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Abstract: Monocular 3D object detection is very challenging in autonomous driving due to the lack
of depth information. This paper proposes a one-stage monocular 3D object detection network (MDS
Net), which uses the anchor-free method to detect 3D objects in a per-pixel prediction. Firstly, a novel
depth-based stratification structure is developed to improve the network’s ability of depth prediction,
which exploits the mathematical relationship between the size and the depth in the image of an object
based on the pinhole model. Secondly, a new angle loss function is developed to further improve both
the accuracy of the angle prediction and the convergence speed of training. An optimized Soft-NMS
is finally applied in the post-processing stage to adjust the confidence score of the candidate boxes.
Experiment results on the KITTI benchmark demonstrate that the proposed MDS-Net outperforms
the existing monocular 3D detection methods in both tasks of 3D detection and BEV detection while
fulfilling real-time requirements.

Keywords: autonomous driving; monocular image; 3D object detection; computer vision

1. Introduction

The 3D object detection is a fundamental function to enable complex and advanced
autonomous driving tasks, such as object tracking and event detection. Nowadays, most
3D object detection algorithms use the LiDAR point cloud [1–5] to provide distance in-
formation. Recently, 3D detection based on point cloud [1–3,6–8] has developed rapidly.
A common theme among SOTA point-based 3D detection methods is to project the point
cloud into sets of 2D views. For example, AVOD [9] projects the 3D point cloud to the
bird’s-eye view (BEV), and then fuses the features from BEV and image to predict 3D
bounding boxes. Although the view-based method is time-saving, it destroys the infor-
mation integrity of the point cloud. The voxel-based method [1] divides the point cloud
into regular voxels, and then regresses the 3D bounding boxes by the 3D convolutional
network. It preserves the shape information but usually suffers from high time complexity.
The set-based method [2,3] represents the point cloud as a point set and uses a multi-layer
perceptron (MLP) to learn features from the unordered set of points directly. Through
doing this, it reduces the impact of the point cloud’s local irregularity. However, it still
has the problem of mismatch between the regular grid and the point cloud structure.
In summary, the laser is hard to apply in real-time for large amounts of data. Furthermore,
the irregularity of the point cloud increases the difficulty of using convolutional operations
to extract features. By contrast, feature extraction from the image can be realized using
the convolutional neural network and the camera is cheaper. However, due to the lack of
reliable depth information, 3D object detection based on monocular images is generally
considered more challenging.
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At present, with the popularity of convolutional neural networks, a multitude of 2D
object detection networks have been raised. Generating proposals by the region proposal
network (RPN) has been widely adopted by recent two-stage frameworks. The two-stage
approach [10–13] first generates the region of interest (RoI) by the RPN and then regresses
the object in RoI. The proposal region generation used in this kind of network leads to high
time complexity. The one-stage approach [14–16] omits the proposed region generation and
directly regresses the bounding box from the grids divided from the image. The one-stage
detection is usually more efficient as compared to the two-stage one. However, it suffers a
severe imbalance between positive and negative samples due to the lack of RPN, and could
easily be hampered by a wrong-designed hyperparameter of the anchor. To solve this
problem, FCOS [17] and FoveaBox [18] adopted the concept of anchor-free to solve 2D
object detection in a per-pixel prediction. They avoid calculating the IoU between ground
truth boxes and anchors, and through which improve the efficiency and the detection
accuracy of the network.

Accurate prediction of the object’s depth and angle is a critical challenge in monocular
3D object detection. The existing monocular 3D object detection algorithms either generate
pseudo point cloud [19–21] or directly process images to realize the detection of 3D ob-
jects [22–26]. The former uses a neural network to predict the depth map of the monocular
image, and converts the depth map into pseudo point cloud by camera intrinsics, and then
uses a point-cloud-based 3D detection network to regress the 3D boxes. For example,
Xu [20] used a 2D image network to predict the RoI, then extracted image features and
pseudo point cloud features in the RoI for 3D prediction. The algorithm does not sufficiently
meet the real-time requirements owing to the time and space complexity generated by the
pseudo-point cloud. Quite apart from the extra time complexity introduced by the depth
map prediction, the accuracy of monocular depth estimation algorithms usually limits
the prediction effects of such networks. The latter uses prior knowledge to establish the
relationship between 2D and 3D objects, and then regresses the object’s 3D localization.
Recently, deep neural networks directly processing the RGB image have demonstrated
accurate results. Chen first proposed Mono3D [22] to predict the object based on the priori
hypothesis of the ground plane. Chabot proposed Deep-MANTA [23], which uses the 3D
CAD model to match the object’s key points to estimate 3D dimensions and orientation.
M3D-RPN [25] uses prior statistics to initialize the 3D parameter and achieves 3D esti-
mation by a monocular 3D region proposal network. MonoEF [27] predicts the camera
extrinsic parameters by detecting vanishing point and horizon change, and then designs a
converter to rectify perturbative features in the latent space. GUPNet [28] designs a GUP
module to obtain the geometry-guided uncertainty of the inferred depth generally by three
steps: it predicts the heat map and 2D box, then uses the ROI align to obtain the region of
interest, and finally regresses the 3D box in the region of interest. MonoDTR [29] uses the
transformer to regress objects. It designs the DFE module to learn depth-aware features
with auxiliary supervision and uses the DTR module to integrate context and depth-aware
features. We notice that the three networks all need to generate extra information and
therefore suffer from extra processing time cost. The MonoDTR needs additional time to
generate depth maps, MonoEF needs extra network for feature transformation, and GUP-
Net consumes time to generate regions of interest. UR3D [30] is the most similar work to
ours, which predicts a coarse depth range and a depth offset for each FPN layer based on
the observation of depth and scale’s statistical distribution, thus using a piece-wise linear
curve to fit the nonlinear depth-scale curve. However, UR3D uses an additional depth map
as the input and the network’s depth prediction is not based on a precise pinhole model.
The algorithm does not effectively exploit the relationship between the object’s depth and
image scale in detection and therefore obtains limited accuracy.

The existing algorithms suffer from the following limitations. First, the relationship
between the depth of the object and image scale is not effectively exploited. Secondly,
the small derivatives of angle loss make the network difficult to regress while focusing
on the consistency of angle prediction and overlap. This is not considered in the angle
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prediction. Finally, the NMS algorithm causes a large number of reasonable candidate
boxes to be dropped. Aiming at solving the above problems, this paper proposes an end-
to-end one-stage 3D detection network based on a Multi-scale Depth-based Stratification
structure, MDS-Net. The novelty of the MDS-Net primarily lies in the following three
newly obtained features. Firstly, we propose a depth-based stratification structure derived
from the conventional Feature Pyramid Network (FPN) [31]. By establishing mathematical
models between the object’s depth and 2D scale, we assign each feature map of FPN to a
different predictable depth range based on prior statistics and improve the depth perception
of our network without adding additional time complexity. Secondly, we design a novel
angle loss based on the consistency of IoU and angle to improve the prediction precision of
boxes and the converge speed of training at the same time, which also solves the problem
of the small derivatives of the loss making the network difficult to regress. Thirdly, we
design a density-based Soft-NMS algorithm for post-processing. Since MDS-Net generates
multiple boxes for the same object, we believe that objects are more likely at locations with
a high density of predictions.

In summary, our contributions are as follows:

• We propose a one-stage monocular 3D object detection network, MDS-Net, based on
a Multi-scale Depth-based Stratification structure, which can accurately predict the
object’s localization in the 3D camera coordinate system from the monocular image in
an end-to-end manner. The proposed MDS-Net achieves state-of-art performance on
the KITTI benchmark for the monocular image of 3D object detection.

• We design a novel angle loss function to strengthen the network’s ability of angle prediction.
• We propose a density-based Soft-NMS method to improve the confidence of credible boxes.

2. The Proposed MDS-Net

This chapter comprises five sections: In Section 2.1, we introduce the overall architec-
ture of our network. In Section 2.2, we introduce the depth-based stratification structure,
which improves monocular depth estimation. In Section 2.3, the formulation to transform
the network output to the 3D coordinate is presented. In Section 2.4, we expound on our
loss function and propose a novel angle loss to improve angle prediction accuracy. Finally,
in Section 2.5, we detail a density-based Soft-NMS algorithm that reasonably processes the
prediction box and increases the recall.

2.1. Network Architecture

As shown in Figure 1, our object detection network consists of three parts: backbone,
FPN [31] and detection head. Our network uses the Darknet53 [15] as the backbone to
generate three feature maps, D1, D2 and D3, with downsampling ratios of 32, 16 and 8,
respectively. We use the Shape-Aware Convolution (SAC) to enhance the network’s percep-
tion of objects with different aspect ratios between the backbone and FPN. We then use the
FPN to fuse features from different layers and obtain the fused feature maps, F1, F2 and F3.
Finally, each feature map Fi(i = 1, 2, 3) is connected to two detection heads, Hk(k = 1, 2).
The detection head is composed of two branches. One branch is responsible for predicting
the 3D parameters of the bounding box, the other is responsible for predicting the confi-
dence, intersection-over-union(IoU), and center-ness of the object. During the inference,
the predicted-IoU and center-ness are multiplied with the corresponding confidence to
calculate the final score.
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Figure 1. Overview of our proposed framework.

2.2. Depth Stratification

As shown in Figure 2, we assume that the course angle is 0, then according to the
pinhole model, the relationship between 3D depth Z3d and 2D size (w2d, h2d) of the object
can be approximatively calculated as follows:

Z3d−
L3d

2
fu

= W3d
w2d

Z3d−
L3d

2
fv

= H3d
h2d

,
(1)

where W3d, L3d and H3d are the 3D sizes of the object, and fu and fv are the camera’s
focal length. It can be inferred from Equation (1) that when focusing on objects of the
same class that have similar 3D sizes, 2D sizes are mainly determined by depth. Based on
this deduction and inspired by [31], which uses the Feature Pyramid Network (FPN) to
detect objects of different scales, we apply the FPN structure to further improve the depth
prediction by capturing objects’ size gap on the image, as shown in Figure 1. The feature
maps’ output from the FPN structure are denoted as F1, F2 and F3, respectively, in ascending
order of resolution, and each feature map is connected to two detection heads. The depth
ranges predicted by these six detection heads are

[
ϕ · 2i+k−2, ϕ · 2i+k−1

]
, respectively, where

ϕ is a hyperparameter used to control the predictable ranges. During training, we assign the
ground truth boxes to the reasonable detection heads based on the predefined predictable
depth range, and each head is only responsible for predicting objects in the corresponding
depth range.

Our proposed depth-based stratification structure assigns the long-distance objects to a
high-resolution feature map following the pinhole model to obtain precise depth prediction.
The depth-based stratification structure has the following two superiorities. Firstly, each
feature map’s predictable depth range is increased twice as much as the previous layer. It is
wise to keep the growth rate of the feature map’s predictable depth range consistent with
the receptive fields for a better network depth prediction. Secondly, the three feature maps’
predictable depth ranges actually overlap each other for two reasons. On the one hand,
from (1), we can deduce that the 2D size of the object is not strictly inversely proportional
to the depth but is also affected by the object’s pose. We need to expand each feature map’s
predictable depth range to strengthen the network’s prediction robustness. On the other
hand, our overlapping stratification structure enables the network to predict objects in
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crucial areas multiple times, which in consequence eases the imbalance between positive
and negative samples.

Figure 2. The relationship between the 3D depth and 2D scale of the object.

To further verify the proposed model Equation (1), we plot the correlation of 3D depth
and 2D scale for all ground-truth boxes in the KITTI dataset, which are shown as the three
colored scatters in Figure 3a,b, and produce the fitting curve of Equation (1) by replacing the
W3d, L3d, H3d with the statistical average, which is shown as the red curves in Figure 3a,b.
It should be noted that the practical correlation between Z3d and h2d (shown in Figure 3a)
fits with the proposed model Equation (1) much better than the w2d (shown in Figure 3b).
For the w2d, the pose impacts the object’s 2D width on the image and the 3D width of
each category varies widely. By contrast, the h2d is less affected by pose and has smaller
inter-class variance and intra-class variance.

(a) (b)

Figure 3. (a) The correlation of Z3d and h2d for part ground-truth boxes in the KITTI dataset and
the fitting curve (red curve). (b) The correlation of Z3d and w2d for part ground-truth boxes in the
KITTI dataset and the fitting curve (red curve). We use green points, blue stars, and black triangles to
denote cars, pedestrians, and cyclists, respectively.

Based on this observation, we propose a more adaptive convolutional structure—Shape-
Aware Conv (SAC), which is more robust to objects of various scales, as shown in Figure 1.
The SAC performs both 1× 3 and 3× 1 convolutions on the input feature maps in parallel
and then concatenates the two outputs with the input feature map followed by a 1× 1
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convolution to yield the final output feature map. As shown in Figure 4, the statistical
distribution of the 2D aspect ratios in the KITTI dataset indicates that the aspect ratios
of most objects are distributed between 1:3 and 3:1. Therefore, the network with SAC is
more compatible with various aspect ratios of objects and thus improves the network’s
robustness by solving the underfitting problem caused by the depth stratification structure.

Figure 4. The statistical distribution of the 2D aspect ratios in the KITTI dataset.

2.3. Network Predictions

The outputs of our network consist of two parts. The first part is the predicted 3D
parameters of an object, including its 3D center, 3D size, and angle. The second part is the
predicted score of an object, including its confidence, predicted-IoU, and center-ness.

2.3.1. 3D Prediction

According to the pinhole model of the camera, we project the object’s 3D center
[X3d, Y3d, Z3d]

T in the camera coordinate system into the image.∣∣∣∣∣∣
fu 0 cu
0 fv cv
0 0 1

∣∣∣∣∣∣×
∣∣∣∣∣∣
X3d
Y3d
Z3d

∣∣∣∣∣∣ = Z3d

∣∣∣∣∣∣
u
v
1

∣∣∣∣∣∣, (2)

where u and v denote the coordinates of the projected center in the image. fu and fv are the
focal length and cu and cv are the principal point offset of the camera.

According to the formula Equation (2), we can obtain the relationship between u, v
and X3d, Y3d, Z3d as follows: X3d = (u−cu)Z3d

fu

Y3d = (v−cv)Z3d
fv

,
(3)

where cu, cv, fu, fv are the parameters of the camera, and u, v, Z3d can be predicted by
the network.

For the 3D size prediction, we calculate the average 3D size (w0, l0, h0) of all objects
in the data set as the preset value and then predict the logarithm of the ratio between the
ground truth and the preset value. We use the observation angle, which is intuitively more
meaningful when processing image features, in the angle prediction. Following Kinematic
3D [32], we split the observation angle β into the object heading θh, axis α, and angle offset
θ in Figure 5.
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Suppose the predicted values on the feature map Fi are û, v̂, Ẑ, ŵ, l̂, ĥ, α̂, θ̂, θ̂h, then we
use the following formula to calculate the 3D parameters X3d, Y3d, Z3d, W3d, L3d, H3d, β of
the object: 

Z3d = ϕ · 2i+k+Ẑ−2

X3d = [XP+û−cu ](ϕ·2i+k+Ẑ−2)
fu

Y3d = [YP+v̂−cv ](ϕ·2i+k+Ẑ−2)
fv

,
W3d = eŵ · w0

L3d = el̂ · l0
H3d = eĥ · h0,

β =


θ̂ − π, i f α̂ = 1, θ̂h = 1
θ̂, i f α̂ = 0, θ̂h = 0
−θ̂, i f α̂ = 1, θ̂h = 0
−θ̂ + π, i f α̂ = 0, θ̂h = 1,

(4)

where (XP, YP) represents the center of the grid.

Figure 5. The decomposition of the observation angle β by the axis classification α, the heading
classification θh, and the angle offset θ.

2.3.2. Score Prediction

For the confidence prediction, according to KITTI’s standard [33] for difficulty level,
we piecewise predict the confidence of different difficulty levels and set the ground truth
to 1.0, 0.8, 0.6, and 0.4, respectively. Following FCOS [17], the center-ness is defined as the
normalized distance from the grid’s center to the object’s 2D center. Following IoUNET [34],
the IoU is defined as the intersection over the union of the 3D prediction box and the 3D
ground-truth box.

2.4. Loss

For the positive samples’ assignment strategy, M3D-RPN [25] sets the girds containing
the object center as positive samples. FCOS3D [35] sets the grids near the object center as
positive samples. We set all the grids inside the projected ground-truth box as positive
samples and those outside as negative to ease the imbalance between positive and negative
samples. Considering that our network uses the depth-based stratification structure, we
set the confidence label of a grid as “ignore” if its center lies within an object beyond
the predictable depth range of the relative detection head. As the solution to the label
ambiguity that occurs when two or more boxes overlap on the image, we set the grid
only responsible for the closest object due to the visibility from the camera’s perspective.
As shown in Figure 6, compared with M3D-RPN and FCOS3D, our network has more
positive samples to ease the imbalance between positive and negative samples.
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(a) (b) (c)

Figure 6. The comparison of positive samples’ assignment strategy among M3D-RPN (a), FCOS3D
(b), and MDSNet (c). We use red box to denote the ground truth box, light blue grid to denote
negative samples, and light green masked grid to denote positive samples.

The loss L in our network is composed of classification loss Lc and 3D box L3d:

L = Lc + L3d, (5)

We use the sum of confidence loss, center-ness loss, and IoU loss as the classifica-
tion loss, and ignore the contribution from all samples labeled as “ignore”. Inspired
by FCOS [17], we add two branches parallel with the confidence branch to predict the
center-ness and IoU and use the Quality Focal Loss (QFL) [36] to optimize the confidence,
center-ness, and predicted-IoU.

We add up localization loss, size loss, and angle loss as our L3D loss. We use the L2
loss to optimize the localization and size predictions. VoxelNet [1] directly uses the offset
of radians as the loss function. However, in the case shown in Figure 7a, the overlap of the
two boxes is considerable while the network still generates a large angle loss. To solve this
problem, SECOND [37] proposed a new angle loss as follows:

Lrot = SmoothL1[sin(β− β̂)], (6)

where β and β̂, respectively, denote the ground truth observation angle and the predicted
observation angle. This function naturally models IoU against the angle offset function.
However, in the case shown in Figure 7b, the derivative of the loss is improperly small
despite the loss reaching the maximum value, making it difficult for the network to regress.
To overcome the above problems, we design a new angle loss:

Lrot = (θ − θ̂)2 + (α− α̂)2 · sin(2 · θ̂) + (θh − θ̂h)
2, (7)

where α and α̂, respectively, denote ground truth axis and the predicted axis, θ and θ̂,
respectively, denote ground truth angle offset and the predicted angle offset, θh and θ̂h,
respectively, denote the ground truth heading and the predicted heading. Our angle loss
not only establishes a consistent model between the IoU and the observation angle but also
makes it easier to train the network when the angle loss rises to the maximum.

We assume that the network has predicted an accurate θ̂. As shown in Figures 8 and 9,
the inaccurately predicted axis α̂ has a minor effect on the IoU when the ground truth angle
offset is close to either 0◦ or 90◦, while it has a significant impact on the IoU when the
ground truth angle is close to 45◦. We apply a weighted parameter sin(2 · θ̂) to the axis loss
to increase the penalty for the inaccurate axis prediction when the ground truth angle is
close to 45◦.
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(a) (b)

Figure 7. (a) The case where the angle loss function used in AVOD may encounter problems. (b) The
case where the angle loss function used in SECOND may encounter problems. We use red solid box
to denote the ground truth box and green-dotted box to denote the predicted box.

(a) (b) (c)

Figure 8. The influence of axis prediction error on IoU at different values of θ. We show the cases
when θ = 10◦ (a), θ = 45◦ (b) and θ = 80◦ (c). We use red solid box to denote the ground truth box and
green-dotted box to denote the predicted box.

Figure 9. The curves of Lrot and IoU with θ̂ when the network predicts an inaccurate axis α̂ and an
accurate angle θ̂.

2.5. Density-Based Soft-NMS

As shown in Algorithm 1, the traditional Soft-NMS algorithm [38] selects the detection
box bi according to the predicted confidence score in descending order. It uses the IoU-
based weighting function f (IoU(M, bi)) to decay the confidence score of the box bi that
has a high IoU with the set of the predicted boxes M, as follows:

f (IoU(M, bi)) = e−
IoU(M,bi)

2

σ , (8)
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where σ is a hyperparameter of the decay coefficient.

Algorithm 1: The pseudo-code of density-based Soft-NMS.
Input:

B = {b1, ..., bn}, S = {s1, ..., sn}, Nt,
B is the list of initial detection boxes,
S contains corresponding detection scores,
Nt is the NMS threshold,

1: D ← {},
2: B0 ← B,
3: while B 6= empty do
4: m← argmax S,
5: M← bm,
6: D ← D ∪M, B← B−M,
7: for bi in B do
8: if IoU(M, bi) ≥ Nt then
9: si ← si · f (IoU(M, bi)),

10: end if
11: end for
12: sm ← sm · g(IoU(bm, B0)),
13: end while
14: return D, S

Since our network predicts redundant boxes for one object in different depth stratifica-
tions, we develop a density-based Soft-NMS algorithm to filter repeated boxes. The key
strategy of our NMS algorithm is that the denser the predicted box is, the more likely the
object exists. We define the density of a candidate box as the sum of IoU between the
candidate box and all surrounding boxes. Based on the results obtained by the 3D Soft-
NMS algorithm, we use the density-based weighting function g(IoU(bm, B0)) to activate
the candidate box, which has a high density:

g(IoU(bm, B0)) = 2− e−
∑b∈B0

IoU(b,bm)2

γ , (9)

where γ is another hyperparameter of the decay coefficient.

3. Experimental Results
3.1. Dataset

We evaluate our MDS-Net on the challenging KITTI data set [33]. The 3D detection of
this data set contains two core tasks: bird’s eye view (BEV) object detection and 3D object
detection. The dataset assigns its samples to three difficulty categories (easy, medium,
and difficult) according to the object’s truncation, occlusion, and 2D bounding box height.
We evaluate our algorithm on KITTI’s three classes in this work. Following [21], we apply
the two split methods of the validation dataset [39] and official test dataset [33]. In each
split method, the data from the same sequence will only appear in one split so that the
interference of adjacent frames to the network model is eliminated.

Following [40], KITTI uses Average Precision on 40 recall positions (AP40) on the
official test dataset to replace Average Precision on 11 recall positions (AP11). On the
official test dataset and validation dataset, we show the AP40 with a 0.7 IoU threshold,
unless otherwise noted.

3.2. Implementation Details

Seeing that the center-ness and IoU prediction need a better box prediction result, we
first train the location regression network except for the center-ness and IoU branches with a
piecewise decayed learning rate. The initial learning rate is 10−4, and it will decay to 3 · 10−5
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and 10−5 at the 30th epoch and 50th epoch, respectively. We then train the score branch for
10 epochs with a learning rate of 10−5. We use the pre-trained weights under the COCO
dataset [41] to initialize our backbone. In our density-based Soft-NMS algorithm, σ is a
hyperparameter of the weighting function f (IoU(M, bi)), Nt is the threshold of IoU, and γ
is a hyperparameter of the weighting function g(IoU(bm, B0)). A smaller σ means that the
confidence of the redundant boxes is decayed more. A smaller setting of Nt means that more
boxes are considered as redundant boxes. A smaller setting of γ means that the confidence
of the box that has a high density is activated more. We use Bayesian optimization to
adjust the parameters, σ, γ and Nt, on the validation set with the AP3D of the medium
level as the optimization goal for the three classes, and show the process of adjusting the
parameters and the effect of the parameters on the AP3D score in Section 3.4.1. We then
apply the optimized parameters to the test dataset. We obtain σ = 0.9, γ = 25, Nt = 0.7
for car, σ = 1.0, γ = 32, Nt = 0.4 for pedestrian, and σ = 1.2, γ = 30, Nt = 0.4 for
cyclist. For parameters of the Depth Stratification structure, as described in Section 2.2,
The depth ranges predicted by the six detection heads are

[
ϕ · 2i+k−2, ϕ · 2i+k−1

]
, with i

and k, respectively, representing the index of feature maps and that of detection heads,
and ϕ representing a hyperparameter that is used to control the predictable ranges of our
framework. We obtain the parameter ϕ by counting the depths of the three classes in the
KITTI training set, and produce the histograms of the depth of the three classes in the KITTI
training set in Figure 10. From the results, we learn that the depth of cars mainly distributes
between 5 m–70 m, while the depth of pedestrians and cyclists mainly distributes between
2.5 m–55 m. Therefore, the ϕ equal to 5 m, 2.5 m, and 2.5 m, respectively, for car, pedestrian,
and cyclist. Due to the limitations of the network model, the maximum depth predicted by
the network for the objects is 40 m when ϕ is set to 2.5. This will cause the network to give
up predicting pedestrians and cyclists between 40 m and 55 m, which respectively occupy
about 2% of pedestrians and 8% of cyclists in KITTI. This is worthwhile, considering the
facts that close objects produce more dangers in autonomous driving tasks. Thus, we set
the initial depth ϕ = 5 m for car, ϕ = 2.5 m for pedestrian, and cyclist in KITTI. We set (5 m,
80 m) as the predictable depth range for car and (2.5 m, 40 m) for pedestrian and cyclist,
ignoring the objects outside the range.

Figure 10. The histograms of the depth of the three classes in the KITTI training set.

3.3. Evaluation Results

We evaluate our network for the BEV object detection task and the 3D object detection
task, each under both validation [39] and the official test dataset [33]. In Table 1, we
compare the evaluation results of our network with the existing state-of-the-art monocular
3D detection algorithms. Our network obtains remarkable results in the car detection of
all three difficulty levels, especially the easy level, for both tasks. For instance, under the
test data split with IoU ≥ 0.7, we surpass the previous state-of-the-art 3D object detection
approach by +5.25 on easy, +2.70 on moderate, and +1.73 on hard for car. Moreover, in
Table 2, for pedestrian and cyclist, we also surpass the previous state-of-the-art 3D object
detection approach by +5.76/+2.56 on easy, +3.61/+1.01 on moderate, and +3.12/+0.86
on hard. In addition, we compare Table 3 the performance between our method and the
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three methods of MonoEF, GUPNet, and MonoDTR. The three methods obtain similar
performance with ours while suffering from higher time complexity. In Table 3, in the
easy level, our method surpass MonoDTR by +2.31 on AP3D and +4.22 on APBEV . This
indicates that our method has better detection performance for easy objects. In addition, in
other difficulty levels, the results of our method are also close to other methods. It is worth
noting that our method does not need to generate extra information. Thus, our method has
the shortest inference time among the above methods.

We evaluate our network on car in different depth ranges (5–20 m, 10–40 m, 20–80 m)
with IoU criteria of 0.7 and 0.5 on the KITTI validation set to prove the validity of the depth
stratification. The improvement is defined as the percentage gain of our algorithm over
M3D-RPN. In Table 4, our method outperforms M3D-RPN [25] with margins on AP of
+52.29/+15.16 in 5–20 m, +72.87/+29.21 in 10–40 m, and +169.81/+53.55 in 20–80 m
for criteria of IoU ≥ 0.7 and IoU ≥ 0.5. In order to evaluate our network for the depth
prediction, we denote the average difference in the depth between every ground truth object
and its best-predicted box as the average depth estimation error and calculate the error
in intervals of 10 meters in Figure 11. As shown in the result, the depth estimation error
increases as the distance grows. Moreover, we achieve a more accurate depth estimation
improvement in 10–40 m, indicating that our network is able to obtain better predictions in
critical areas.

Table 1. The comparison of AP40 between our framework and image-only 3D localization frameworks
for car on the Bird’s Eye View object detection task and 3D object detection task. (The time is reported
from the official leaderboard with slight variances in hardware). We use bold type to indicate the
best result.

Time AP3D APBEV
Easy Mod Hard Easy Mod Hard

M3D-RPN [25] 0.16 s 14.76 9.71 7.42 21.02 13.67 10.23
D4LCN [42] 0.2 s 16.65 11.72 9.51 22.51 16.02 12.55
UR3D [30] 0.12 s 15.58 8.61 6.00 21.85 12.51 9.20
PGD [43] 0.03 s 19.05 11.76 9.39 26.89 16.51 13.49

Ours 0.05 s 24.30 14.46 11.12 32.81 20.14 15.77

Table 2. The comparison of AP40 between our framework and image-only 3D localization frameworks
for pedestrian and cyclist on the 3D object detection task. We use bold type to indicate the best result.

Time Pedestrian Cyclist
Easy Mod Hard Easy Mod Hard

M3D-RPN [25] 0.16s 4.92 3.48 2.94 0.94 0.65 0.47
D4LCN [42] 0.2 s 4.55 3.42 2.83 2.45 1.67 1.36

PGD [43] 0.1 s 2.28 1.49 1.38 2.81 1.38 1.20

Ours 0.05 s 10.68 7.09 6.06 5.37 2.68 2.22

Table 3. The comparison of AP40 between our framework and image-only 3D localization frameworks
that require extra time complexity to generate additional information for car on the Bird’s Eye View
object detection task and 3D object detection task.

Time AP3D APBEV
Easy Mod Hard Easy Mod Hard

MonoEF [27] - 21.29 13.87 11.71 29.03 19.7 17.26
GUPNet [28] 0.1 s 20.11 14.20 11.77 - - -

MonoDTR [29] 0.08 s 21.99 15.39 12.73 28.59 20.38 15.77

Ours 0.05 s 24.30 14.46 11.12 32.81 20.14 15.77
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Table 4. The AP40 for car in different depth ranges on the KITTI validation set. We use bold type to
indicate the best result.

IoU ≥ 0.7 IoU ≥ 0.5
5–20 m 10–40 m 20–80 m 5–20 m 10–40 m 20–80 m

M3D-RPN [25] 17.92 6.82 1.59 50.07 24.51 10.55
Ours 27.29 11.79 4.30 57.67 31.66 16.20

Improvement +52.29% +72.87% +169.81% +15.16% +29.21% +53.55%

Figure 11. The average error of depth prediction visualized in different depth ranges.

It must be noted that by regressing the 3D bounding boxes on the image directly, our
approach reaches the operating speed of 20 FPS and better meets the real-time require-
ments of autonomous driving, as compared to the existing networks based on the pseudo
point cloud.

As mentioned in Section 2 of this paper, the depth stratification strategy enhances the
model’s prediction for depth, the assignment strategy of the positive sample enhances the
prediction for occluded objects, and the new angle loss function enhances the prediction
for angles. To verify the validity of the components, we visualize some detection results in
Figure 12. As shown in the results, our method obtains a much higher accuracy than M3D-
RPN in the prediction of depth and angle, and works more effectively in the prediction of
the occluded objects, as demonstrated in the left bottom plot of the figure. Therefore, our
method obtains the improvement in AP3D and APBEV . This also proves the effectiveness of
our proposed depth stratification strategy, the assignment strategy of the positive sample,
and the new angle loss. Moreover, in Figure 13, we visualize more 3D detection results on
the KITTI validation set [39].

3.4. Ablation Study

For the ablation study, following [39], we divide the training samples of the KITTI data
set into 3712 training samples and 3769 verification samples and then verify the network’s
accuracy according to the AP40 standard.

3.4.1. Depth Stratification

We compare the object detection AP40 with and without depth stratification on the
car. In the test without depth stratification, by referring to the strategy of the YOLO v3
network [15], we use IoU between the 2D box of the object and the preset anchor as the
basis for stratification. As shown in the first and second rows of Table 5, the network based
on Multi-scale Depth Stratification (MDS) (the second row) achieves a significant gain of
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6.35 over the baseline implementation (the first row) on 3D detection on moderate, which
verifies the superiority of the MDS structure.

Figure 12. Qualitative results from our framework and MDSNet in the KITTI validation set. We use
red box to denote the ground truth box and green box to denote the predicted box. It can be observed
from the figure that our model has better accuracy for the prediction of depth and angle, and better
performance for the detection of occluded objects.

Figure 13. Qualitative results of our framework in the KITTI validation set.

Table 5. The AP40 for ablation experiments on network components. We use bold type to indicate
the best result.

Depth
Stratification

Density-Based
Soft-NMS

Piecewise
Confidence

APBEV AP3D
Easy Mod Hard Easy Mod Hard

2.72 2.29 1.95 1.69 1.36 1.09
X 14.99 12.32 10.86 9.83 7.71 6.84
X X 20.69 17.09 15.16 14.67 12.03 10.43
X X 30.99 20.09 16.42 21.35 13.6 10.78
X X X 34.56 22.86 18.56 25.30 16.88 13.53

In addition, we also compare the impact of different depth stratification strategies on
the results. First, we set each FPN layer’s predictable depth range of the depth stratification
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structure to be an ’equal interval and no overlap’. We modify the network, so that each
feature layer is connected to one detection head. The depth ranges of the predicted car of
F1, F2 and F3 are [5, 30] m, [30, 55] m and [55, 80] m, respectively. For the second experiment,
we add a feature layer F0 with the downsampling ratio of 64 to the network, and each
feature layer is connected to one detection head, and the depth ranges of the predicted
car of F0, F1, F2 and F3 are [5, 10] m, [10, 20] m, [20, 40] m and [40, 80] m, respectively,
which is denoted as ‘exponentially increasing interval and no overlap’. Finally, the depth
stratification structure we described in Section 2.2 is denoted as an ‘exponentially increasing
interval with overlap’. In Figure 14, we calculated the AP40 in different depth ranges
and we find that our depth stratification structure has better AP40 for cars in different
depth ranges, especially within 10–40 m. This verifies that the depth stratification of
‘exponentially increasing interval and no overlap’ allows the network to better learn the
unified representation of objects in different depth ranges, and improves the robustness of
the network.

Figure 14. The AP40 using different depth stratification models on the Bird’s Eye View object detection
task in different depth ranges.

3.4.2. Density-Based Soft-NMS and Piecewise Score

As shown in Figure 15, we use Bayesian optimization to select parameters (σ, γ, Nt) for
density-based Soft-NMS and demonstrate the effect of these three parameters on the AP40.
Moreover we demonstrate the values of three parameters for the different classes when the
AP40 is highest in Section 3.2. To better understand the effect of the density-based Soft-NMS
and piecewise score, we ablate them by using a standard NMS algorithm according to
M3D-RPN and by setting all object scores to 1 as the baseline implementation (the second
row in Table 5). We observe that both components achieve a considerable gain in both 3D
and BEV perspectives. The combination of the two components surpasses the baseline by
+9.17 on the 3D detection at the moderate level.

3.4.3. Assignment Strategy of Positive Samples

We replace the positive samples assignment strategy with the strategies proposed by
M3D-RPN [25] and FCOS3D [35]. We calculate the positive and negative samples ratios
using different strategies and find that our proposed strategy has a more balanced positive
and negative samples ratio. Moreover, we compare the 3D and BEV detection AP to verify
our method’s effectiveness. As shown in Table 6, our positive samples’ assignment strategy
improves performance by +6.95/+ 2.86 in APBEV and +7.49/+ 1.84 in AP3D on moderate
over the M3D-RPN and FCOS3D. The results demonstrate that our proposed strategy can
effectively ease the imbalance between positive and negative samples to improve the
robustness of the network.
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Figure 15. The effect of σ, γ and Nt on the AP for the density-based soft NMS by applying Bayesian
optimization. We first optimize σ and Nt in the 3D soft NMS, and then optimize γ in the density-based
Soft NMS.

Table 6. The comparison of AP40 among our positive samples’ assignment strategy, the strategy
of M3D-RPN, the strategy of FCOS3D on the Bird’s Eye View object detection task, and 3D object
detection task on the KITTI validation set. We use bold type to indicate the best result.

APBEV AP3D Positive:Negative (Samples)Easy Mod Hard Easy Mod Hard

M3D-RPN [25] 17.15 13.14 11.6 8.01 6.11 5.18 1:3716
FCOS3D [35] 24.34 17.23 14.84 17.62 11.76 9.93 1:429

Ours 30.99 20.09 16.42 21.35 13.6 10.78 1:92

3.4.4. Angle Loss

We compare the 3D & BEV detection AP and Average Heading Similarity (AHS) of
our proposed angle loss with the angle loss of AVOD [9] and that of SECOND [37]. It
demonstrates that our angle loss focuses more on the consistency of angle prediction and
overlap, rather than struggling with direction recognition in challenging cases. As shown in
Table 7, our angle loss improves performance by +3.94/+ 3.38 in APBEV and +2.74/+ 2.71
in AP3D over the SECOND and AVOD on moderate. Moreover our angle loss improves
performance by 3.07/2.42 in AHS on BEV object detection task over the SECOND and
AVOD on moderate. We also observe from the training process in practice that our angle
loss improves the convergence speed of the angle regression, suggesting that we mitigate
the problem of extrema convergence in the SECOND.

Table 7. The comparison of the AP40 and the AHS among our angle loss function, the angle loss
function of M3D-RPN and the angle loss function of FCOS3D on the Bird’s Eye View object detection
task and 3D object detection task on the KITTI validation set. We use bold type to indicate the
best result.

APBEV AP3D AHS
Easy Mod Hard Easy Mod Hard Easy Mod Hard

AVOD [9] 24.78 16.71 13.71 16.87 10.89 8.77 16.67 11.36 9.44
SECOND [37] 25.74 16.15 12.91 17.83 10.86 8.46 16.97 10.71 8.62

Ours 30.99 20.09 16.42 21.35 13.6 10.78 20.50 13.78 11.36



Sensors 2022, 22, 6197 17 of 20

3.4.5. Shape-Aware Convolution

As shown in Table 8, we compare the impact of different SAC structures. We use
our networks without the SAC module as structure A. In Figure 16b, we add a branch of
3× 1 convolution on A as structure B. The added branch is used to increase the horizontal
receptive field of the network. Moreover, in Figure 16c, we add a branch of 1× 3 convolution
on A as structure C. The added branch is used to increase the longitudinal receptive
field of the network. Finally, our proposed SAC structure is referred to as Structure D.
The result demonstrates that our proposed SAC structure surpasses A by +1.94/ + 1.89 on
easy, +1.15/ + 1.03 on moderate, and +0.99/ + 1.08 on hard for car and pedestrian class.
This result shows that 3× 1 and 1× 3 convolution together improve car and pedestrian
prediction. Shape-aware convolution did not improve the result for cyclist. According to
the statistical results in Figure 4, we consider that this is because the cyclist in KITTI is
relatively rare, which makes the network insensitive to the cyclist.

(a) (b) (c) (d)

Figure 16. Different shape-aware convolution. We show the illustration of structure A (a), structure
B (b), structure C (c), and structure D (d).

Table 8. The comparison of the AP40 among four shape-aware convolution structures in Figure 16 on
the 3D object detection task on the KITTI validation set. We use bold type to indicate the best result.

Car Pedestrian Cyclist
Easy Mod Hard Easy Mod Hard Easy Mod Hard

Structure A 19.41 12.45 9.79 8.42 6.52 5.18 5.31 2.67 2.4
Structure B 20.22 12.71 10.11 8.92 6.82 5.5 4.15 2.37 2.18
Structure C 20.16 12.81 10.17 9.03 6.9 5.67 4.55 2.06 1.87
Structure D 21.35 13.6 10.78 10.31 7.55 6.26 4.17 2.2 1.91

3.5. Limitations

As shown in Figure 17, the visualization of the dataset demonstrates that our model is
insensitive to some close objects, causing inaccurate prediction or even missed detection
of thses objects. The visualization illustrates that most of these objects are truncated by
the images. Our proposed depth stratification strategy uses the mathematical relationship
between size and depth in the image of an object to enhance the prediction of depth.
However, when the object is truncated by the image, the mathematical relationship we
established does not hold anymore, causing inaccurate prediction or even missed detection
of these objects. Although severely occluded objects are not required to be detected in the
KITTI dataset, in autonomous driving tasks, inaccurate prediction or missed detection of
close objects is very dangerous. For the detection of truncated targets, a new branch is
added after the output of the pyramid network, using a strategy for truncated objects, which
is responsible for the detection of truncated objects. This is also part of our future work.
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Figure 17. Some failure cases of our method. We use red box to denote the ground truth box, green
box to denote the predicted box.

4. Conclusions

In this work, we propose a one-stage anchor-free network, which realizes direct
detection of 3D objects from monocular images by applying the newly proposed depth-
based stratification structure, IoU-aware angle loss, and density-based Soft-NMS algorithm.
The experimental results based on the KITTI dataset [33] have demonstrated that our
network can significantly improve the accuracy and recall rate in both bird’s-eye view object
detection tasks and 3D object detection tasks. However, our network suffers decreased
detection accuracy for the objects truncated by the image. We will investigate the strategies
that can be applied to the proposed network to enhance the prediction of close objects.
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