
Citation: Abdelkader, M.; Mabrok,

M.; Koubaa, A. OCTUNE: Optimal

Control Tuning Using Real-Time Data

with Algorithm and Experimental

Results. Sensors 2022, 22, 9240.

https://doi.org/10.3390/s22239240

Academic Editors: Stephen Monk

and David Cheneler

Received: 31 October 2022

Accepted: 21 November 2022

Published: 28 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

OCTUNE: Optimal Control Tuning Using Real-Time Data with
Algorithm and Experimental Results
Mohamed Abdelkader 1,* , Mohamed Mabrok 2 and Anis Koubaa 1

1 College of Computer & Information Sciences, Robotics & Internet of Things Laboratory,
Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia

2 Mathematics Program, Department of Mathematics, Statistics and Physics, College of Arts and Sciences,
Qatar University, Doha P.O. Box 2713, Qatar

* Correspondence: mabdelkader@psu.edu.sa

Abstract: Autonomous robots require control tuning to optimize their performance, such as optimal
trajectory tracking. Controllers, such as the Proportional–Integral–Derivative (PID) controller, which
are commonly used in robots, are usually tuned by a cumbersome manual process or offline data-
driven methods. Both approaches must be repeated if the system configuration changes or becomes
exposed to new environmental conditions. In this work, we propose a novel algorithm that can
perform online optimal control tuning (OCTUNE) of a discrete linear time-invariant (LTI) controller
in a classical feedback system without the knowledge of the plant dynamics. The OCTUNE algorithm
uses the backpropagation optimization technique to optimize the controller parameters. Furthermore,
convergence guarantees are derived using the Lyapunov stability theory to ensure stable iterative
tuning using real-time data. We validate the algorithm in realistic simulations of a quadcopter model
with PID controllers using the known Gazebo simulator and a real quadcopter platform. Simulations
and actual experiment results show that OCTUNE can be effectively used to automatically tune the
UAV PID controllers in real-time, with guaranteed convergence. Finally, we provide an open-source
implementation of the OCTUNE algorithm, which can be adapted for different applications.

Keywords: robotics; unmanned aerial vehicles; control tuning; open-source

1. Introduction

Control tuning is a fundamental concept in any control system’s design cycle; see, for
instance, Refs. [1,2] and the references therein. In particular, robotic systems require control
tuning to perform different levels of autonomous tasks with the desired performance.
In these systems, conventional controllers, such as the Proportional–Integral–Derivative
(PID) controller, are usually tuned using an iterative manual process or offline data-driven
methods.

For instance, in quadrotor control, known open-source autopilots, such as PX4 [3]
and Ardupilot [4], use either manual tuning or non-optimal auto-tuning methods. Fur-
thermore, many dynamical systems exhibit complex characteristics, such as non-linearity,
time-varying parameters, and time delay, which leads to different operating conditions
and/or disturbances, leading to poor control.

Generally speaking, control tuning methodologies can be classified as offline methods
and online methods. In the offline methods, such as linear–quadratic Gaussian control
(LQG) [5,6] and H-infinity control [7], the controller requires an accurate model of the
system dynamics under control. The controller is designed for the model of the system and
is tuned before the implementation stage. These controllers work well with systems that
have an accurate linear model. However, they give poor performance otherwise. On the
other hand, in the online adaptive methods, the model is often required as well. However,
the controller can adapt to the un-modeled system dynamics, which is well-known under

Sensors 2022, 22, 9240. https://doi.org/10.3390/s22239240 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22239240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0518-852X
https://orcid.org/0000-0003-3638-4424
https://orcid.org/0000-0003-3787-7423
https://doi.org/10.3390/s22239240
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239240?type=check_update&version=2

Sensors 2022, 22, 9240 2 of 21

the adaptive control theory [8,9], which is well-developed and established in linear and
nonlinear control systems.

Online model-free methods also exist in several studies [10–12]. Another class of
gradient-descent-based algorithms also exist in the literature. For instance, a control
method based on an adaptive PID neural network and particle swarm optimization (PSO)
algorithm was developed in [13]. In [14], the investigation of adaptive learning control for
underwater vehicles (AUVs) with unknown uncertainties using gradient descent algorithm
is presented, where the unknown nonlinear functions in the system are approximated by
radial basis function neural networks.

In [15], another adaptive gradient descent algorithm combined with a fuzzy system
was developed to improve the attitude estimation accuracy and adaptability of unmanned
underwater vehicles under various ocean environments. Many attempts have been made
to build auto-tuned PID controllers using different adaptive learning techniques [16]. For
instance, the authors in [17,18] used genetic algorithms to tune a PID. Furthermore, the
use of a neural network to tune a PID controller through extensive training was discussed
in [19]. However, these techniques have several drawbacks, such as a lack of stability
guarantees, slow convergence, or implementation constraints.

In this paper, we develop an online learning algorithm based on the backpropagation
learning technique to learn a controller for a dynamical system without knowing the system
model. Our control-learning algorithm is based on the work presented in [20,21], where the
backpropagation learning technique is used in system identification for linear dynamical
models. The use of backpropagation learning techniques in training systems is becoming
the norm due to the extensive use of backpropagation algorithms in the modern machine-
learning domain. The accessibility of the backpropagation algorithms in several software
packages, such as TensorFlow [22] and PyTorch [23], has made them more attractive and
easy to use.

The backpropagation learning technique was used in several attempts in PID tuning.
For instance, in [24], a fuzzy PID controller, which is a combination of a fuzzy controller
with a PID neural network (PIDNN), was proposed. In [25], a conventional Neuro PID
controller for linear or nonlinear systems that was unaffected by the unpredictability of
the system’s parameters and disturbances, such as noise, was developed. However, again,
these methods require a model for the controlled system as they lack stability guarantees.

This paper proposes a novel, implementable, and fast algorithm that can perform
online optimal control tuning (OCTUNE) of a discrete linear time-invariant (LTI) controller
in a classical feedback system, only using real-time system signals, i.e., no model required
for the system under control. The OCTUNE algorithm uses the backpropagation optimiza-
tion technique to optimize a performance function (squared error between the desired and
actual signals) in real-time. Furthermore, convergence guarantees are derived using the
Lyapunov stability theory to ensure stable tuning using online real-time data.

We demonstrate the effectiveness and practicality of the OCTUNE algorithm by ap-
plying it to the tuning of a discrete PID controller (a particular case of an LTI controller)
that is used to stabilize the angular rates of a quadrotor unmanned aerial vehicle (UAV).
The demonstration is performed in a realistic simulation environment using the Gazebo
simulator and the robot operating system (ROS). The simulation results show how OC-
TUNE can be effectively used to automatically tune the UAV angular rate PID controllers
using real-time signals in a fraction of a minute with a low number of online iterations.
Finally, an open-source implementation of the OCTUNE algorithm is provided, which can
be adapted for different applications.

The contributions of this work are summarized as follows.

• An online and model-free optimal auto-tuning algorithm for a generic LTI controller
is developed, called OCTUNE, which is demonstrated using realistic simulations of a
quadrotor system.

• Convergence proof of the OCTUNE algorithm is derived in order to guarantee safe
control learning/tuning.

Sensors 2022, 22, 9240 3 of 21

• We provide our implementation as an open-source software package of OCTUNE to
facilitate the use and adaptation of the presented algorithm for different applications. The
links to the open-source software is provided in the Supplementary Materials section.

The remainder of the paper is organized as follows. The problem statement is pre-
sented in Section 2. The optimal tuning algorithm is derived in Section 3, followed by
convergence analysis in Section 4. Realistic simulation results of the OCTUNE algorithms
for a quadrotor tuning application are discussed in Section 5. Finally, our conclusions and
future work are discussed in Section 6.

2. Problem Statement

This section defines the controller architecture to be optimized using the OCTUNE
algorithm described in Section 3 to improve the reference tracking in a classical feedback
system. In this work, we assume a standard feedback system as shown in Figure 1, where
the system is represented by an unknown discrete-time plant, P(z). The controller is
assumed to be a discrete-time linear time-invariant (LTI) system of the following transfer
function.

C(z) =
B(z)
A(z)

=
b0 + b1z−1 + · · ·+ bnb z−nb

1 + a1z−1 + · · ·+ ana z−na
, (1)

where a’s and b’s are the controller’s denominator and numerator coefficients, respectively.
The system signals, reference r(k), controller output u(k), and output y(k) for time instances
k = 0, 1, 2, . . . are all assumed to be measurable in real-time.

Figure 1. A feedback system with an unknown discrete-time plant, P(z), and a discrete-time LTI
controller, C(z).

It is assumed that the controller in Equation (1) is initially stabilizing the feedback sys-
tem in Figure 1. However, the performance defined later in Equation (2) may not be initially
optimal. In other words, the system output y(k) is poorly tracking the reference r(k).

The objective of this work is to find a controller structure of the form C(z), which
optimizes the performance of the system response—defined later in Equation (2). To
achieve this objective, we propose the OCTUNE algorithm, which updates the controller’s
parameters a and b in real-time as shown in Figure 2. The OCTUNE block shown in Figure 2
receives r(k), y(k), and u(k) signals in real-time and computes the updated controller
parameters in order to minimize the error between the reference signal r(k) and the actual
output signal y(k). In addition, the OCTUNE algorithm updates the controller parameters
while guaranteeing stable convergence to the minimum error using only real-time signals.

Figure 2. A feedback system with controller C(z) coefficients updated by the OCTUNE algorithm.
The OCTUNE algorithm receives the reference, actual, and controller output signals and performs
update operations to update the controller parameters.

Sensors 2022, 22, 9240 4 of 21

3. Control Tuning Algorithm

The objective of the OCTUNE is for the system output y(k) to track the desired
reference signal r(k) as accurately as possible. Therefore, we define the objective function L
that is to be optimized as follows.

L(k) =
1
2

k

∑
i=k−N

e2(i) (2)

where N is the number of available data samples, and the error e(k) at time instant k is
defined as the difference between the desired reference signal r(k) and the corresponding
output signal y(k),

e(k) = r(k)− y(k) (3)

The objective function L can be written in a compact form as follows.

L =
1
2
||E||2 (4)

where || · || is the Euclidean norm, and

E = [e(k− N), e(k− N + 1), . . . , e(k)]T (5)

In the following section, an algorithm based on the backpropagation method is de-
veloped to compute the controller parameters in Equation (1) that minimize the objective
function defined in Equation (4) given the system signals r(k), y(k), and u(k).

Optimization Using Backpropagation

Backpropagation (BP) is a widely used algorithm in machine learning for efficiently
training artificial neural networks (ANNs) [26]. BP computes the gradient (partial deriva-
tives) of the loss function with respect to the weights of the neural network. The partial
derivatives are then used to update the weight values. This process is repeated until
convergence is achieved. The objective of this work is to compute the controller parameters
(analogous to weights in ANNs) that minimize the loss function in Equation (2).

As depicted in the computational graph in Figure 3, the backpropagation operations
(represented using dashed lines) use the chain rule to compute the partial derivatives ∂L

∂a , ∂L
∂b

through the intermediate partial derivatives ∂L
∂y , ∂L

∂u . Then, the computed partial derivatives
∂L
∂a , ∂L

∂b are used to compute the new controller parameters a, b using the delta rule (gradient
descent), Equation (16).

Figure 3. Forward and backward operations are used to compute the partial derivatives. Solid arrows
represent forward propagation, and backpropagation is represented by dashed arrows.

The optimization problem is defined as follows,

min
ai ,bi

L =
1
2

k

∑
i=k−N

e2(i) (6)

Sensors 2022, 22, 9240 5 of 21

In order to use the backpropagation algorithm [26] to solve (6), the partial derivatives of
the objective function L with respect to the controller coefficients ai, bi need to be calculated,
which is described as follows.

The objective L is directly a function of the error e; hence, the partial derivative of L
with respect to the error ek at time k, and the error vector E at all N samples, are the first
derivatives that need to be computed as follows.

∂L
∂ek

= e(k)

∂L
∂E

= E
(7)

Next, going backward in the chain, the partial derivative of L with respect to the
output yk at time k (and y for all N samples) is defined as follows,

∂L
∂yk

=
∂L
∂ek

∂ek
∂yk

= −e(k)

∂L
∂y

= −E
(8)

Next, using the chain rule, the change of L with respect to the controller denominator
coefficients ai is

∂L
∂ai

=
k

∑
t=k−N

∂L
∂et

∂et

∂ai

=
k

∑
t=k−N

∂L
∂et

∂et

∂yt

∂yt

∂ut

∂ut

∂ai

=
k

∑
t=k−N

e(t)(−1)
∂yt

∂ut

∂ut

∂ai

i = 1, . . . , na

(9)

Equation (9) can be written in a compact vector form as follows.

∂L
∂a

= −JaE ∈ Rna

Ja =

∂yk−N
∂uk−N

∂uk−N
∂a1

. . . ∂yk
∂uk

∂uk
∂a1

...
...

...
∂yk−N
∂uk−N

∂uk−N
∂ana

. . . ∂yk
∂uk

∂uk
∂ana

 ∈ Rna×(N+1)
(10)

Similarly, the change of L with respect to the controller’s numerator coefficients bj can
be calculated as follows.

∂L
∂bj

=
k

∑
t=k−N

∂L
∂et

∂et

∂bj

=
k

∑
t=k−N

∂L
∂et

∂et

∂yt

∂yt

∂ut

∂ut

∂bj

=
k

∑
t=k−N

e(t)(−1)
∂yt

∂ut

∂ut

∂bj

j = 0, . . . , nb

(11)

Sensors 2022, 22, 9240 6 of 21

Equation (11) can also be written in a compact vector form.

∂L
∂b

= −JbE ∈ Rnb

Jb =

∂yk−N
∂uk−N

∂uk−N
∂b0

. . . ∂yk
∂uk

∂uk
∂b0

...
...

...
∂yk−N
∂uk−N

∂uk−N
∂anb

. . . ∂yk
∂uk

∂uk
∂anb

 ∈ Rnb×(N+1)
(12)

For compactness, let us define the following quantities, W is the controller parameter
vector, J is the Jacobean matrix of all intermediate, data-driven, partial derivatives, and ∂L

∂W
is the gradient vector of L with respect to the controller parameters W.

W = [a1, . . . , ana , b0, . . . , bnb]
T ∈ Rna+nb (13)

J =
[

Ja
Jb

]
∈ R(na+nb)×(N+1) (14)

∂L
∂W

=

 ∂L
∂a

∂L
∂b

 =
∂E
∂W

∂L
∂E

= −J · E ∈ Rna+nb (15)

Using Equation (15), the update rule of the controller coefficients ai, bi can be written
as follows.

W := W + ∆W = W − α
∂L
∂W

= W + αJ · E
(16)

The calculations of ∂u
∂ai

and ∂u
∂bi

are performed similar to the calculations of ∂y
∂bj

and ∂y
∂aj

in [20], and omitted here for brevity. In comparison to [20], in this work, we are identifying
the coefficients of the controller’s transfer function instead of the plant’s.

In [20], the calculation of ∂y
∂u , which is needed in Equations (9) and (11), was performed

using the known linear structure of the plant P(z). However, in this work, this cannot
be conducted in the same way as P(z) is assumed to be unknown. Instead, we assume
that the system signals y and u are sampled fast enough, and the following first-order
approximation is used.

∂y
∂u
≈ ∆y

∆u
=

y(k)− y(k− 1)
u(k)− u(k− 1)

(17)

Algorithm 1 presents a pseudo code of the OCTUNE algorithm.

Sensors 2022, 22, 9240 7 of 21

Algorithm 1: Pseudo code of the OCTUNE algorithm
Data: Nitr: Maximum number of iterations, Nt: Maximum optimization time
Data: W0: Initial controller parameters
Result: W = W∗, optimal controller parameters
W ←W0, Equation (13)
while Not converged do

Compute error vector E, Equation (5) ;
Compute ∂L

∂E , Equation (7) ;
Compute Ja, Equation (10);
Compute Jb, Equation (12);
Compute J, Equation (14);
Compute ∂L

∂W , Equation (15);
Compute |λmin|, the absolute value of the smallest eigenvalue of (−J · JT);
Compute optimal learning rate, α∗ = 2

|λmin|
;

Update W using Equation (16);
end

4. Convergence Analysis

The convergence of the controller coefficients ai, bi (or W) depends on the choice of
the training rate α in Equation (16). High values of α can diverge the controller coefficients,
while overly small values can guarantee convergence but with a slow training speed, which
might not be practical for real-time applications. In this section, the procedure of selecting
the proper values of α is developed.

Let V(k) be a discrete Lyapunov function [27] that is defined as follows.

V(E) =
1
2
||E||2 (18)

where || · || is the 2-norm. The Lyapunov function V(E) = 0 only when E = 0. The change
of V, ∆V is defined as follows.

∆V = V(Ek+1)−V(Ek)

=
1
2

[
||Ek+1||2 − ||Ek||2

]
= ∆ET

[
Ek +

∆E
2

] (19)

The error difference ∆E can be written as follows.

Ek+1 = Ek + ∆E = Ek +

(
∂Ek
∂Wk

)T
· ∆Wk (20)

Using Equations (15) and (16),

Ek+1 = Ek − αJT JEk (21)

Therefore, ∆E can be defined as follows

∆E = −αJT JE (22)

Theorem 1. Let α be the learning rate used in the backpropagation algorithm in Equation (16)
and |λmin| be the absolute value of the smallest eigenvalue of (−J · JT), where J is defined in
Equation (14). Then, the convergence of the controller coefficients W is guaranteed if α is chosen
such that it satisfies the following relationship.

Sensors 2022, 22, 9240 8 of 21

0 < α <
2
|λmin|

(23)

Proof. Plugging Equation (22) into Equation (19) yields

∆V = (−αJT JE)T
[

E +
1
2
(−αJT JE)

]
=
−α2

2
ET JT

[
2
α

I − J JT
]

JE
(24)

From Equation (24), ∆V < 0 if α > 0 and 2
α I − J JT is positive definite, which can

be achieved by choosing α as in (23). With V(E) > 0 for E 6= 0 and ∆V < 0 satisfied
by Equation (23), the convergence of W in Equation (16) is guaranteed. The optimal
convergence can be achieved by α∗ = 2

|λmin|
.

5. Validation: Quadrotor Tuning

This section presents realistic simulation results of the proposed OCTUNE algorithm
applied to a practical use case of tuning a quadrotor’s PID angular rate control loops in
real-time during flight. The angular rate stabilization is the innermost control loop and is
the most critical one, which affects all the other higher control loops, such as the attitude,
linear velocity, and position. For example, refer to the control architecture of the PX4
open-source autopilot PX4 control architecture [28].

Many UAVs use open-source autopilots, such as ArduPilot [4] and PX4 [3], in custom
UAV research and development works. Usually, the custom-built UAVs that use off-the-
shelf autopilots with open-source software, such as PX4 require iterative tuning of the
PID control loops, which is generally performed manually before further development
and flight testing. This manual process is essential to have a desirable flight performance.
However, it can be cumbersome and time-consuming, as it requires manually performing
flight tests, collecting data, manually analyzing them, and finally tuning the PID gains.

This manual tuning is conducted for each degree of freedom, i.e., three rotational (roll,
pitch, and yaw) and three translational (x, y, and z) degrees, repeated many times until the
desired control performance is achieved. In addition, a re-tuning process is needed if the
UAV configuration is changed, for example, by adding or removing a payload. Moreover,
the PID control loops might be tuned to work in specific environmental conditions, such as
low wind speed. Therefore, it will need to be re-tuned to perform well against different
disturbance sources and levels. An algorithm that can automatically and reliably tune
controllers in such situations and in real-time is greatly beneficial as it saves time and
optimizes performance.

The OCTUNE algorithm presented in this work effectively and practically addresses
the above mentioned issues in real-time with no manual iterations or interventions. The
OCTUNE algorithm is demonstrated with realistic quadrotor simulations in the following
sections. A link to the video of the simulation experiments is provided in the Supplementary
Materials section.

5.1. Simulation Setup

The quadrotor simulation setup consists of the four main components depicted in
Figure 4 and described as follows.

• Gazebo simulator : An open-source robot simulator [29] that accurately and efficiently
simulates several types of robots in complex indoor and outdoor environments with
multiple options of robust physics engines. It also has strong integration with the
robot operating system (ROS) to facilitate software development and integration.
The robot model simulated in this work is an actual quadrotor UAV called Iris; see
Figure 5. The quadrotor model has several plugins to simulate the onboard sensors
(Inertial measurement unit, GPS, and magnetometer) and the propulsion system. The

Sensors 2022, 22, 9240 9 of 21

model also models the mechanical structure of the drone with its mass and inertial
characteristics.

• PX4 autopilot: This is the autopilot firmware that interfaces with Gazebo to receive
the simulated sensors readings, to perform control and operations, and to send motor
commands to the motor plugins of the Gazebo quadrotor model. The PX4 autopilot
firmware implements the PID control loops tuned using the OCTUNE algorithm. The
autopilot firmware in simulation (called software in the loop, SITL) is the same as
the one on actual autopilot hardware, except that the actual sensors and motors are
replaced with simulated ones.

• MAVROS: MAVROS is a software package that interfaces between the PX4 autopilot
and the robot operating system (ROS) [30]. Interfacing PX4 with ROS makes the soft-
ware development and integration extremely streamlined and can be easily deployed
on actual hardware with almost no modifications to the software used in the simula-
tion. The MAVROS communicates the required signals (target, controller output, and
actual), and the PID controller gains between the OCTUNE application and the PX4
autopilot.

• OCTUNE: This is the implementation of the OCTUNE algorithm as a ROS software
package (node in ROS terminology) for real-time tuning. The OCTUNE node receives
the quadrotor signals (target, actual, and controller output), and the PID gains from
the MAVROS node in real-time. After the signals and the current gains are used to
compute the updated PID gains by the OCTUNE node, the new gains are sent to the
PX4 autopilot via the MAVORS node.

Figure 4. Abstract of the software architecture used in the simulations. Bold and underlined text
represent software packages that are explained in Section 5.1.

Figure 5. A snapshot of the Iris quadrotor model flying in the Gazebo simulator.

Sensors 2022, 22, 9240 10 of 21

5.2. Controller

The OCTUNE algorithm requires the definition of the controller’s transfer function as
defined in Equation (1)—namely, the numerator coefficients bi and denominator coefficients
ai. An angular rate PID controller can be represented as a discrete-time transfer function [31]
as follows.

C(z) =
U(z)
E(z)

=
b0 + b1z−1 + b2z−2

1− z−1

b0 = Kp + Kd/T + KiT

b1 = −2Kd/T − Kp

b2 = Kd/T

(25)

where b0, b1, and b2 are the controller’s transfer function numerator’s coefficients; Kp, Ki,
and Kd are the proportional, integral, and differential PID gains; and T is the sampling time
in seconds. With some algebraic manipulations, the PID gains can be calculated from the
controller’s coefficients.

Kp = −2b2 − b1

Ki = (b0 + b1 + b2)/(T)

Kd = b2/T

(26)

5.3. Algorithm Implementation and State Machine

For the real-time safe implementation and execution of the OCTUNE algorithm, a
state machine was designed to control the transitions between the different stages of the
tuning process. The four primary states are depicted in detail in Figure 6 and described as
follows.

• IDLE state: In the IDLE state, the tuning application waits for the operator to send
a start signal. Upon receiving the start signal, the application transitions to the next
state—the Get Data State .

• Initial Gain State: In this state, the initial (current) PID gains are requested from
the autopilot. If there are no failures in receiving the initial gains, the application
transitions to the next state, the Get Data Sate. Otherwise, it returns to the IDLE state.

• Get Data State: In this state, the required data for the tuning process, such as target,
actual, and control output signals, are stored in buffers in real-time, over a predefined
time period or number of samples. Once sufficient data samples are received, they
are post-processed to align the data samples according to their time stamps and
up-sampled to reduce the high-frequency noise in the acquired signals. If data post-
processing is successfully performed, the application transitions to the next state—the
Optimization state. Otherwise, the tuning process is stopped, and the application
transitions to the IDLE state.

• Optimization state: In this state, an update step of the OCTUNE algorithm, Equation (16)
is performed using the data collected and prepared in the Get Data State. The optimal
learning rate α∗ in Equation (23) is also computed in this state. If the update step
is completed successfully, the application transitions back to the Get Data State to
prepare a new set of signals for a new update iteration. If a termination condition is
reached, such as the maximum optimization iteration or maximum optimization time,
the state-machine is terminated, and the application transitions to the IDLE state to be
ready for a new tuning cycle.

Sensors 2022, 22, 9240 11 of 21

Figure 6. The auto-tuning state machine.

The aforementioned state-machine implementation is used to run multiple simulations
of real-time tuning processes for the quadrotor system, which is discussed in the following
sections.

5.4. Simulation Results with a Static Learning Rate, α

As mentioned, a primary contribution of this work is to guarantee stability during
the tuning process in real-time, which is proved using the condition on the learning rate α,
Equation (23). To demonstrate this, we compare the effect of executing the OCTUNE algo-
rithm with a fixed learning rate α and with the optimal one in Equation (23) in simulations.

A simulation run was performed with a fixed learning rate α = 0.001 for the angular
rates of the roll and pitch PID control loops. In this simulation, the following steps were
followed.

1 The quadrotor was commanded to take off in position stabilization mode and hover
at 2 m above the ground. The quadrotor was initially stable.

2 The proportional gain of the pitch rate PID control loop was increased from 0.2 to 0.6
in order to introduce high-frequency oscillations.

3 The OCTUNE algorithm was started to tune the PID gains.
4 At the end of the tuning process, the tuning performance was shown using different

plots as shown in Figure 7.

Sensors 2022, 22, 9240 12 of 21

(a) (b)

(c) (d)

Figure 7. The pitch-rate tuning process during hovering. A fixed learning rate, α = 0.001, was used.
The quadrotor started with an oscillatory angular pitch response and ended with a worse response
after tuning due to the use of a non-optimal fixed learning rate. (a) signals before tuning, (b) signals
after tuning, (c) pitch rate PID gains, (d) performance error V(E) over iterations.

As shown in Figure 7a, the quadrotor initially had an oscillatory response in the
angular rate control of the pitch axis due to high proportional gain; see the Kp = 0.6 value
at iteration 1 in Figure 7c. Since the learning rate α = 0.001 was fixed over the entire
optimization iterations, it resulted in the divergence of the system output in Figure 7b, the
oscillatory behavior of the PID gains in Figure 7c, and non-diminishing performance error
in Figure 7d. Therefore, using a fixed value of the learning rate α can be dangerous to the
system tuning process as this cannot guarantee convergence.

In the next section, the simulations are performed with the optimal condition on the
learning rate α∗ to guarantee stability during the tuning process.

5.5. Simulation Results with an Optimal Learning Rate, α∗

To guarantee the convergence of the performance metric L in Equation (4) of the
angular rate control loops of the quadrotor system, the learning rate α was computed
at each iteration, according to Equation (23), using the absolute value of the minimum
eigenvalue of the Jacobean matrix J in Equation (14), which was constructed using the
real-time signals, r(t), y(t), u(t).

Similar simulation steps were followed as in the static learning rate case, starting
with the quadrotor in a hover state, increasing the proportional gain of both roll and pitch
angular rate PID controllers to obtain high frequency oscillations, and finally starting the
OCTUNE algorithm to tune the PID gains in using real-time simulated signals.

As shown in Figures 8 and 9, the initial roll and pitch angular rate responses showed
high-frequency oscillations due to the high proportional gains. After tuning the control
loops using the OCTUNE algorithm over 28 iterations for 60 s, the control loops were

Sensors 2022, 22, 9240 13 of 21

stabilized as shown in Figures 8b and 9b. In addition, the performance error L eventually
diminished as shown in Figures 8c and 9c.

In Figures 8d and 9d, we can see that the learning rate α changes over iterations to
guarantee that the performance error eventually converges. In comparison to the oscillating
gains in Figure 7c, the gains in Figures 8e and 9e are not oscillating and are tuned to reduce
the performance error, which results in stable tracking of the angular rates as shown in
Figures 8b and 9b. The proportional gains are lowered to reduce the oscillations, and the
integral gains are increased to reduce the steady-state error. The differential gains, however,
have a minimal change, which is reasonable as high differential gains can cause system
instability.

(a) (b)

(c) (d)

(e)

Figure 8. The tuning process of the roll-rate PID controller during hovering. The quadrotor starts
with an oscillating behavior due to poorly tuned PID gains. Eventually, the angular rate loops
are stabilized after the real-time tuning process. (a) signals before tuning, (b) signals after tuning,
(c) performance error V(E) over iterations, (d) learning rate α over tuning iterations, (e) PID gains.

Sensors 2022, 22, 9240 14 of 21

(a) (b)

(c) (d)

(e)

Figure 9. The tuning process of the pitch rate PID controller during hovering. The quadrotor starts
with an oscillating behavior due to poorly tuned PID gains. Eventually, the angular rate loops
are stabilized after the real-time tuning process. (a) signals before tuning, (b) signals after tuning,
(c) performance error V(E) over iterations, (d) learning rate α over tuning iterations, (e) PID gains.

To provide numerical assessment of the tuning performance, we computed the mean
squared error MSE = 1

n ∑n
i=1(r(i)− y(i))2 before and after tuning. The number of data

samples is constant in all experiments n = 200, with time length T = 2 seconds and the
sampling rate dt = 0.01.

Table 1 provides the mean squared error (MSE) of the simulation experiments of
the pitch and roll-rate PID controllers, with an optimal learning rate α∗ as depicted in
Figures 8 and 9. As shown in Table 1, the MSE for the roll rate after tuning is 5% of the
MSE before tuning. Similarly, for the pitch rate control, the MSE after tuning is 0.82% of the
MSE before tuning. This shows a significant improvement in the reference tracking of the
rate PID control loops after the tuning process.

Sensors 2022, 22, 9240 15 of 21

Table 1. The mean squared error (MSE) for the simulation results with the optimal learning rate, α∗.

Experiment MSE before Tuning MSE after Tuning

Roll rate tuning 0.59 0.03
Pitch rate tuning 1.21 0.01

5.6. Hardware Experiments

This subsection provides validation results of the OCTUNE algorithm on a real quad-
copter platform. The quadcopter used in the presented experiments is depicted in Figure 10.
Three experiments were conducted in order to evaluate the OCTUNE performance under
different initial PID gains. The PID controllers that were tuned in the hardware experi-
ments were the same as the ones performed in simulation, which control the roll and pitch
rates. The experiments were conducted in an indoor environment, and the quadcopter
was controlled by a pilot. A link to the video of the hardware experiments are provided in
the Supplementary Materials section. Each experiment’s design and results are presented
as follows.

Figure 10. F450 quadcopter platform used in the OCTUNE hardware experiments.

5.6.1. Experiment 1

In this experiment, the PID gains of the roll and pitch rates were left at their default
values, and the OCTUNE algorithm was executed during flight. The experiment steps are
described as follows.

1 The drone is started on the ground with disarmed motors. The PID gains of the
roll/pitch speed control loops are left at their default values (P = 0.15, I = 0.2,
D = 0.003).

2 The pilot flies the quadcopter to a hover position.
3 The OCTUNE process is started.
4 The pilot performs some maneuvers with the quadcopter in order to excite the system.
5 The OCTUNE process is stopped automatically after the indicated maximum opti-

mization time, 120 s, is reached, and the logs and plots are saved.

As can be seen from Figure 11, the initial response as shown in Figure 11a and the
final response as shown in Figure 11b show similar tracking performance. However,
Figure 11e shows an increase in the P gain to have relatively faster tracking. Furthermore,
the performance error in Figure 11c is small (≤3), which indicates acceptable tracking of

Sensors 2022, 22, 9240 16 of 21

the actual pitch rate signal to the desired one. This experiment demonstrates that starting
for good PID gains that stabilize the system with good performance error, the OCTUNE
algorithm does not drive the control system to an unstable state. It just improves its
performance or at least maintains the current low-error performance. A similar observation
of the roll axis can be seen in Figure 12.

(a) (b)

(c) (d)

(e)

Figure 11. The results of the tuning process of the pitch rate PID controller in Experiment 1. (a) signals
before tuning, (b) signals after tuning, (c) performance error V(E) over iterations, (d) learning rate α

over tuning iterations, (e) PID gains.

Sensors 2022, 22, 9240 17 of 21

(a) (b)

(c) (d)

(e)

Figure 12. The results of the tuning process of the roll-rate PID controller in Experiment 1. (a) signals
before tuning, (b) signals after tuning, (c) performance error V(E) over iterations, (d) learning rate α

over tuning iterations, (e) PID gains.

5.6.2. Experiment 2

In this experiment, the proportional gain (P) of the roll and pitch rates was increased
dramatically, four times more than the default values (from 0.15 to 0.6, and, in order
to introduce high-frequency oscillations, the OCTUNE algorithm was executed during
flight, which should eventually tune the controllers to obtain rid of the oscillations. The
experiment steps are described as follows.

1 Initially, the drone is on the ground, and the motors are disarmed. The PID gains
of the roll/pitch speed control loops are left at their default values (p = 0.15, I = 0.2,
D = 0.003).

2 The pilot flies the quadcopter to a hover position.
3 The P gains of the roll/pitch speed control loops are set to high values (from 0.15 to

0.6) to introduce high-frequency oscillations.
4 The OCTUNE process is started during the flight

Sensors 2022, 22, 9240 18 of 21

5 The pilot tries to keep the quadcopter in hover position while tuning is running.
6 After the quadcopter stabilizes, the pilot performs some maneuvers with the quad-

copter in order to excite the system and make sure the system is tuned well.
7 The OCTUNE process is stopped automatically after the indicated maximum opti-

mization time, in the table below, is reached, and the logs and plots are saved.

The tuning results of Experiment 2 are depicted in Figures 13 and 14, for pitch and
roll axes, respectively. As can be seen from Figures 13a and 14a, the initial response of the
pitch and roll rates, respectively, show high-frequency oscillations as expected because
the P gain of both controllers was increased dramatically. After executing the OCTUNE
algorithm for 100 iterations (approximately 2 min), the performance error eventually
decreased (see Figures 13c and 14c) and the proportional gains were decreased as well
(see Figures 13e and 14e). As a result, the reference tracking is improved as shown in
Figures 13b and 14b.

(a) (b)

(c) (d)

(e)

Figure 13. The results of the tuning process of the pitch rate PID controller in Experiment 2. (a) signals
before tuning, (b) signals after tuning, (c) performance error V(E) over iterations, (d) learning rate α

over tuning iterations, (e) PID gains.

Sensors 2022, 22, 9240 19 of 21

(a) (b)

(c) (d)

(e)

Figure 14. The results of the tuning process of the roll-rate PID controller in Experiment 2. (a) signals
before tuning, (b) signals after tuning, (c) performance error V(E) over iterations, (d) learning rate α

over tuning iterations, (e) PID gains.

Similar to the simulation experiments, we computed the MSE of the error signal in
the hardware experiments before and after tuning. The MSE results are shown in Table 2.
As shown in Table 2, the MSE of teh tracking error of the roll-rate PID controller after
tuning is 5.9% of the MSE before tuning. Similarly, the MSE of tracking error of the pitch
rate PID controller after tuning is 4.4% of the MSE before tuning. This shows significant
improvement of the tracking performance after the tuning process in real-time.

Table 2. The mean squared error (MSE) for hardware Experiment 2.

Experiment MSE before Tuning MSE after Tuning

Roll rate tuning 0.17 0.01
Pitch rate tuning 0.16 0.007

Sensors 2022, 22, 9240 20 of 21

6. Conclusions

In this paper, we presented the OCTUNE algorithm, which can be used for the optimal
control tuning of an LTI controller (such as a PID) in a classical feedback system without
the knowledge of the plant model and using only real-time signals.

The OCTUNE algorithm was validated in realistic simulations of a quadrotor UAV
model and on a real quadrotor platform, in which the angular rates of PID controllers
were stabilized in a fraction of a minute. The OCTUNE algorithm can run in real-time and
continuously tune the controllers to account for any changes in the physical system (e.g.,
a change of payload) or environment (e.g., wind conditions), with proven convergence.
In addition, an open-source implementation of the OCTUNE is available to facilitate the
adaptation of the algorithm in different applications.

In future works, it would be interesting to generalize the OCTUNE algorithm to some
nonlinear controllers with guaranteed convergence. Furthermore, the trade-off between
robustness and optimality in real-time data-driven tuning is an exciting property to address.

Supplementary Materials: Supporting videos of simulations and hardware experiments, as well
as the open-source codes, can be found in the following links: Video of the OCTUNE algorithm in
quadcopter simulations: https://youtu.be/OY9XY9CdGhA; Video of the OCTUNE algorithm with
actual quadcopter experiments: https://youtu.be/a3mrDvK2b-c; Open-source code of the OCTUNE
algorithm: https://github.com/mzahana/octune; A ROS wrapper package to use OCTUNE with the
PX4 flight controller: https://github.com/mzahana/px4_octune_ros. These links are accessed on 30
October 2022.

Author Contributions: Conceptualization, M.M. and M.A.; methodology, Mohamed Mabrok and
M.A.; software, M.A.; validation, M.A.; formal analysis, M.A. and M.M.; data curation, M.A.; writing—
original draft preparation, M.A. and M.M.; writing—review and editing, M.A., M.M. and A.K.;
visualization, M.A.; supervision, M.A. and A.K.; project administration, M.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Prince Sultan University grant number SEED-2021-CCIS-90.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Prince Sultan University for their support in
providing the required equipment required for conducting the work described in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

OCTUNE Optimal control tuning algorithm
PID Proportional, integra, and derivative controller
UAV Unmanned aerial vehicle
ROS Robot operating system

References
1. Garriga, J.L.; Soroush, M. Model predictive control tuning methods: A review. Ind. Eng. Chem. Res. 2010, 49, 3505–3515.

[CrossRef]
2. Borase, R.P.; Maghade, D.; Sondkar, S.; Pawar, S. A review of PID control, tuning methods and applications. Int. J. Dyn. Control

2021, 9, 818–827. [CrossRef]
3. Meier, L.; Honegger, D.; Pollefeys, M. PX4: A node-based multithreaded open source robotics framework for deeply embedded

platforms. Proc. IEEE Int. Conf. Robot. Autom. 2015, 2015, 6235–6240. [CrossRef]
4. ArduPilot Open Source Autopilot System. Available online: https://ardupilot.org/ (accessed on 15 March 2022).
5. Lindquist, A. On feedback control of linear stochastic systems. SIAM J. Control 1973, 11, 323–343. [CrossRef]
6. Whittle, P. Risk-sensitive linear/quadratic/Gaussian control. Adv. Appl. Probab. 1981, 13, 764–777. [CrossRef]
7. Bansal, A.; Sharma, V. Design and analysis of robust H-infinity controller. Control. Theory Inform. 2013, 3, 7–14.
8. Åström, K.J. Theory and applications of adaptive control—A survey. Automatica 1983, 19, 471–486. [CrossRef]

https://youtu.be/OY9XY9CdGhA
https://youtu.be/a3mrDvK2b-c
https://github.com/mzahana/octune
https://github.com/mzahana/px4_octune_ros
http://doi.org/10.1021/ie900323c
http://dx.doi.org/10.1007/s40435-020-00665-4
http://dx.doi.org/10.1109/ICRA.2015.7140074
https://ardupilot.org/
http://dx.doi.org/10.1137/0311025
http://dx.doi.org/10.2307/1426972
http://dx.doi.org/10.1016/0005-1098(83)90002-X

Sensors 2022, 22, 9240 21 of 21

9. Tao, G. Adaptive Control Design and Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 37.
10. Fliess, M.; Join, C. Model-free control. Int. J. Control 2013, 86, 2228–2252. [CrossRef]
11. Xu, D.; Jiang, B.; Shi, P. A novel model-free adaptive control design for multivariable industrial processes. IEEE Trans. Ind.

Electron. 2014, 61, 6391–6398. [CrossRef]
12. Hou, Z.; Jin, S. Model Free Adaptive Control; CRC Press: Boca Raton, FL, USA, 2013.
13. Kang, J.; Meng, W.; Abraham, A.; Liu, H. An adaptive PID neural network for complex nonlinear system control. Neurocomputing

2014, 135, 79–85. [CrossRef]
14. Qiu, J.; Ma, M.; Wang, T.; Gao, H. Gradient descent-based adaptive learning control for autonomous underwater vehicles with

unknown uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5266–5273. [CrossRef] [PubMed]
15. Lyu, F.; Xu, X.; Zha, X. An adaptive gradient descent attitude estimation algorithm based on a fuzzy system for UUVs. Ocean.

Eng. 2022, 266, 113025. [CrossRef]
16. Yu, C.C. Autotuning of PID Controllers: A Relay Feedback Approach; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2006.
17. Uren, K.; van Schoor, G. Genetic Algorithm based PID Tuning for Optimal Power Control of a Three-shaft Brayton Cycle based

Power Conversion Unit. IFAC Proc. Vol. 2012, 45, 685–690. [CrossRef]
18. Maddi, D.; Sheta, A.; Davineni, D.; Al-Hiary, H. Optimization of PID Controller Gain Using Evolutionary Algorithm and Swarm

Intelligence. In Proceedings of the 2019 tenth International Conference on Information and Communication Systems (ICICS),
Irbid, Jordan, 11–13 June 2019; pp. 199–204. [CrossRef]

19. Narendra, K.S.; Parthasarathy, K. Neural networks and dynamical systems. Int. J. Approx. Reason. 1992, 6, 109–131. [CrossRef]
20. Forgione, M.; Piga, D. dynoNet: A neural network architecture for learning dynamical systems. Int. J. Adapt. Control. Signal

Process. 2021, 35, 612–626. [CrossRef]
21. Peng, J.; Dubay, R. Identification and adaptive neural network control of a DC motor system with dead-zone characteristics. ISA

Trans. 2011, 50, 588–598. [CrossRef] [PubMed]
22. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems, 2015. Available online: tensorflow.org (accessed on 30 October 2022).
23. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: La Jolla, CA, USA, 2019; pp.
8024–8035.

24. Yongquan, Y.; Ying, H.; Bi, Z. A PID neural network controller. In Proceedings of the International Joint Conference on Neural
Networks, Istanbul, Turkey, 26–29 June 2003; Volume 3, pp. 1933–1938.

25. Patel, R.; Kumar, V. Multilayer neuro PID controller based on back propagation algorithm. Procedia Comput. Sci. 2015, 54, 207–214.
[CrossRef]

26. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA 2016. Available online: http:
//www.deeplearningbook.org (accessed on 30 October 2022).

27. Khalil, H. Nonlinear Systems; Pearson Education, Prentice Hall: Hoboken, NJ, USA, 2002.
28. PX4 Control Architecture. Available online: http://docs.px4.io/master/en/flight_stack/controller_diagrams.html (accessed on

7 April 2022).
29. Koenig, N.; Howard, A. Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator. In Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 28 September–2 October 2004;
pp. 2149–2154.

30. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A. ROS: An open-source Robot Operating System.
ICRA Workshop Open Source Softw. 2009, 3, 5.

31. Åström, K.J.; Wittenmark, B. Computer-Controlled Systems: Theory and Design, 2nd ed.; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1990.

http://dx.doi.org/10.1080/00207179.2013.810345
http://dx.doi.org/10.1109/TIE.2014.2308161
http://dx.doi.org/10.1016/j.neucom.2013.03.065
http://dx.doi.org/10.1109/TNNLS.2021.3056585
http://www.ncbi.nlm.nih.gov/pubmed/33587720
http://dx.doi.org/10.1016/j.oceaneng.2022.113025
http://dx.doi.org/10.3182/20120328-3-IT-3014.00116
http://dx.doi.org/10.1109/IACS.2019.8809144
http://dx.doi.org/10.1016/0888-613X(92)90014-Q
http://dx.doi.org/10.1002/acs.3216
http://dx.doi.org/10.1016/j.isatra.2011.06.005
http://www.ncbi.nlm.nih.gov/pubmed/21788017
tensorflow.org
http://dx.doi.org/10.1016/j.procs.2015.06.023
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://docs.px4.io/master/en/flight_stack/controller_diagrams.html

	Introduction
	Problem Statement
	Control Tuning Algorithm
	Convergence Analysis
	Validation: Quadrotor Tuning
	Simulation Setup
	Controller
	Algorithm Implementation and State Machine
	Simulation Results with a Static Learning Rate,
	Simulation Results with an Optimal Learning Rate, *
	Hardware Experiments
	Experiment 1
	Experiment 2

	Conclusions
	References

