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Abstract: In the process of the modulation recognition of underwater acoustic communication sig-
nals, the multipath effect seriously interferes with the signal characteristics, reducing modulation
recognition accuracy. The existing methods passively improve the accuracy from the perspective of
selecting appropriate signal features, lacking specialized preprocessing for suppressing multipath
effects. So, the accuracy improvement of the designed modulation recognition models is limited, and
the adaptability to environmental changes is poor. The method proposed in this paper actively utilizes
common synchronous signals in underwater acoustic communication as detection signals to achieve
passive time reversal without external signals and designs a passive time reversal-autoencoder to sup-
press multipath effects, enhance signals’ features, and improve modulation recognition accuracy and
environmental adaptability. Firstly, synchronous signals are identified and estimated. Subsequently,
a passive time reversal-autoencoder is designed to enhance power spectrum and square spectrum
features. Finally, a modulation classification is performed using a convolutional neural network. The
model is trained in simulation channels generated by Bellhop and tested in actual channels which are
different from the training period. The average recognition accuracy of the six modulated signals is
improved by 10% compared to existing passive modulation recognition methods, indicating good
environmental adaptability as well.

Keywords: modulation recognition; underwater acoustic communication; multipath effect; synchronization
signals; passive time reversal-autoencoder; convolutional neural network

1. Introduction

Communication signal modulation recognition is based on the non-cooperative sce-
nario between senders and receivers, which plays an important role in information recovery.
In the field of wireless communication, modulation recognition is mostly based on in-phase
and quadrature (IQ) samples [1–3], high-order Cumulant characteristics [4,5], signal instan-
taneous characteristics, and wavelet transforms characteristics [6], and then appropriate
classifiers are designed to classify modulation types. However, these recognition methods
are not suitable for complex and variable underwater acoustic channels.

With the increasing status of the ocean, more and more researchers are devoted
to the modulation recognition research of underwater acoustic communication signals.
Zhang et al. [7] used machine learning algorithms to recognize modulation based on
cumulant, power spectral density, instantaneous phase, instantaneous phase, and frequency
characteristics. Denis Stanescu et al. [8] used phase diagram entropy to characterize and
identify various modulation types. Dai et al. [9] carried out wavelet denoising and time–
frequency feature extraction for the received signal and used the decision tree model for
modulation recognition. Huang et al. [10] extracted entropy features and morphological
features, and designed optimized autoencoder (OAE) and evaluation-enhanced k-nearest
neighbor (EEKNN) algorithms to recognize modulation types.
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Deep learning-based methods have been continuously developed in recent years,
gradually improving recognition performance. Existing methods are usually based on two
types of features in classification: time-domain features and frequency-domain features.

The first type is to use time-domain features as the recognition criteria. Alex et al. [11]
designed CNN for modulation recognition of received time-domain signals. Li et al. [12]
designed a feature extraction and recognition network based on Resnet to classify the time-
domain signals. Yao et al. [13] trained generative adversarial networks (GANs) based on
time-domain waveform features for signal enhancement, feature extraction, and automatic
modulation classification. Yu et al. [14] utilized long- and short-term memory (LSTM) for
modulation recognition with the signals’ instantaneous characteristics. Zhang et al. [15]
trained a cyclic convolutional neural network with a normalized time series. Kong et al. [16]
used IQ symbols to train a residual network. Wang et al. [17] proposed a sequence con-
volutional network to achieve modulation classification based on signals’ temporal char-
acteristics. Liu et al. [18] utilized principal component analysis technology to compress
the original time-domain signals and then designed a deep heterogeneous network for
modulation recognition. Xiao et al. [19] designed a CNN for classification based on IQ
signals. However, time-domain characteristics are easily interfered with by the complex
underwater acoustic channel. The above methods can only achieve ideal results when the
channel conditions of the test set are the same as the training set. Once the conditions are
inconsistent, the recognition accuracy will be seriously affected.

The second type is to select frequency-domain features as the recognition basis. The
power spectrum, time-frequency map, frequency spectrum, and singular spectrum are
common features used for modulation recognition [20–24]. Jiang et al. [20] proposed a
sparse automatic encoder (SAE) for feature extraction and modulation recognition based on
power spectrum features. Wang Bin et al. [21] used a denoising autoencoder (DAE) to de-
noise signals and then used CNN to classify the modulation types based on power spectral
features. Wang et al. [22] proposed a relational network and fed it with power spectrums.
Xu et al. [23] trained CNN with time–frequency map features of signals. Kou et al. [24]
extracted the real and imaginary parts of the signal through the Fast Fourier transform
(FFT) and then designed an artificial neural network (ANN) as a feature classifier.

However, the characteristics of multiple phase shift keying (MPSK) are too similar
and difficult to distinguish, choosing only one feature has certain limitations. Therefore,
some methods choose two features to distinguish MPSK. Jiang et al. [25] used principal
component analysis to extract effective features from the power spectrums and square
spectrums, distinguishing across multiple frequency shift keying (MFSK), binary phase
shift keying (BPSK), and quadrature phase shift keying (QPSK). Li et al. [26] combined
time-domain and frequency-domain features to classify modulation types. Firstly, MPSK
and other signals were identified through time-domain waveform features, and then the
square spectrum features were selected to identify BPSK and QPSK. Compared to time-
domain features, frequency-domain features have a stronger anti-interference ability, but a
single frequency-domain feature has limitations. This paper selects two frequency-domain
features, power spectrum and square spectrum, to classify modulation types.

The severe multipath effect of underwater acoustic channels can have serious in-
terference with the time–frequency characteristics, reducing the accuracy of modulation
recognition. The existing methods passively focus on the selection of signal features, and
cannot actively weaken the impact of the environment, resulting in a sharp decline in
the recognition performance when underwater acoustic channel conditions change. This
paper actively utilizes commonly used synchronous signals in communication as the de-
tection signals and designs a passive time reversal-autoencoder to improve accuracy and
environmental adaptability. Firstly, we identify and estimate the types and parameters of
synchronization signals, and use the recovered synchronization signals as detection signals
in passive time reversal. Then, we design a passive time reversal-autoencoder (PTR-AE) for
multipath suppression and signal feature enhancement. Finally, modulation recognition is
performed by using CNN. The modulation classification network is trained with simulation
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data and tested in actual underwater acoustic channel environments which are different
from the training environments. We compare the proposed model to verify its effectiveness
with existing methods.

2. Signal Model

The underwater acoustic communication signal model can be expressed as:

y(t) = x(t)⊗ h(t) + n(t), (1)

where y(t) is received signal; x(t) is the modulated signal sent by the transmitter; h(t)
denotes underwater acoustic channel; “⊗” denotes convolution operation; n(t) is additive
noise. The impulse response function model for the multipath channel can be expressed
as [27]:

h(t) = Aδ(t− τ0) +
N

∑
i=1

Aiδ(t− τi), (2)

where A and Ai are amplitudes; τ0 and τi represent time delays. The first term on the right
side of the equal sign is the direct sound wave, and the second term is bounded refraction
and reflection waves.

In underwater communication systems, common modulation types include MFSK [28],
multiple-phase shift keying (MPSK) [28], orthogonal frequency division multiplexing
(OFDM) [28], linear frequency modulation (LFM) [28], and hyperbolic frequency modula-
tion (HFM) [29].

3. System Model and Proposed Method

The method proposed in this paper is divided into three steps: synchronous signal
recognition and parameter estimation, frequency domain feature enhancement based on
PTR-AE, and classification recognition. The specific process is shown in Figure 1.
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Figure 1. Flow chart of modulation recognition based on passive time reversal-autoencoder with
synchronous signals.

First, a synchronous signal recognition network is designed to identify the type of
synchronous signal. And then its parameters are estimated based on fractional Fourier
transform (FrFT), Hough transform, and spectral features. Afterward, PTR-AE and CNN
are designed for power spectrum features enhancement and modulation recognition, to
classify the signals into 2FSK, 4FSK, 8FSK, PSK, and OFDM.

Due to the similarity of power spectrum features between BPSK and QPSK, the
square spectrum is selected as the classification feature. Therefore, after identifying the
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modulation types of the signal as PSK, PTR-AE, and CNN are used for square spectrum
features enhancement and modulation recognition of BPSK and QPSK.

4. Synchronous Signal Recognition
4.1. Structure of Synchronous Signal Recognition Network

Due to the significant differences in time–frequency characteristics among HFM, LFM,
and other communication signals, we use the time–frequency features calculated by short-
time Fourier transform (STFT) to recognize them. The specific structure and parameters of
the synchronous signal recognition network are shown in Figure 2, where Conv represents
the convolutional layer, C represents the size of the convolutional kernel and pooling kernel
sliding step, H denotes the number of convolutional kernels, R is the convolutional kernel
size and maximum pooling window size, and FC represents the fully connected layer. The
synchronous signal recognition network includes the convolution layers, pooling layers, a
full connection layer, and a Softmax layer. ReLU and the cross-entropy function are used as
the activation function and loss function, respectively.
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4.2. Training and Testing of Synchronous Signal Recognition Network Models

During the training process, the sampling rate is set to 96 kHz and the number of
sampling points for each signal segment is 8192. Other parameters are shown in Table 1. “/”
means that the parameter is not involved, “[]” indicates that the data is randomly selected
within the closed set range, “(Hough 1962)” indicates random selection among the listed
items, and “∪” is the union operator. The underwater acoustic channel data are generated
by Bellhop, and the specific parameters are shown in Table 2.

Table 1. Modulation signal parameters.

Modulation
Types

Symbol
Rate/(Symbol·s−1)

Carrier Fre-
quency/kHz

Number of
Subcarriers Frequency Modulated Ratio/(kHz·s−1) Bandwidth/kHz

2FSK {800, 1000} [20, 30] / / /
4FSK {400, 500} [20, 30] / / /
8FSK {400, 500} [20, 30] / / /
BPSK 1000 25 / / /
QPSK 1000 25 / / /
OFDM / [20, 30] 1024 / 10
LFM / [20, 30] / [100,000, 200,000]∪[−200,000, −100,000] [8, 10]
HFM / [20, 30] / [1/6000, 1/2800]∪[−1/2800, −1/6000] [8, 10]

During the training phase, 500 samples are generated for each modulation signal
based on the parameters in Table 1. Bellhop is used to generate simulated underwater
acoustic channels according to the parameters in Table 2. The signal-to-noise ratio (SNR) is
set within the range from 0 to 10 dB.
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During the testing phase, the underwater acoustic channels of Haihe and Danjiangkou
reservoir are used as testing environments, with specific parameters shown in Table 3. The
number of test samples for each modulation signal corresponding to each channel is 100.

Table 2. Underwater acoustic channel parameters during the training phase of synchronous signal
recognition network.

Parameters Channel 1 Channel 2 Channel 3

Depth/m 100 100 100
Sending height/m 50 20 50

Receiving height/m 60 50 60
Distance/m 1000 1000 1300

Table 3. Underwater acoustic channel parameters in the test phase.

Parameters Haihe Danjiangkou Reservoir

Depth/m 8 53
Sending height/m 6.5 43

Receiving height/m 6.5 43
Distance/km 1 0.5

Figure 3 shows the recognition accuracy of the synchronous signal recognition network
in two environments. Under two different channels from the training environments, the
recognition accuracy can reach over 98%.
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5. Estimation of Synchronous Signal Parameters
5.1. Estimation of LFM Parameters

Fractional Fourier transform (FrFT) [30] has a good energy aggregation effect on a
given LFM signal in a certain order of the fractional Fourier domain. The relationship
between LFM frequency modulated rate k0 and optimal order p0 is:

k0 =
− f 2

s
L tan(p0π/2)

, (3)

where L is the length of the discrete signal; fs is the sampling rate; p0 represents the optimal
FrFT order, ranging from 0 to 4. The initial interval of p0 can be determined based on the
value of the frequency modulation k0 displayed in the spectrogram. If k0 is positive, the
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initial value range is [0, 2], and if k0 is negative, the initial range is [2, 4). Set the search step
∆p = 0.01, calculate the fractional order spectrum, and obtain the rough value of p0 based
on the corresponding point of the maximum absolute amplitude. Then, within the range
[p0 − ∆p, p0 + ∆p], set the step size ∆p = 0.001 for accurate estimation. Finally, calculate
k0 according to Formula (3).

As for estimating N0 and L, we calculate the frequency spectrum through Fourier
transform first, and then set two thresholds to determine the maximum frequency fmax
and minimum frequency fmin of the LFM signal. Threshold 1 and threshold 2 can be
calculated by:

X(ω) =
N−1

∑
n=0

x(n) exp(−i
2πωn

N
), (4)

threshold1 =
a1

N

N

∑
ω=1
|X(ω)|, (5)

threshold2 =
a2

N

N

∑
ω=1
|X(ω)|, (6)

where N is the number of sampled points of the received signal; a1 and a2 are threshold
parameters, ranging from 0 to max(|X(ω)|)

|X(ω)|
, where |X(ω)| is the mean of |X(ω)|. Let fmin be

the first frequency point where the power is greater than threshold 1, and fmax be the last
frequency point where the power is greater than threshold 2. The periods T and L can be
calculated by:

T =
fmax − fmin

k0
, (7)

L = T × f s, (8)

Using ∆a = 0.1 as the step size, all a1 and a2 are transversed to estimate T and fmin.
The LFM signal is recovered and a cross-correlation with the received signal is performed.
The a1, a2 and corresponding fmin and T are found, achieving achieve the maximum cross-
correlation peak, then this correlation peak is used to determine the starting position N0.

We test the estimation accuracy by using the channels of the Haihe and Danjiangkou
reservoir. The true and estimated values are summarized in Table 4. N0 is based on 0, with
delays greater than zero and advances less than zero. When the sampling rate is 96 kHz, the
estimation errors of N0 and L do not exceed 60 sampling points, and the error percentage
of k0 is less than 1.2%.

Table 4. Estimated values of LFM parameters in the channels of Haihe and Danjiangkou reservoir.

Parameters Sending Signals Haihe Danjiangkou Reservoir

N0 0 17 52
L 4800 4780 4849

fmin 20 19.93 20.12
fmax 30 29.933 30.11

k0/(kHz·s−1) 200 200.9 197.79
p0 1.066 1.065 1.064

5.2. Estimation of HFM Parameters

The Hough transform [31] is commonly used to detect curves in images. By using
the transformation between two coordinate spaces, curves with the same shape in the
coordinate space form peaks that map to points in another space. This paper estimates k0 of
HFM based on the Hough transform and time–frequency image calculated by Wigner-Ville
distribution (WVD), because WVD has good energy aggregation and high resolution, it can
better characterize the time–frequency characteristics of HFM.



Sensors 2023, 23, 5997 7 of 17

The frequency of the HFM signal at each moment is:

f =
1

k0t + 1
f0

. (9)

Convert the equation into a polar coordinate system [32]:

ρ = t cos θ +
sin θ

f
. (10)

Find the peak point (ρ0, θ0) in the ρ− θ parameter space and calculate k0 by [32]:

k0 = − 1
tan θ0

. (11)

After obtaining the estimated value k0, N0 and L are estimated by using the same
method as LFM. The final results are summarized in Table 5. When the sampling rate is
96 kHz, the estimation errors of N0 and L do not exceed 90 points. The percentage error of
k0 is less than 5%.

Table 5. Estimated values of HFM parameters in the environment of Haihe and Danjiangkou reservoir.

Parameters Sending Signals Haihe Danjiangkou
Reservoir

N0 0 −82 −43
L 4800 4711 4864

fmin/kHz 20 19.795 19.718
fmax/kHz 30 29.952 30.278

k0/(Hz·ms−1) −0.33333 −0.34907 −0.34907
ρ 4.1667 × 10−5 4.2274 × 10−5 4.2274 × 10−5

θ/◦ 89.9809 89.98 89.98

6. Signal Frequency Domain Feature Enhancement Network Based on PTR-AE

To actively alleviate the impact of multipath effects on communication signal modu-
lation recognition, PTR-AE is designed to suppress multipath effects and enhance signal
frequency domain features after identifying and estimating specific parameters of the
synchronous signal.

6.1. Passive Time Reversal Detection Signal Selection

The implementation of PTR requires two parts: detection signal and modulation signal.
The detection signal needs to meet the following conditions [33]:

(1) Its frequency band must cover all frequency bands of the effective signal data;
(2) It must have good autocorrelation characteristics;
(3) Its frequency spectrum should be whitened as much as possible within the fre-

quency band.

In the process of underwater acoustic communication, it is necessary to add a synchro-
nization signal to assist in the synchronization and demodulation of modulated signals.
Common synchronization signals include LFM and HFM, both of which meet the above
conditions and can be used as detection signals for passive time reversal.

6.2. The Principle of Passive Time Reversal

The detection signal p̃(t) at the receiving end is first time reversed, and then convolved
with the received modulated signal y(t) to obtain intermediate data. The intermediate data
is convolved with the detection signal p(t) at the sending end to suppress multipath effects.
The schematic diagram is shown in Figure 4.
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6.3. Feature Spectrum Estimation

After using synchronous signal-based PTR to suppress multipath effects on the signal,
appropriate feature spectra should be selected as the input of AE. Due to the significant
differences between 2FSK, 4FSK, 8FSK, PSK, and OFDM, the power spectrum is first
selected as the classification feature, and AE is used to enhance it. The power spectrum
P(ω) can be calculated by:

Y(ω) =
N−1

∑
n=0

y0(n) exp(−i
2πωn

N
), (12)

P(ω) =
|Y(ω)|2

N
, (13)

where y0(n) is the discrete modulated signal after passive time reversal, and N is the
number of signal sampling points.

The square spectrum of the BPSK signal has an impulse characteristic at the position
that is twice the carrier frequency, the QPSK signal does not have this feature. Therefore, for
these two types of signals, we select the square spectrum as the modulation classification
feature. AE is also used to enhance the square spectral features of these two signals. The
square spectrum can be expressed as:

S(ω) =

∣∣∣∣∣N−1

∑
n=0

y0(n)
2 exp(−i

2πωn
N

)

∣∣∣∣∣ . (14)

6.4. Structure of PTR-AE

The PTR-AE consists of two parts: a passive time reversal layer and an autoencoder
which consists of seven convolutional layers and eight deconvolution layers. There are
some skip connections between convolutional layers and deconvolution layers. The convo-
lutional kernel size is 15, and its sliding step size is 2. Leaky ReLU is used as an activation
function. The network structure is shown in Figure 5, in which Conv represents the convo-
lutional layer, Deconv represents the deconvolution layer, and H represents the number of
convolutional kernels.

The convolutional layers of the encoder compress the input signal features layer
by layer, remove redundant information, and extract high-dimensional features. The
deconvolution layers of the decoder realize signal feature decoding and reconstruction.
The L1 loss term is used to measure the feature enhancement effect, and the RMSProp
optimizer is selected to optimize and adjust the network parameters.
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7. CNN-Based Modulation Classification Network

After feature enhancement, CNN is designed for modulation classification. The
network includes five convolution layers, five pooling layers, and one full connection
layer. ReLU is selected as the activation function. The cross-entropy is selected as the
loss function. CNN extracts high-dimensional features of the signal power spectrum and
square spectrum through convolution and finally classifies them using a Softmax layer. The
network structure is shown in Figure 6, where Conv represents the convolutional layer,
Pool represents the pooling layer, and H represents the number of convolutional kernels.
The convolutional kernel size is five, and the sliding step size is one. The maximum pooling
size is two.
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By learning the enhanced signal power spectrum features, CNN can classify 2FSK,
4FSK, 8FSK, PSK, and OFDM. When the modulation type of the signal has been identified
as PSK, the enhanced square spectral features and CNN are used to further classify BPSK
and QPSK.

8. Training and Testing of PTR-AE-CNN
8.1. Training of PTR-AE-CNN

During the training process, the sampling rate is set to 96 kHz. Except for OFDM and
detection signals, the duration of all other signals is 20 ms, and the duration of detection
signals LFM and HFM is 50 ms. Other parameters are shown in Table 6, where “/” indicates
that the parameter is not involved, “[]” indicates that the data is randomly selected within
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the closed set range, and “{}” indicates that it is randomly selected among the listed items.
The underwater acoustic channel is generated by Bellhop, and the specific parameters are
shown in Channel 3 in Table 2.

Table 6. Modulation signal parameters.

Modulation Types Symbol
Rate/(Symbol·s−1)

Carrier
Frequency/kHz

Number of
Subcarriers

Frequency Modulated
Rate/(kHz·s−1)

2FSK {800, 1000} [20, 30] / /
4FSK {400, 500} [20, 30] / /
8FSK {400, 500} [20, 30] / /
BPSK 1000 25 / /
QPSK 1000 25 / /
OFDM / [20, 30] 1024 /
LFM / [20, 30] / 2 × 105

HFM / [20, 30] / −3.3333 × 10−4

In total, 500 sending samples are generated for each modulation signal, and 600 chan-
nels are generated by Bellhop. Received data are generated according to Formula (1)
with SNR set from 0 to 10 dB. The network parameters of PTR-AE and CNN are con-
stantly optimized through training data, and the training is stopped when the loss function
becomes stable.

8.2. Performance Testing of PTR-AE-CNN

During the testing phase, three types of underwater acoustic channels, Haihe, Dan-
jiangkou reservoir, and BCH1 channel, data provided by Watermark [34], are used as testing
environments. The corresponding number of test samples for each modulation signal in
both environments is 600. The specific parameters of the test channel are shown in Table 3.

Taking 2FSK and BPSK signals as examples, the enhancement effect of PTR-AE on
signal frequency-domain features in this paper is shown in Figures 7 and 8. After PTR-AE
enhancement, the spectral line characteristics of the 2FSK signal’s power spectrum in the
frequency range of 20–30 kHz are clearer. The impulse characteristics of the BPSK signal at
the square spectrum double carrier frequency position are enhanced. When the detection
signal is LFM, the average SNR of the power spectrums of the six signals increases from
1 dB to 7 dB, and the average SNR of the PSK square spectrums increases from 1.5 dB to
11 dB. When the detection signal is HFM, the average SNR of the signal power spectrums
increases by 6.14 dB, and the average SNR of the square spectrums increases by 10.5 dB.

Figure 9 shows the recognition accuracy of the proposed method in three different
environments. When the detection signal is LFM, in the Haihe River, the OFDM signal
recognition accuracy is greater than 80%, and the accuracy of other modulation signals is
higher than 90%. In the Danjiangkou reservoir, the accuracy of all modulated signals is
higher than 85%. When using BCH1 channel data testing, the recognition accuracy of all
signals is above 90%.

When the detection signal is HFM, the accuracy is slightly lower than LFM. This is due
to the energy distribution of the HFM spectrum not being as uniform as LFM, which affects
the passive time reversal to some extent. But overall, the recognition rate of all signals is
above 70%, and it is also adaptable to changes in underwater acoustic channels.

To demonstrate the effectiveness of PTR-AE in improving the accuracy of modulation
recognition, we compared the effectiveness of using CNN for modulation recognition
without using PTR-AE for feature enhancement processing under the environment of Haihe
and Danjiangkou reservoir. It can be seen from the results that the modulation recognition
accuracy is improved by at least 20% after PTR-AE enhancement. We also compare it with
methods based on Resnet [16], DAE-Alexnet [21], Alexnet [35], and R&CNN [15]. Table 7
summarizes the test results and parameter quantities of these methods.
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Figure 8. Enhancement effect of PTR-AE on frequency domain characteristics of modulated signals
when the detection signal is HFM. (a) Power spectrum of 2FSK received signal; (b) Power spectrum
of 2FSK signal enhanced by PTR-AE. (c) The square spectrum of BPSK received signal; (d) The square
spectrum of BPSK signal enhanced by PTR-AE.

The above results indicate that the method in this paper can effectively suppress the
impact of multipath effects, significantly enhance the frequency-domain characteristics,
and the model is robust to changes in environmental conditions. Traditional passive
modulation recognition methods lack effective signal enhancement processing, and the
input data of the classifier is severely disturbed by the underwater acoustic channel, which
results in fuzzy features. The recognition accuracies of these models are very sensitive
to the changes in underwater channels and require training with a small amount of data
from the testing environment to achieve the desired effect. In this paper, we actively
utilize synchronous signals to suppress multi-path effects, improve the input of traditional
classifiers, reduce the model’s dependence on environmental conditions, and achieve
good recognition accuracy without adjusting model parameters. Since both PTR-AE and
CNN use one-dimensional convolutional kernels, only the synchronous signal recognition
network uses a two-dimensional convolutional kernel, compared with other comparison
methods in this article, the number of parameters in neural networks is not very large.
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Figure 9. Identification confusion matrix of six modulation signals. (a) Haihe (LFM is the detection
signal); (b) Haihe (HFM is the detection signal); (c) Danjiangkou reservoir (LFM is the detection
signal); (d) Danjiangkou reservoir (HFM is the detection signal); (e) BCH1 (LFM is the detection
signal); (f) BCH1 (HFM is the detection signal).

Table 7. The modulation recognition accuracy and parameters quantities of different methods.

Methods Haihe Danjiangkou
Reservoir Parameter Quantities

PTR-AE-CNN(LFM) 91.1% 90.2%
6,968,000PTR-AE-CNN(HFM) 82.6% 83.4%

CNN(LFM) 50.4% 39.9%
49,000CNN(HFM) 57.1% 60.0%

Resnet [16] 17.7% 18.5% 53,000
DAE-Alexnet [21] 68.2% 70.2% 118,450,000

Alexnet [35] 70.2% 48.2% 61,100,000
R&CNN [15] 16.7% 16.6% 7,672,000

8.3. Testing the Impact of Signal Synchronization and Length Error on the Model

This section tests the impact of the estimation errors of N0 and L on the model recog-
nition accuracy. The range of N0 is [−100, 100], where less than 0 indicates an early
synchronization position, greater than 0 indicates a delayed synchronization position, the
range of L values is [4700, 4900], and the sampling rate is set to 96 kHz.

From Figures 10 and 11, it can be seen that under the condition of a sampling rate of
96 kHz, when the position and length errors of the synchronous signal are controlled within
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the range of 100 sampling points, the average recognition accuracy of the six modulation
signals decreases to a limited extent, and the overall average recognition rate is still higher
than existing passive modulation recognition methods.
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9. Discussion
9.1. Significance of the Proposed Method

The method proposed in this article provides a new approach to improve the accuracy
of modulation recognition. Actively utilizing synchronous signals commonly used in un-
derwater acoustic communication as detection signals, a passive time reversal autoencoder
is designed to enhance signal features, improving the accuracy of modulation recognition
and environmental adaptability.

The proposed model can also be used for modulation recognition of other types of
signals, but suitable features need to be selected based on specific signals to better leverage
the advantages of the model itself.

9.2. Future Research Direction

In the estimation of synchronous signal parameters, the method of estimating fre-
quency modulation parameters based on FrFT and Hough transform is relatively mature.
However, the method used in this paper is relatively simple for estimating signal starting
position and length. In addition, the effect of passive time reversal mirrors is affected by
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noise. Under low SNR conditions, it is necessary to adopt noise suppression preprocessing
to ensure the feature enhancement effect of PTR-AE.

In the future, more detailed research can be conducted on the parameter estimation
problem of synchronous signals to further reduce parameter estimation errors. At the same
time, effective denoising methods should also be studied to improve the enhancement
effect of PTR-AE on signal features under low SNR conditions.

10. Conclusions

To reduce the impact of multipath effects on the accuracy of modulation recognition
in the ocean, this paper actively utilizes synchronous signals in underwater acoustic com-
munication to suppress the multipath effect. A passive time reversal-autoencoder based on
synchronous signals is designed to enhance signal characteristics in underwater acoustic
channels. Modulation classification is performed using the convolutional neural network.

The results show that PTR-AE can suppress multipath effects in underwater acoustic
channels, and enhance power spectrum and squared spectrum features. It can also show
good recognition performance in different underwater acoustic channels. Compared with
existing methods, the modulation recognition rate of this article has been improved by at
least 10%.
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