM-prune. (4) The pruning
model is based on CBAM, which is named YOLO-CBAM-prune. The mAP of each model
under various pruning ratios is shown in Figure 10.
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It can be seen from Figure 10, with the increasing pruning ratio, the accuracy of all
models is reduced. The reason for this phenomenon is that model pruning leads to a
reduction in the ability of feature extraction and generalization. However, because the
results of evaluating the importance level of channels vary from evaluation approach to
approach, the accuracy of the model obtained using different pruning approaches is also
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different even if the pruning ratio is the same. From Figure 10, the accuracy of the pruning
model based on attention mechanisms is higher than that based on BN scale factors (Slim-
YOLO) with the same pruning ratio. This is because the attention module, which contains
neural networks, fits the importance level of each channel in training. The convergence
process is guided by the loss function. Meanwhile, although the BN scale factors reflect the
importance level of filters to some extent, it is difficult to represent the importance level
of channels.

The effect of model pruning based on DCMA, BAM, and CBAM is better than that
based on SENet, because the SENet greatly reduces the dimensions of features, which
results in serious information loss. DCAM-based model pruning is superior to that of BAM
and CBAM, the reason is that the DCAM does not fuse the channel features for preventing
the interference between channels. Meanwhile, a little communication between channels
by GN enables DCAM to perceive global information.

In order to establish the real-time performance of CAP-YOLO, we set the pruning ratio
to 50%, 70%, and 88% (the maximum pruning ratio of CAP-YOLO is 88.7%) to compare
with YOLOv3-tiny and YOLOv3; the result is shown in Table 3.

Table 3. Comparison of various models.

Model mAP (%) FPS-GPU Size (MB) FLOPs (Bn)

CAP-YOLO (40%) 52.1 87 127 35.04
CAP-YOLO (60%) 48.7 109 86.4 25.32
CAP-YOLO (88%) 39.8 182 28.3 7.38

YOLOv3-tiny 33.1 173 33.1 5.56
YOLOv3 55.2 61 236 65.86

It can be seen in Table 3, when the pruning ratio is set to 88%, that the mAP of
CAP-YOLO is still maintained at 39.8% on COCO. The accuracy of CAP-YOLO under the
maximum pruning ratio is higher than that of YOLOv3-tiny, the inference speed is faster
than that of YOLOv3, and the weight size of CAP-YOLO is only 28.3 MB, which is also less
than that of YOLOv3-tiny.

4.3. Performance on the Coal Mine Pedestrian Dataset
4.3.1. Performance of CAP-YOLO on the Coal Mine Pedestrian Dataset

Compared with COCO, there are only pedestrians in the coal mine pedestrian dataset.
For neural network models, the fewer the classifications processed, the lower the general-
ization capability required. On the coal mine pedestrian dataset, we compared the DCAM,
BAM, CBAM, SENet, and BN scale-factor-based pruning methods. The pruning process is
the same as the previous part, and the results are shown in Figure 11.

It is shown in Figure 11 that the DCAM-based pruning achieves better accuracy
than that of other approaches. Meanwhile, the maximum pruning ratio of attention-based
pruning methods is higher than the BN scale-factor-based approach (the reason is explained
in Section 3.3). The performance of accuracy and real-time under the maximum pruning
ratio is shown in Table 4.

It can be seen in Table 4 that the maximum pruning ratio of CAP-YOLO is 93%, while
maintaining 86.7% mAP. The speed and accuracy are all superior to that of other pruning
methods. YOLOv3-tiny is a simplified version of YOLOv3, the speed of YOLOv3-tiny
is faster than other methods, but the accuracy is the lowest because of the weak feature
extraction ability. The inference speed of CAP-YOLO is improved by increasing the pruning
ratio for removing redundant filters, and the speed of CAP-YOLO reached 31 FPS on the
embedded platform of NVIDIA Jetson TX2. To sum up, although there is a small loss
in accuracy, the CAP-YOLO, which was pruned based on DCAM, greatly improved the
real-time performance and reduced the model size. Therefore, the superior real-time
performance and accuracy of CAP-YOLO enable it to be deployed on edge devices for coal
mine real-time intelligence monitoring.
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Table 4. Performance of accuracy and real-time under maximum pruning ratio.

Model mAP (%) FPS-GPU FPS-TX2

CAP-YOLO (40%) 92.1 87 12
CAP-YOLO (60%) 91.7 109 16
CAP-YOLO (93%) 86.7 171 31

YOLO-SENet-prune (84%) 76.3 154 23
YOLO-CBAM-prune (90%) 83.2 161 28
YOLO-BAM-prune (91%) 79.8 166 29

Slim-YOLOv3 (36%) 78.3 78 9
YOLOv3 93.7 61 6

YOLOv3-tiny 56.4 173 34

4.3.2. Performance of AEPSM

AEPSM is used to adaptively select the parameters of CLAHE for image augmentation
under different fields. For the coal mine pedestrian dataset, we first test the CAP-YOLO
(93%) using 10 field images. Then, the parameters of CLAHE are fixed to clipLimit = 2.0,
tileGridSize = (8, 8), which enhances the images before input to CAP-YOLO. The results of
test accuracy on 10 fields are shown in Table 5.

Table 5. Results of test accuracy on 10 fields.

Fields mAP (CAP-YOLO) mAP (CAP-YOLO + CLAHE)

1 90.1 88.0
2 85.9 89.6
3 88.4 83.9
4 89.6 88.1
5 89.3 87.3
6 82.8 80.8
7 81.5 84.2
8 85.9 88.7
9 87.1 90.2

10 86.4 88.5

From Table 5, with the application of CLAHE, the detection accuracy of CAP-YOLO
in some fields has increased, while the accuracy in some fields has decreased. The reason
for this result is that the fixed parameters of CLAHE are not adapted in every field.
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The training process of AEPSM is shown in Figure 8a. After training convergence,
AEPSM is inserted into CAP-YOLO as shown in Figure 8b to select parameters for different
fields. Finally, the parameters of CLAHE selected by AEPSM are used to augment the
input images for CAP-YOLO, as shown in Figure 8c. AEPSM only needs to infer once for
parameter selection when deployed on a new field, and then it will not be inferred to save
computation resources. The test result of CAP-YOLO with the AEPSM-CLAHE is shown
in Table 6.

Table 6. Test results of CAP-YOLO with AEPSM-CLAHE.

Fields mAP (AEPSM + CLAHE) CL TG

1 91.6 4 8
2 91.4 2 8
3 92.1 8 4
4 90.7 4 4
5 91.6 2 8
6 90.1 2 4
7 92.3 8 8
8 92.9 8 4
9 91.8 2 8
10 92.6 4 8

From Table 6, the AEPSM set different parameters for CLAHE in different fields.
Compared with the fixed parameters, AEPSM adaptively sets parameters by perceiving
the lighting environment in different fields so that CAP-YOLO can obtain better detection
accuracy. The effect of CLAHE with AEPSM is shown in Figure 12.
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5. Discussion

Channel attention has the ability to identify and enhance the important channels in
feature maps. Therefore, the more important the channels of feature maps are, the higher
the scale value of the DCAM outputs. According to this phenomenon, DCAM has the
ability to evaluate the importance level of channels and identify the redundant filters.
Hence, the CAP-YOLO retains an mAP of 86.7% while the pruning ratio has reached 93%.
Compared to the traditional parameter setting methods, AEPSM set the parameters of
CLAHE adaptively based on the lighting environments of fields, so that the CAP-YOLO
can obtain higher accuracy for different lighting environments.

6. Conclusions

In this paper, the DCAM was proposed to evaluate the channel importance level
and identify the redundant channels; then, we pruned YOLOv3 based on DCAM to form
CAP-YOLO. CAP-YOLO reached 86.7% mAP when the pruning ratio was set to 93% and
achieved 31 FPS inference speed on NVIDIA Jetson TX2. Meanwhile, we further proposed
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AEPSM to perceive the lighting environments of different coal mine fields, which adaptively
set the parameters of CLAHE for improving the accuracy of CAP-YOLO.

In the future, we will undertake a further study on channel attention mechanisms
for evaluating the importance level of channels. In addition, we will design a special loss
function or optimization method for DCAM and CAP-YOLO in the next step, for improving
the real-time performance and accuracy of intelligent video monitoring.
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