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Abstract: Cable is crucial to the control and instrumentation of machines and facilities. Therefore,
early diagnosis of cable faults is the most effective approach to prevent system downtime and
maximize productivity. We focused on a “soft fault state”, which is a transient state that eventually
becomes a permanent fault —open-circuit and short-circuit. However, the issue of soft fault diagnosis
has not been considered enough in previous research, which could not provide crucial information,
such as fault severity, to support maintenance. In this study, we focused on solving soft fault problem
by estimating fault severity to diagnose early-stage faults. The proposed diagnosis method comprised
a novelty detection and severity estimation network. The novelty detection part is specially designed
to deal with varying operating conditions of industrial applications. First, an autoencoder calculates
anomaly scores to detect faults using three-phase currents. If a fault is detected, a fault severity
estimation network, wherein long short-term memory and attention mechanisms are integrated,
estimates the fault severity based on the time-dependent information of the input. Accordingly, no
additional equipment, such as voltage sensors and signal generators, is required. The conducted
experiments demonstrated that the proposed method successfully distinguishes seven different soft
fault degrees.

Keywords: soft fault; condition monitoring; machine learning; anomaly detection; fault estimation

1. Introduction

Cable is widely utilized because it is a crucial part of control and instrumentation in
industrial fields, including power plants [1,2], vehicles [3], ship building [4], and factory
automation [5]. To maintain the stability and reliability of the system operations, timely
diagnosis of cable fault is vital. In particular, the early diagnosis of faults can ensure the
maximization of productivity by reducing unwanted system downtime in fully automated
processes. A single fault in an automated process can stop the related processes because
the process controllers are interlocked with each other to prevent harmful effects to other
facilities and dangerous hazards to workers when a fault is detected.

There are two states of cable faults: transient and permanent. The latter represents a
permanent fault that results in the failure of machines and facilities without exception. This
fault consists of open and short circuits and is referred to as a hard fault. The former is a
transient state, which develops according to the external conditions, thereby resulting in the
accumulation of small modifications in the cable. Because of harsh operating environments,
the components of the cable, which include insulators, shields, and conductors, may
experience partial damage. Therefore, this is referred to as a soft fault [6]. In reality, a soft
fault is not an acute fault state and does not cause significant problems to machines and
facilities at that moment. However, there is a high probability of it transforming into a hard
fault, which deteriorates the operation of machines and facilities, i.e., causes unwanted
system outage. In practical cases, the accumulation of damage to a limit close to a hard
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fault can yield intermittent symptoms or show no symptoms. The case of no symptoms
is problematic because the latent faults cannot be detected through system diagnosis or
identified by the maintenance staff. Thus, subsequent partial damage can accumulate in
the cable if there is no maintenance. Consequently, soft faults often become hard faults.
Therefore, early and accurate diagnosis of soft faults before they become uncontrollable is
the most effective approach to deal with practical cable problems in the field.

Traditional cable diagnosis methods are largely categorized into electrical methods
(partial discharge), chemical methods (oxidation induction time), and mechanical methods
(elongation at break). Despite its wide usage in practice, these methods have limited
applicability in on-site field applications when the machine is working because the online
diagnostic ability is lacking or too sensitive to operating noise [1]. Moreover, access to
the installed cable is largely limited in automated factories; thus, applying traditional
techniques is not preferred in field conditions.

Recently, machine learning-based methods, including convolutional neural networks
(CNN) and recurrent neural networks (RNN), have been studied in relation to fault di-
agnosis. These methods can automatically extract features from the input signal, which
overcomes the problem of manual feature extraction requiring domain knowledge and
being time consuming, particularly when a large amount of data are to be processed. Ma-
chine learning-based diagnosis methods can be categorized into two types: those that
utilize the reference signal, which is to be injected into cables, and those that utilize the
output signals from operating cables, such as the current signals flowing through the
cable. Many studies have reported remarkable results in diagnosing faults using a refer-
ence signal. A regression-based multilayer perceptron method with clustering algorithms
was developed to detect and classify hard faults of a multicore cable by analyzing the
reflected signal of the reference signal in [7]. In [8], the reflected signals were converted
into combined time-frequency images using Wigner–Ville distribution. Subsequently, the
images were classified using a convolutional neural network (CNN). A 1D-CNN based
diagnosis method was applied to diagnose soft faults in control cables of electric motors [9].
Although methods using reference signals have shown remarkable results, the reflected
signal compensation and environment noise cancelation must be conducted prior to the
diagnosis of faults. Additionally, there are physical limitations related to the irregular
responsibility of propagating reference signals when they encounter fault locations [6].
Furthermore, additional equipment must be prepared to conduct the diagnosis owing to
the requirement of a signal-injecting device and a signal generator. Several studies have
used signals from operating cables to diagnose faults. In [10], a fast fault-detection method
for a power transmission line was developed using the summation of the squared three-
phase currents. In [11], a novelty detection-based diagnosis method was introduced using
an adversarial autoencoder and an anomaly scoring technique with three-phase current
signals. The method is based on the concept that the data samples with high anomaly
scores can be considered as faults [12–18]. The utilization of current signals for diagnosing
faults is relatively reliable under environmental noise while also being cost effective, as the
need to install additional equipment is eliminated. Although these methods have exhibited
high accuracy in diagnosing cables, studies that focus on diagnosing the early stage of a
fault—that is, a soft fault—are scarce. Moreover, fault severity estimation has not been
studied in this regard. Such estimation results can provide informative guidelines when
considering cable maintenance strategies in the field.

In the present study, we propose a soft fault diagnosis method that detects the presence
of soft faults and estimates the fault severity in a cable using an autoencoder and an
attention-based RNN. To the best of our knowledge, this is the first study to attempt to
estimate soft fault severity in practical cable application using only current signals without
any special equipment. First, the autoencoder network detects the novelty and calculates the
anomaly score of the time-series input from the current signals. Subsequently, we construct
an estimation algorithm based on a long short-term memory (LSTM) network to deal with
time series data [19]. The estimation network comprises an encoder and a decoder. The
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decoder focuses on certain hidden states that significantly influence the output by adopting
the attention mechanism (AM) [20]. The two networks for novelty detection and fault
severity estimation are connected serially. The novelty detection network receives the zero-
sequence current (ZSC) and the squared current ratio (SCR) as inputs, and subsequently
outputs the anomaly score that directly represents the novelty of the fault, whereas the
fault severity estimation network receives ZSC, SCR, and the anomaly score as inputs and
generates a fault indicator, which directly indicates the fault severity. Several experiments
are conducted to verify the reliability of the proposed method, even at various operating
points and fault severities. The major advantages of this study over previous methods are
as follows.

1. The method could diagnose an early-stage fault in a cable by estimating the soft fault
severity before the fault become permanent state; that is, a hard fault.

2. In contrast with reference signal-based methods, in this method, the need to design a
reference signal and consider physical cable parameters is eliminated because only
three-phase currents are required to conduct diagnosis.

3. The method is reliable under various operating conditions that may result from
irregular machine operation as well as various fault conditions that range from mild
to severe.

The remainder of this paper is organized as follows. In Section 2, a soft fault and its
effect on cables is described. In Section 3, the novelty detection and severity estimation
method is proposed. In Section 4, the proposed method is demonstrated based on various
experimental scenarios. Finally, Section 5 summarizes the study.

2. Soft Fault in Cable

Soft faults occur because of sequential stress from harsh environments. Local mod-
ifications can be made to parts of cables, such as conductors, insulators, and shields [6].
Among them, modifications or damage to the conductor can directly affect the health state
of the cable. A damaged cable is presented in Figure 1. The cross-sectional area of the
conductor is reduced because of the damage, as shown in the figure. Here, So denotes the
cross-sectional area of a healthy conductor, and S f denotes the cross-sectional area of a
damaged conductor.

Figure 1. A cross-sectional view of robot control cable. A wire is composed of a conductor and
an insulation layer. Damage can be induced to the wire due to harsh environment, resulting in
machinery failure
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To analyze the soft faults in the cable, an equivalent circuit model is presented in Figure 2.
It is assumed that a soft fault occurs in phase a wire. As shown in figure, the soft fault is
represented as an added resistance to the phase a wire. The resistance R f denotes the induced
damage in the conductor because of the fact that R f and S f are inversely correlated. Further,
R f , S f , and their relation to the normal condition can be expressed as follows:

S f

So
= α (1)

Ro = ρ
l

So
(2)

R f = ρ
l

S f
(3)

R f = ρ
l

αSo
=

1
α

Ro (4)

where So is the normal cross-sectional area of the healthy conductor. Ro denotes the
resistance of the healthy conductor and ρ is the resistivity of the conducting material. The
length of the conductor is denoted by l. α indicates the ratio of S f to So. The reduced
area S f can result in a phase imbalance in the current magnitude and negative effects,
including heating and energy decrease in the system [21]. Further, an imbalance in the
phase impedance could result in asymmetry of the three-phase system. For healthy and
soft faulty cables, the value of α is one and less than one, respectively. Mainly soft faults are
discussed in this study; therefore, hard fault cases including α = 0 (open-circuit) and α > 1
(short-circuit) were not addressed in the proposed method. According to the relation in (4),
α directly provides information on the state of the conductor. Therefore, the fault indicator
(FI) can be defined as

FI = 1− α (5)

In Figure 2, Zc is the characteristic impedance of normal wire. Ci and Ri in parallel
denote the insulator, because the insulation layer can be represented by its capacitive
and conductive characteristics [22]. ires is the leakage current, which is typically smaller
than icap in healthy wires. In case of the presence of faults in a wire, R f increases and Ri
decreases because the conductor and insulator are damaged. Consequently, ires increases
due to the changed values of R f and Ri according to the fault. In this case, the vector sum
of the three-phase currents (ia, ib, ic—three sine waves separated by 120 degrees) will have
a nonzero value owing to the leakage current. Therefore, the sum—that is, the ZSC—can
be used as an input for the proposed network:

ia(t) = Imacos(ωt + φa) (6)

ib(t) = Imbcos(ωt + φb − 120◦) (7)

ic(t) = Imccos(ωt + φc + 120◦), (8)

iZS = ia + ib + ic (9)

where iZS is the ZSC of the input currents. The amplitudes of each current are represented
as Ima, Imb, and Imc. Its corresponding phase angles are represented as φa, φb, and φc. The
magnitude of iZS is approximately zero or stable for healthy wires, whereas it fluctuates
significantly when there is asymmetry in the phase wires. In case of a severe fault, the
asymmetry worsens. Moreover, the magnitudes of the current of each phase differ from
those of the normal condition because of the asymmetry in the three-phase system. Con-
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sequently, the ratio of each phase current to the total current immediately indicates an
asymmetry in the system, as follows:

SSC = ∑
j

i2j (10)

SCRj = i2j /SSC (11)

where j denotes the phase a, b, and c. Each phase’s SCR is defined as each squared phase
current divided by the sum of squared phase currents (SSC) from all the phases. The SCR can
be used for a comparison of the phase current with the total current. Therefore, it reflects a
faulty three-phase network with R f and can be used as an input for the proposed network.

Figure 2. Equivalent circuit model: a three-phase control cable with a soft fault and a motor of the
robot joint. A soft fault is induced in phase a. Zc is the characteristic impedance of the wire. Ci and
Ri in parallel represent the insulator. ires and icap are the leakage current and the current flowing
through the capacitance of the insulator Ci, respectively. Vn is the neutral voltage of the motor.

The utilization of current signals originating from the operating machine with irregular
motion is challenging because the amplitude, frequency, and phase sequence vary according
to motion planning, as shown in Figure 3. For instance, an industrial robot installed in the
production process can move its arm to perform the given motion commands, which allows
the robot joint to rotate in the forward direction after rotating in the reverse direction. Even
in this case, SCR and ZSC are not affected by the varying operating conditions because
no phase rotation operator is involved, as shown in Figure 4. In the figure, SCRs and ZSC
are stable when cable is healthy with the robot moving as mentioned above. Fluctuations
appeared when varying degrees of fault were induced to the robot control cable. Still,
we could not estimate the fault severity to diagnose a soft fault. The proposed diagnosis
system in this paper will calculate an anomaly score of each SCR and ZSC and estimate
fault severity to provide a guide for a proper maintenance plan. The analysis thus far
assures that soft faults can be directly diagnosed by utilizing the ZSC and SCR.
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Figure 3. The plotted line represents the normal variation in instantaneous currents when the robot
is moving. Speed, rotational direction, and amplitude varied according to the motion.

Figure 4. The calculated SCRs and ZSC under varying robot-moving conditions and fault conditions.
SCRs and ZSC started fluctuating when faults were induced to the target cable. ZSC was root-mean-
squared prior to being input to the algorithm.

3. Soft Fault Diagnosis System Structure

RNNs can effectively utilize the time series data because they have the ability to
consider the time-dependent information of the time series input. In this section, we
propose an attention-based RNN with an autoencoder network. The structure of the
proposed network comprises two parts: anomaly detection and severity estimation. In
the anomaly detection network, the encoder reduces the dimensions of the input data
to generate latent code, and the decoder reconstructs the input as an output to compare
the input and output, whereas, in the severity estimation network, an LSTM-based RNN
structure was adopted to encode the input into the feature vector and decode the estimated
FI as an output. An AM was integrated into the decoder to automatically select the related
hidden states through all time steps. Figure 5 presents the graphical presentation of the
proposed algorithm.



Sensors 2023, 23, 5299 7 of 16

Figure 5. Structure of the proposed network comprising anomaly detection and fault severity
estimation. The last LSTM unit of the decoder outputs is ŷT , which is the fault indicator.

3.1. Anomaly Scoring with Autoencoder

An autoencoder can be constructed using an encoder and a decoder. The input
dimension is reduced by the encoder, whereas the decoder reconstructs the input by using
the learned latent code. Therefore, A = f ◦ g can be considered for an autoencoder A,
where f denotes the decoder and g denotes the encoder. Let n be the number of hidden
layers in f and g where g = gn ◦ · · · ◦ g2g1 and f = f1 f2 ◦ · · · ◦ fn. The partial computations
of f and g for 1 ≤ i ≤ n can be

g:i = gi ◦ · · · ◦ g1 (12)

fn:i = fi ◦ · · · ◦ fn (13)

The conventional anomaly scoring method compares the input and reconstructed data
to detect a novel sample. Recently, it has been shown that comparing hidden spaces can
generate more accurate anomaly scores [23,24]. This approach also compares the activations
in the hidden space with the corresponding reconstructions in that hidden space to calculate



Sensors 2023, 23, 5299 8 of 16

the anomaly score. However, a hidden reconstruction cannot be directly computed. Instead,
the hidden activations of the reconstructed input g:i(A(x)) can be used because it has been
proven that hidden activations of the reconstructed input g:i(A(x)) are equivalent to the
corresponding hidden reconstructions of the original input ( fn:i+1 ◦ g)(x) [23]. This implies
that hidden reconstruction values can be obtained by simply projecting the reconstructed
input A(x) into the hidden spaces. If the input x and its reconstructed input A(x) are
provided, their hidden activations are computed as

hi(x) = g:i(x) (14)

ĥi(x) = g:i(x̂) = g:i(A(x)) (15)

To obtain the anomaly score, the normalized aggregation along the pathway (sNAP)
method was adopted in this study as follows:

sNAP(x) = ‖(d(x)− µX)
TVΣ−1 − 1‖2

2 (16)

where a column vector d(x) = h(x)− ĥ(x), h(x) = concat[h0(x), . . . , hn(x)], and ĥ(x) =
concat[ĥ0(x); . . . ; ĥn(x)]; h0(x) = x and ĥ0(x) = x̂. X denotes the given training set, D
denotes a matrix wherein the ith row matches d(xi) for xi ∈ X, and D̄ = UΣVT must
be computed for normalization, where D̄ denotes the column-wise centered matrix of D.
µx denotes the column-wise mean of D. Consequently, this scoring method allows the
evaluation of anomalies in the current signal when a soft fault exists.

3.2. Fault Severity Estimation with Attention Mechanism

The fault severity estimation part comprises encoder and decoder LSTMs with an AM.
The encoder generates a hidden state ht that summarizes the information up to the current
time step t. This can be represented as follows:

ht = f (ht−1, xt) (17)

where ht−1 is the output of the previous LSTM unit, xt is the current input, and f denotes
the activation function, which is the LSTM [25]. LSTM can handle the time features of time-
series data. Further, LSTM has memory cells that store, retrieve, and maintain information.
It comprises the input gate it, output gate ot, and forgot gate ft. The abandoned information
is controlled by the forgot gate ft as follows:

ft = σ(W f concat[ht−1, xt] + b f ) (18)

where σ is a sigmoid function and W f and b f are the weight and bias parameters, respectively.
The updating information is controlled by the input gate it, which can be represented by

it = σ(Wiconcat[ht−1, xt] + bi) (19)

where Wi is the weight parameter of the input gate and bi is the offset term. Further, the
long-term state is denoted by st and ot is the output gate. These can be expressed as follows:

ot = σ(Woconcat[ht−1, xt] + bo) (20)

st = ft � st−1 + it � tanh(Wsconcat[ht−1, xt] + bs) (21)

where Wo is the weight parameter of the output gate and bo is the offset term. Further,
Ws is the weight parameter of the state and bs is the bias parameter. The output ht of the
LSTM cell can be represented as

ht = ot � tanh(st) (22)
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where � denotes the Hadamard product. Hidden states ht are created across all time steps
to summarize time-dependent information.

The encoded input information was decoded by the decoder network to generate the
estimated output ŷT . LSTM is integrated into the decoder to estimate the output from time
dependencies. Moreover, an AM is also integrated into the network to automatically select
the important encoded hidden states through time steps. AM strengthens the influence
of important and relevant information by focusing on output variables with a significant
impact and ignoring uninterested ones. The attention weight can be computed as follows:

ek
t = vT

d tanh(Wdconcat[dt−1, s′t−1] + Udhk) (23)

αk
t =

exp(ek
t )

∑T
i=1 exp(ei

t)
, 1 ≤ k ≤ T (24)

where vd and Wd are the weighting coefficients and Ud denotes the bias coefficient. The
attention weights αk

t , which are obtained by normalizing the weights ek
t using the softmax

function, represent the importance of each hidden state from the network. The context
vector ct can be denoted by

ct =
T

∑
i=1

αi
thi (25)

This is provided to the decoder as input, and the hidden state of the decoder can be written as

dt = f (dt−1, ct−1) (26)

dt denotes the decoder hidden state at time step t, and f is a nonlinear activation function,
which is the LSTM. The hidden state dt can be updated as explained previously in the
encoder. Thus, the fault severity output ŷT can be written as

ŷT = F(x1, x2, . . . , xT) = vT
y (Wyconcat[dT , cT ] + by) + bv (27)

where F denotes the approximate function for estimating fault severity from the given
input vectors X = (x1, x2, · · · , xT), and Wy and by are the weight matrix and bias terms,
respectively. Consequently, the fault severity can be estimated by a linear function, where
vT

y and bv are the weight and bias, respectively.

3.3. Training Procedure

A novelty detection and fault severity estimation network was constructed using the
Tensoflow framework [26]. The Adam optimizer [27] was used to train the model, and
the sizes of the mini-batches were 128 and 20 for the novelty detection and fault severity
estimation networks, respectively. Further, the sizes of the hidden states were 30 and 128
for the novelty detection and fault severity estimation networks, respectively. The time
length T of the time-series input was 12. In addition, the l2 loss function was used for the
standard back propagation, and the objective functions for the two networks are as follows:

l2(x, x̂) =
1
N

N

∑
i=1

(x̂i − xi)
2 (28)

l2(yT , ŷT) =
1
M

M

∑
j=1

(ŷj
T − yj

T)
2 (29)

3.4. Structure of Diagnosis System

The structure of the diagnostic system is shown in Figure 6. It comprises signal process-
ing, anomaly assessing, and fault severity estimation components. The data sample from
the time-series input comprises SCR, ZSC, and sNAP, where the size of the input sample
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was a window of 9000 time steps. When computing SCR, ZSC, and sNAP using (11), (9),
and (16), respectively, the raw input data were passed through a low-pass filter to remove
unnecessary frequency components. The calculated fault indicator was used as the label of
the network.

Figure 6. The industrial robot system with the proposed diagnosis method. It comprises signal
processing, anomaly detection, and fault severity estimation components. If the detected fault
severity exceeds the threshold limit, a maintenance call is generated for the staff.

4. Experimental Results
4.1. Experimental Setup

The experimental setup is illustrated in Figure 7. A HYUNDAI HH7 robot manipulator
and its controller were installed to demonstrate the proposed method. The cable harness
comprised control and signal cables, with the control cable targeted for conducting the
fault diagnosis. The detailed characteristics of the target cable are represented in Table 1.
The cable consisted of 32 wires, each of which consisted of an insulator and conductor.
Further, each conductor was composed of 30 flexible strands, each measuring 0.25 mm in
diameter. Further, a Tektronix DPO 4104 B phosphor oscilloscope was used to measure
current signals at a sampling rate of 100 kHz. We simulated various faults and operating
conditions in the third joint of the robot manipulator.

Table 1. Specifications of the control cable.

Subjects Unit Specification

Total number of wires in cable - 32
Cross-sectional area of a conductor mm2 1.5
Number of strands of a conductor - 30

Cross-sectional are of a strand mm2 0.25
Maximum resistance of a wire Ω/km 17.7

Material of insulation layer - PVC
Thickness of insulation layer - 0.36

Shield type - Braided
Outer diameter mm 20.4
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Figure 7. Experimental setup: The industrial robot test rig with the cable harness and the controller
and measure kit. The manipulator moves up and down to vary the operating conditions.

4.2. Experimental Scenarios

To simulate the fault conditions, soft faults were created manually in the wire of
phase a, as shown in Figure 1. Artificial faults exhibit a range of fault severities, from
mild to severe. The fault severity and corresponding scenarios are listed in Table 2. The
datasets according to each fault severity were acquired as follows. First, a normal cable
was damaged repeatedly according to the damage cases. There are eight cases according to
the fault severity in the table. For example, 28 cutting is the most severe fault case, whose α
value is small, and 93.4% of So is damaged. However, the four cuts are mild faults, whose
α value is large, and 13.4% of So is damaged. Moreover, the experiments were conducted
under actual operating conditions wherein the manipulator moved up and down according
to the motion commands, as shown in Figure 7. In the figure, the robot joint rotated
inversely following forward rotation. Consequently, the speed, rotational direction, and
amplitude of the three-phase currents varied according to the robot movement, as shown
in Figure 3. As mentioned previously, eight scenarios and acquired datasets were prepared
to conduct experiments under these varying conditions.

Table 2. Experimental scenarios.

Scenarios Damage Cases FI S f in % Number of Dataset

0 (Normal) 0 cut 0.000 100.0 85,000
1 4 cut 0.134 86.6 85,000
2 8 cut 0.267 73.3 85,000
3 12 cut 0.400 60.0 85,000
4 16 cut 0.534 46.6 85,000
5 20 cut 0.667 33.3 85,000
6 24 cut 0.800 20.0 85,000
7 28 cut 0.934 6.6 85,000

4.3. Result and Analysis

The test results for the scenarios demonstrate that the proposed method can effectively
diagnose soft faults. First, the autoencoder successfully detected the abnormal state and
calculated anomaly scores, as shown in Figure 8. The results confirmed the suitability
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of the time-series input—that is, ZSC and SCR—for soft fault diagnosis by reflecting the
power network imbalance. Second, the fault severities of the induced damages were
correctly estimated by the attention-based RNN architecture, as shown in Figure 9. The
result confirms that the RNN inputs—that is, ZSC, SCR, and sNAP—are appropriate for
estimating the fault severity of a particular fault. As shown in Figure 9 (S f = 100.0%),
the FI for healthy cable was approximately zero for varying operating conditions, such
as speed, amplitude, and phase. The FI increased as the severity increased according to
Scenario 7, as shown in Figure 9 (S f = 6.6%). Further, the faulty cable and healthy cable
were clearly distinguished by the FI. Thus, it can be concluded that the FI is independent
of the varying operating conditions resulting from the robot manipulator movements.
Therefore, the proposed method is applicable to practical online diagnosis when automated
machines operate in smart factories. Figure 9 (S f = 86.6%) shows the test result for Sce-
nario 1. The fault condition was the least severe compared to the other scenarios, implying
that diagnosing Scenario 1 was more difficult compared to other scenarios. Four strands
of the 30 strands were damaged artificially to simulate very early soft fault conditions,
where only 13.4% of the cross-sectional area of the conductor was damaged. In this case
(early case even among the soft fault cases), the automated machines can work without
any fault symptoms. Compared to the magnitude observed in Figure 9 (S f = 6.6%), the
magnitude of the corresponding FI in Figure 9 (S f = 86.6%) was much smaller. Neverthe-
less, the early stages of soft faults can be diagnosed using the estimated FI, even under
mild fault conditions. The FI estimation results for all scenarios are shown in Figure 9
(S f = 6.6%∼100.0%). The estimated FI tended to be more accurate for severe fault cases
(Scenarios 4 to 7) because the magnitude of the simulated FI was much smaller in less
severe scenarios (Scenario 1 to 3). Table 3 confirms this trend by showing mean square
errors (MSE) of each scenario. Consequently, we can assert that the proposed method
achieves a soft diagnosis capability under various fault and operating conditions, rendering
this method applicable to practical problems.

Figure 8. The simulated soft fault severity and the calculated anomaly score for each fault severity.
From this anomaly score, we could detect presence of a fault.
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Figure 9. The estimated fault severity for each scenario: S f = 100.0%∼6.6% corresponds to scenario
0∼scenario 7, respectively. From this estimated severity, we could diagnose health state of the
target cable.

Table 3. MSE of each scenario.

Scenarios Damage Cases FI MSE

0 (Normal) 0 cut 0.000 72.31 × 10−5

1 4 cut 0.134 65.66 × 10−5

2 8 cut 0.267 42.29 × 10−5

3 12 cut 0.400 19.29 × 10−5

4 16 cut 0.534 7.17 × 10−5

5 20 cut 0.667 1.80 × 10−5

6 24 cut 0.800 0.98 × 10−5

7 28 cut 0.934 8.85 × 10−5

4.4. Comparison with Other Studies

The proposed method was compared to other methods by considering several aspects,
as listed in Table 4. Reflectometry-based methods [28–31] require additional equipment,
such as arbitrary waveform generators, voltage sensors, and signal-coupling devices, to
conduct the diagnosis. Thus, an extra budget is required to purchase the equipment.
Space and accessibility for installing the equipment are also required. Furthermore, expert
and cable parameters are required to analyze the returned reference signal, which must
also be designed before conducting a diagnosis for each target cable. Moreover, only
sstdr [30] among other reflectometry-based methods is capable of diagnosing cable faults
in online conditions. The study by [9] overcame this problem by suggesting a method that
is applicable to both online and offline diagnosis using a reference burst signal; however,
it still requires a signal generator and a signal-coupling device. Several studies have
utilized current signals when diagnosing cable faults [10,11], which are preferred over other
methods because they do not require extra equipment. However, the study by [10] could not
handle the varying conditions wherein the amplitude and phase angles varied according
to the movements of automated machines. The study by [11] overcame this problem by
adopting a novelty detection approach, even under varying operating conditions. However,
the diagnostic purpose of this study was fast fault detection and isolation when an early-
stage fault occurs in the cable; thus, severity estimation needs to be supported. The severity
estimation capability is important for maintenance staff because they can assess the fault
condition and consequently build a proper maintenance plan, such as cable replacement
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and overhaul. Thus, the fault severity estimation capability of the proposed method is the
most significant difference compared to previous methods. Consequently, the comparison
results show that the proposed method is an appropriate approach for addressing cable
fault problems in industries.

Table 4. Comparison with other studies.

Utilizing Current Signal
[Proposed Method] [10,11]

Utilizing Injected Reference Signal
[9,28–31]

Estimation of soft fault severity O X X X X X X O
Online diagnosis under varying conditions O X O O X X O X

Require reference signal design X X X O O O O O
Require domain knowledge and cable parameters X X X X O O O O

Require waveform generator X X X O O O O O

For the first two rows, O is better. For the last three rows, X is better.

5. Conclusions

This study proposed a new diagnostic approach for cable faults, which is particularly
applicable in the field of industrial automation. The diagnosis method comprised a novelty
detection and severity estimation network, wherein an attention-based RNN was integrated
into the latter network to consider time-dependent information and overcome the long-
term dependence problem. RNN is a type of neural network which utilizes sequential
data. In this paper, RNN was adopted because the time series data obtained from the
cable are sequential and time dependent. The inputs for the novelty detection network
were ZSC and SCR, and an anomaly score was generated. The severity estimation network
accepted the anomaly score and estimated the fault indicator, which directly represents
fault severity. The proposed method is cost effective and saves space because it does
not require additional equipment to conduct the diagnosis. Moreover, cable parameters
and expert knowledge are not required. Furthermore, the proposed method can provide
maintenance staff with a fault severity estimation capability to assess the fault situation.
Experiments on an industrial application proved that the new approach works effectively
and accurately under various faults and operating conditions. Future studies will focus
on intermittent faults in flexible cables for moving applications using an explainable AI
approach with a data fusion algorithm.
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