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Abstract: The landing gear structure suffers from large loads during aircraft takeoff and landing, and
an accurate prediction of landing gear performance is beneficial to ensure flight safety. Nevertheless,
the landing gear performance prediction method based on machine learning has a strong reliance
on the dataset, in which the feature dimension and data distribution will have a great impact on
the prediction accuracy. To address these issues, a novel MCA-MLPSA is developed. First, an MCA
(multiple correlation analysis) method is proposed to select key features. Second, a heterogeneous
multilearner integration framework is proposed, which makes use of different base learners. Third, an
MLPSA (multilayer perceptron with self-attention) model is proposed to adaptively capture the data
distribution and adjust the weights of each base learner. Finally, the excellent prediction performance
of the proposed MCA-MLPSA is validated by a series of experiments on the landing gear data.

Keywords: performance prediction; feature selection; data distribution; integrated learning; self-attention

1. Introduction

Landing gear is the main support component for aircraft takeoff and landing, and
its health status is closely related to aircraft flight safety [1-3]. As shown in Figure 1, the
landing gear is mainly composed of a hydraulic cylinder, tire, wheel axles, pillar, support
rod, and other components. In the aircraft takeoff and landing task, the landing gear is
often subjected to large impacts due to its complex structural composition, resulting in
the mechanical failure of landing gear components. In addition, the external load is prone
to extreme peaks due to the changeable working conditions, resulting in performance
degradation of the landing gear. Therefore, it is necessary to evaluate the takeoff and
landing performance of the landing gear by combining working condition parameters and
structural parameters to ensure the safety of aircraft operation. Establishing an accurate
landing gear performance prediction model can not only provide a basis for structure
setting and optimization of safety margin setting by fully considering the external load
variation in the design phase, but also provide technical support for safety maintenance in
the operation and maintenance phase by being able to fully consider the specific situation.
Nevertheless, there is a complex nonlinear relationship between structure parameters,
working condition parameters, and landing gear performance [4-6], which makes it very
difficult to establish an accurate performance prediction model.
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Figure 1. Landing gear structure composition.

CAE (computer-aided engineering) is one of the commonly used methods for landing
gear performance analysis. By steps such as meshing, boundary constraints, material defi-
nition, and iterative calculation, CAE can achieve precise static and dynamic analysis [7-9].
However, this method has certain limitations. On the one hand, CAE requires extensive
iterative calculations, resulting in slow solving speed and long response time. On the
other hand, CAE is a deterministic modeling method, which means that both structural
parameters and working conditions are treated as fixed parameters during the calculation
process. However, during long-term operations, working conditions are random, and
structural parameters may slightly change (such as wear and tear).

To address the shortcomings of real-time and poor adaptability of CAE, some re-
searchers have employed machine learning as the agent model for CAE. This is training
machine learning models by CAE data or sensor data, and deploying machine learning
models in real maintenance to achieve fast and accurate predictions. Learning-based
methods have been developed for the performance prediction of complex industrial
equipment [10-12]. Zhang et al. [13] proposed a vibration signal fault diagnosis method
based on MLPC-CNN (convolution neural network based on multilayer pooling classi-
fier), which uses an improved convolutional neural network for feature extraction, and
a classifier for fault identification. Yan et al. [14] proposed a gear RUL prediction model
based on LSTM (long short-term memory networks), which improved prediction accuracy
and robustness by combining the tree structure with LSTM. Lan et al. [15] proposed a
cavitation detection model based on MLP-Mixer (multilayer perceptron), which is used
to recognize the cavitation intensity of the axial piston pump with given working con-
ditions. Zhou et al. [16] proposed an improved SVM (support vector machine), which
was optimized by the BAS (beetle antennae search) algorithm and PSO (particle swarm
optimization) algorithm to achieve high-precision classification of ultrasonic signals. Dhi-
man H S et al. [17] proposed an anomaly detection method of wind turbine gearboxes
using TWSVM and adaptive threshold to achieve accurate performance. Qiang S et al. [18]
proposed an online fault diagnosis method of wind turbine blades based on SVM, which
can achieve the expected effect.

Although the machine learning model has made significant breakthroughs in predict-
ing the performance of complex equipment in the industry, and has improved the prediction
accuracy [19-21], its prediction performance heavily depends on the training data. Thus,
when using the machine learning model for landing gear performance prediction, some
problems still need to be solved.

First of all, the actual collected samples of landing gear are high-dimensional, which
would limit the computational efficiency and prediction accuracy of the machine learning
model. After analysis with experts, the number of the monitoring parameters of the landing
gear related to takeoff and landing performance is 15, including 11 working condition
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parameters (X1~X11), 4 structural parameters (X12~X15), and 2 performance parameters
(Y1~Y2), as shown in Table 1. High-dimensional parameters would bring many difficulties
to performance prediction based on machine learning. On the one hand, high-dimensional
parameters contain some redundant information, i.e., some input parameters are highly
correlated with each other. On the other hand, high-dimensional parameters contain
invalid information, i.e., some input parameters have less influence on output results.
Redundant information and invalid information will limit the calculation efficiency and
prediction accuracy of the machine learning model. Thus, key features should be selected
from high-dimensional parameters to reduce data dimensions and improve the calculation
efficiency. However, in the case of incomplete knowledge of the mechanism, how to select
a suitable dimension reduction method and ensure that the key features can effectively
support performance prediction is a difficult problem faced by this paper.

Table 1. Input and output parameters.

X1 X2 X3 X4 X5 X6
Vertical dls.placement Vertical velocity of tires . Horizontal . Ho‘rlzonta}l Pllla.r Buffer load
of tires displacement of tires velocity of tires velocity
X7 X8 X9 X10 X11 X12
Spring Damping force of Buffer Structure Pillar Chamber I
force fluid Friction Force force Pressure
X13 X14 X15 Y1 Y2
Chamber II Tire . Vertical load Vertical displacement
Weight . .
Pressure pressure of gravity center of gravity center

Second, the structural parameters are time-varying and the working condition pa-
rameters of the landing gear are nonstationary, which leads to the distribution of collected
monitoring data changing with the service time, making the deterministic modeling method
not applicable. On the one hand, with the accumulation of service time and load impact,
the structural parameters of the landing gear gradually change, so that the dynamic char-
acteristics of the landing gear have also changed. The finite element model established
previously has difficulty reflecting the actual state. On the other hand, due to the difference
between the flight mission and the pilot’s operation behavior and different loads during
flight, the working condition parameters of the landing gear are also changeable. The above
reasons can lead to time-series changes in the distribution of landing gear state data, i.e., the
distribution of data for the training model and the data used for prediction in the future
may not be consistent. To improve the generalization of prediction models, some scholars
fuse multiple single prediction models by integrated learning [22-24], which can improve
the overall prediction accuracy under the complex data distribution. As a branch of ma-
chine learning, integrated learning can make full use of different base learners” advantages.
However, there are still some shortcomings in the existing integrated learning methods.
For example, the dynamic weight assignment ability in the above work is weak, which
is difficult to achieve adaptive adjustment according to changes in the data distribution.
Therefore, to achieve high prediction accuracy under different structural parameters and
working parameters, how to automatically assign each model’s weight according to the
change of data distribution state is another difficult problem faced by this paper.

From the above analysis, to improve the prediction accuracy and generalization of the
landing gear performance prediction model, two difficult problems should be focused on:
(1) eliminate the redundant information and invalid information from the original landing
gear performance parameters to realize the selection of key parameters, that is, feature
selection; (2) adaptive sensing of the landing gear performance data distribution state
caused by the gradually changeable structure and random loads, and achieve adaptive
adjustment of the weights of each base model with the data distribution state by the
weight adaptive learning mechanism, to reduce the prediction error caused by changes in
distribution uncertainty.
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To solve the above two difficult problems, a novel landing gear performance pre-
diction method, the so-called MCA-MLPSA (multiple correlation analysis and MLP with
self-attention) is proposed to improve the accuracy and generalization of landing gear per-
formance prediction. First, to address the problem of feature selection, an MCA (multiple
correlation analysis) method is proposed, which removes the invalid features that have
little influence on the takeoff and landing performance by sensitivity analysis, and removes
the redundant features in the original multiple parameters by redundancy analysis, so that
the key features can be selected. Second, to adapt to the complex data distribution state,
an integrated learning framework based on heterogeneous multiple learners is proposed,
which integrates the selected multiple base model (i.e., the single machine learning models
with high accuracy and large differences) into a framework to strengthen the generaliza-
tion ability by making full use of each base model’s advantage. Third, to achieve the
weight adaptive learning of the integrated learning framework, an MLPSA (MLP with
self-attention) is proposed, which learns the complex data distribution by self-attention and
adaptively assigns the weights of each base model by MLP (multilayer perceptron), so that
the weight of integrated learning can be dynamically adjusted with the data distribution.
Finally, the excellent prediction performance of the developed MCA-MLPSA is validated
by a series of experiments on the landing gear takeoff and landing performance dataset.
The key contributions of this paper are summarized as follows:

1.  Aiming at the problems of high complexity, low calculation efficiency, and limited
accuracy of the prediction model caused by the high-dimension parameters of landing
gear, a multiple correlation analysis method is proposed for key features selection,
which can effectively remove the invalid features and redundant features from the
original high-dimension parameters by sensitivity analysis and redundancy analysis.

2. Anintegrated learning framework composed of heterogeneous base learners is pro-
posed to solve the problem that the single model has a limited learning ability and
difficulty applying to the complex data distribution.

3. Aiming at the problem of weight adaptively learning of integrated learning, a novel
MLPSA (self-attention and MLP) is proposed, which introduces the self-attention
mechanism into the MLP neural network to adaptively learn the correlation of mul-
tiple base learners’ predicted values, to strengthen the sensing ability of integrated
learning for the data distribution state and realize adaptive weight adjustment.

4. Experiments show that the developed MCA-MLPSA can accurately predict landing
gear performance in the case of different data distributions, and is superior to other
integrated learning methods.

The rest of this paper is organized as follows: Section 2 introduces the motivation of
this paper, and describes the principle, structure, and implementation of the proposed MCA-
MLPSA in detail, and carefully explains how to achieve the weight adaptive learning of
the integrated learning framework by self-attention. Section 3 presents the application and
results of the proposed MCA-MLPSA on the landing gear takeoff and landing performance
dataset, and provides a detailed analysis of the experimental results. The conclusions are
given in Section 4.

2. Methodology

When predicting the performance of the landing gear, two inherent problems require
solving: (1) The original parameters of the landing gear contain some redundant informa-
tion and invalid information, which would seriously reduce the prediction efficiency and
accuracy. (2) On the one hand, the structural parameters of the landing gear would change
with the increase of service time (i.e., time gradient) due to factors such as wear of the
components. On the other hand, the working conditions of the landing gear are complex
and changeable, which would lead to a difference between the currently collected working
condition parameters and the future working condition parameters (i.e., the uncertainty of
the working condition). These two reasons would make the distribution of the collected
landing gear monitoring data complex (i.e., the distribution of data used for training the
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model is different from that of the data used for prediction in the future), which severely
limits the prediction effect of the established prediction model. To address these two diffi-
cult problems, this paper initially carefully analyzes the main characteristics of landing gear
parameters, and then analyzes the actual requirements for performance prediction of the
landing gear in detail, and finally designs an MCA-MLPSA for landing gear performance
prediction. Figure 2 shows the research outline of this paper.

High-dimensional Changeable data Integrated learning
parameters distribution weight
e et ey s Integrated learning Adapjuve weight
framework adjustment

MLPSA :sense the
data distribution &
adjust the weight of

basic learner

MCA: Remove Integrated learning:
redundant and invalid heterogeneous basic
information learners

Experiment

Verification of the MCA-MLPSA by landing gear data

Figure 2. Research outline.

Figure 3 describes the schematic diagram of the proposed MCA-MLPSA, which mainly
consists of three parts (i.e., step 1, step 2, step 3). Stepl is for data acquisition and pre-
processing, step 2 mainly includes feature selection of high-dimensional parameters, and
step 3 mainly includes weight adaptive integrated learning. In step 1, the input data are
obtained from the performance monitoring sensor of the landing gear or CAE analysis.
Before inputting them into MCA-MLPSA, these data will be normalized. The relevant
contents will be carefully described in Section 4. In step 2, the MCA model is built for key
feature selection. Through sensitivity analysis and redundancy analysis, key features that
have a large impact on takeoff and landing performance and are mutually independent
are selected. The relevant contents will be described in detail in Section 2.1. In step 3, the
MLPSA model is proposed for weight adaptive learning. The weight of each base learner is
adjusted through the self-attention mechanism, so that the weight assigned by integrated
learning can dynamically adapt to the data distribution. The relevant contents will be
described in detail in Section 2.2.
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Step 1. Data acquisition and preprocessing
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Figure 3. MCA-MLPSA model.

To remove the redundant information and invalid information from the original
parameters of the landing gear as much as possible, a novel MCA is proposed to select the
key features by making full use of sensitivity analysis and redundancy analysis.

As shown in Table 1, there are 15 landing gear parameters, but not all monitoring
parameters provide useful information for performance prediction. Figure 4 visualizes
some monitoring parameters. The horizontal coordinate is the sample size, that is, 800 sam-
ples collected during a landing process. The vertical coordinate is the changing trend of
monitoring parameters (X1, X5, X6, X8), which has been normalized into 0-1. As shown
in Figure 4, the changing trend of some parameters (such as X1, X5, X6, X8) is highly
correlated, which indicates that some redundant information may exist, i.e., a parameter
can be replaced by other parameters, such as X1 = f (X5, X6, X8). There is some linear or
nonlinear relationship between X1 and X5, X6, and X8, which means X1 can be derived
from X5, X6, and X8. In addition, the degree of influence of the above 15 parameters on the
takeoff and landing performance is also different. Some parameters with little influence
on takeoff and landing performance exist, which are regarded as invalid features in this
paper. The existence of redundant information and invalid information would seriously
limit the convergence speed and prediction accuracy of machine learning models. Thus, it
is necessary to select key features to reduce the influence of redundant information and

invalid information on the performance prediction of landing gear.
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Figure 4. Changes of landing gear parameters.

2.1. Feature Selection for Landing Gear Parameters via MCA

This paper proposes a novel landing gear parameter feature selection method, the
so-called MCA, and the specific process is shown in Figure 5. First, the sensitivity of input
parameters and takeoff and landing performance is analyzed, and the correlation coefficient
between them is used to represent the impact of input parameters on takeoff and landing
performance. The lower the correlation coefficient is, the weaker the influence of this input
parameter on takeoff and landing performance is, which is then regarded as a candidate
invalid feature. Second, the internal redundancy of the input parameters is analyzed, and
the correlation coefficient between the two input parameters is also used to represent the
correlation between them. A high correlation coefficient between the two input parameters
indicates a strong correlation between them. The input parameters whose correlation
coefficient is higher than the threshold value are regarded as candidate redundant features.
After sensitivity analysis and redundancy analysis, the key features are selected.

Feature selection for Landing gear parameters Weighted adaptive integrated
via MCA learning via proposed MLPSA

n
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Figure 5. Structure of MCA model.
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The correlation coefficient methods used in sensitivity analysis and redundancy analy-
sis mines the correlation between landing gear parameters based on statistics. Since the
landing gear has complex structural components and working conditions, it is difficult to
conduct a comprehensive analysis with a single correlation coefficient.

To fully explore the linear, nonlinear, and rank correlation between high-dimension pa-
rameters, this paper proposes an MCA analysis method i.e., Pearson coefficient, Spearman
coefficient, and Kendall coefficient are integrated to establish PSK indicators for redundancy
analysis and sensitivity analysis. The calculation of PSK is shown in Equations (1) and (2):

PSK(red) = Xrp(xi, xj) U Xrs(xi, xj) U Xrk(xi, xj) 1)

PSK(sen) = Xsp(x,y) N Xss(x,y) N Xsk(x,y) ()

PSK(red) represents the result of redundancy analysis, while Xrp, Xrs, and Xrk rep-
resent the correlation between input parameter xi and xj using the Pearson coefficient,
Spearman coefficient, and Kendall coefficient, respectively. When any correlation (i.e., Xrp
or Xrs or Xrk) between input parameter xi and input parameter Xj is above the threshold,
the input parameter xi and xj are regarded as redundant features.

PSK(sen) represents the result of sensitivity analysis, while Xsp, Xss, and Xsk represent
the correlation between input parameter x and output parameter y using the Pearson
coefficient, Spearman coefficient, and Kendall coefficient, respectively. When all correlations
(i.e., Xsp and Xss and Xsk) between input parameter x and output parameter y are below
the TOP-K ranking, the input parameter x is regarded as an invalid feature.

Through PSK indicators, i.e., PSK(red) and PSK(sen), three correlation coefficients
(Pearson, Spearman, Kendall) can be effectively unified. By complementing the advantages
of different correlation coefficients, the MCA model is suitable for complex and variable
data distribution, providing strong support for feature extraction of landing gear under
different operating conditions.

The correlation coefficients (Pearson, Spearman, Kendall) used for Xrp, Xrs, Xrk, Xsp,
Xss, Xsk will be detailed in Equations (3)—(6).

The Pearson coefficient is suitable for continuous data with normal distribution, which
is used to calculate the linear correlation between landing gear parameters. The calculation
formula of the Pearson coefficient is given in Equation (3)

cov(x,y) 3)

rp(x,y) = s

where 7, (x, y) is the Pearson correlation of parameter x and parameter y. oy is the standard
deviation of the parameter x; 0y is the standard deviation of the parameter y; and cov is
the covariance.

The Spearman coefficient is applicable to continuous data with non-normal distribu-
tion, and can be used to calculate the nonlinear correlation between landing gear parameters.
The calculation formula of the Pearson coefficient is given in Equations (4) and (5)

6Y. d?
rs(x,y) :111(1422_11) 4)
di = re(xi) — r¢(vi) 5)

where 75 (x, ) is the correlation between parameter x and parameter y, n is the amount of
data, d; is the difference between the two data orders, and r, is the data order.
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The Kendall coefficient is applicable to orderly data and can be used to calculate the
level correlation between landing gear parameters. The calculation formula of the Pearson
coefficient is given in Equation (6)

o= o) ©
v/(No —N3) x (Ng —Ny)

where Nj is the total number of parameter pairs, N is the number of positively correlated
parameter pairs, N» is the number of negatively correlated parameter pairs, N3 is the
number of parameters with equal values in x, and Ny is the number of parameters with
equal values in y.

For sensitivity analysis, PSK(sen) is used to filter invalid features. By using PSK(sen)
indicator, the influence of every input parameter is calculated and ranked. Then, using
TOP-K strategy for truncation, the input parameters in the TOP-K ranking should be
retained, which are the key features and have a greater influence on the output. The input
parameters after TOP-K ranking are regarded as invalid features, because they have little
influence on the output. By the sensitivity analysis and TOP-K strategy, the invalid features
can be removed.

For redundancy analysis, PSK(red) is used to filter redundant features. By using
PSK(red) indicator, the redundancy between two input parameters is calculated. If the
redundancy between two input parameters is above the threshold, one of them will be
regarded as a redundant feature and will be removed.

Through PSK indicator, i.e., PSK(sen) and PSK(red), sensitivity analysis and redun-
dancy analysis are performed. The key features that have a greater impact on landing
gear performance and are independent from each other are selected for integrated learn-
ing prediction.

2.2. Weighted Adaptive Integrated Learning via Proposed MLPSA

To solve the problem of adaptive weight assignment of integrated learning, a novel
MLPSA is proposed to dynamically change the weights of base learners by the self-attention
mechanism. Due to the time gradient of structural parameters and uncertain working
condition parameters of the landing gear, the distribution of monitoring data changes
during service time. However, a single model has limited ability for learning data in a
complex distribution. Meanwhile, the conventional integrated learning uses fixed weight
assignment, which is difficult to achieve accurate prediction. To this end, a novel integrated
learning model, the so-called MLPSA, is proposed, which can dynamically adjust the
weights of base learners with data distribution. As shown in Figure 6, the developed
MLPSA consists of base learners and MLP with self-attention. The base learners are
selected from single models and used for predicting landing gear performance. The self-
attention is used for sensing data distribution, and MLP is used for adjusting the weight
of each base learner. The specific process is described below. First, single models with
high accuracy are selected as base learners, which use the key features selected by MCA
as input. Then, the self-attention is used for sensing the value sequences consisting of the
predicted values of all base learners. The MLP with self-attention is used for learning the
data distribution of value sequences, which can pay more attention to the prediction value
with high correlation, so the final result can shift toward the core of the value sequences.
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Feature selection for Landing gear Weighted adaptive integrated learning
parameters via MCA via proposed MLPSA
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Figure 6. Structure of MLPSA model.

The base learners are selected based on the principle of “good but different”, which are
selected from 7 different common prediction models, including: Ridge, ElasticNet, KNN,
SVM, DT, BP, and RBF. Through the differences in data observation and training modes of
different base learners, integrated learning composed of heterogeneous base learners can
break the limitation of single models, which is beneficial to sense complex data distribution
and learn the implicit mapping relationship. Ridge is a regression model, which solves
the overfitting in the training process. ElasticNet is an elastic network model, which
strengthens the sparsity and generalization. KNN is a K-nearest neighbor model, which
measures the samples by distance to judge the current sample. SVM divides the samples in
the feature space by maximizing the margin, and usually has strong robustness. DT is a
decision tree model, which summarizes the decision rules and constructs a tree structure
for prediction, and has a strong mechanism explanation. BP is a fully connected neural
network, which adjusts the weights of neurons through reverse gradient propagation, and
has strong fitting ability for nonlinear systems. RBF is a three-layer feed-forward neural
network, which has a simple structure and fast learning speed. It can be seen that the
conventional machine learning models, such as Ridge, ElasticNet, KNN, SVM, DT, BP, and
RBE are different in composition structure, prediction mechanism, and learning method.

Nevertheless, the applicability and accuracy of the above single models still need to
be evaluated on the data collected from landing gear. Thus, this paper uses three metrics
(i.e., MAE, MAPE, and HAPE) to evaluate these single models, and those single models
with high accuracy are selected as base learners. The calculation of MAE, MAPE, and
HAPE is given in Equations (7)—(9).

MAE = Y |yi — il /M @)

MAPE = Y1 W/M x 100% ®)
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HAPE = {min(wi_yi'),maxoyi_mﬂ,i € [1, M] )
Yi Yi

where M is the total number of samples, 7 is the current sample, y; is the real value, and ¥;

is the predicted value. MAE is mean absolute error, MAPE is mean absolute percentage

error, and HAPE is the horizon of absolute percentage error.

The N base learners (N < 7) with high accuracy are selected by MAE, MAPE, and
HAPE. Based on high-precision single models, the integrated learning idea is used to fuse
the N prediction results to obtain the final output, which can improve the overall accuracy
and generalization. In the process of integrated learning, due to the different structures and
learning modes, each base learner’s initial prediction is also different. In theory, the initial
predictions from multiple base learners can be regarded as sequence information, which
will change dynamically with the distribution of landing gear parameters. Nevertheless,
conventional integrated learning, whether using fixed weight assignment or using weight
learning, ignores analyzing the sequence information. The sequence information obtained
from base learners is strongly related to the distribution of the data collected from landing
gear. The changes of the sequence information should be analyzed carefully, and the weight
distribution should be adjusted adaptively, to make prediction more accurate.

To solve this problem, a weight adaptive integration method, the so-called MLPSA, is
proposed. MLPSA combines MLP with self-attention to sense the sequence information
obtained from base learners, and adjust the weight of each base learner adaptively. Specifi-
cally, the prediction with the highest correlation with others is discovered, and assigned
more attention. Then, the weights of all base learners are adaptively changed according to
the correlation, so that the final result of integrated learning is close to the real value, as
shown in Figure 7.

Base learners
prediction

Model D
B4

Bl
B2
B3

|:>B4

Model B
B2

Weight Self-attention
adjustment calculation
Bl B2 B3 B4 Bl
led w—/‘ correlation
Model A .
)
/ Bl
LN Bl B2 B3 B4 B2
Attention Real Y vw correlation
<:| Bl B2 B3 B4 B3
\_&J\_/A correlation
Model B Bl B2 B3 B4 B4

B2 Attention ‘\% correlation

Figure 7. Principle of weight adaptive integration.

MLPSA takes the selected key features as input, and obtains the prediction value
sequence {B1, B2, B3 ... Bn} by using multiple single machine learning models. When
the data distribution of the landing gear parameter changes, the sequence information
also changes. To effectively sense this change, MLPSA extracts the internal correlation in
the sequence information through self-attention. This takes the prediction value with the
highest correlation with others as the dominant value and adaptively adjusts the weight of
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each base learner according to the correlation. In the integrated learning process, the base
learners produce a variety of predictions for landing gear performance. The correlation
between different predictions is calculated through the matrix called g, k, v, so that the
final prediction value is fused based on correlation. Specifically, the q and k matrices are
multiplication for obtaining the internal correlation in sequence information. The results
are scaled based on dimension d for reducing the computation. The softmax layer is used
for weight conversion, and multiplied with the v matrix to output the correlation, which is
calculated in Equation (10).

qk’
Attention = softmax(——)v (10)

Va

2.3. Flowchart of MCA-MLPSA Landing Gear Performance Prediction

Figure 8 describes the flowchart of using the proposed MCA-MLPSA to predict the
landing gear performance. First, the landing gear parameters are collected by the sensors
and normalized, and the proposed MCA is used for sensitivity analysis and redundancy
analysis. Second, take the selected key features as input, and 7 machine learning models
(i.e., Ridge, Elastic, KNN, SVM, DT, BP, RBF) are used to predict the landing gear perfor-
mance; those machine learning models with higher accuracy are selected as base learners,
which are used to form the integrated learning framework for final prediction. Third, the
weights of base learners are adaptively adjusted by the proposed MLPSA. Finally, the
trained MCA-MLPSA is used to predict the landing gear performance (i.e., the vertical load
of gravity center, the vertical displacement of gravity center).
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Figure 8. Landing gear performance prediction process.
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3. Experiment
3.1. Description of Experiment Data

The proposed MCA-MLPSA is applied to a landing gear performance dataset to prove
its effectiveness. The dataset includes 17018 samples. Each sample contains 15 input param-
eters (11 working condition parameters (X1~X11) and 4 structural parameters (X12~X15))
and 2 output parameters (Y1~Y2); the physical meanings of all parameters are described
in Table 1. In addition, all parameters are discrete variables, including air pressure, mass,
displacement, velocity, load, force, etc.

Before inputting these samples into the MCA-MLPSA, they will be normalized to
eliminate the magnitude differences. The normalized samples are shown in Table 2. In
the prediction process, X1-X15 are taken as input parameters, and Y1 (vertical load of
gravity center) and Y2 (vertical displacement of gravity center) are treated as output
parameters, respectively.

Table 2. Normalized samples (partial).

Input Output
No. Working Condition Parameters Structural Parameters Performance
X1 X2 X10 X11 X12 X15 Y1 Y2
1 0.968 0.465 0.299 0.561 0.600 0.416 0.411 0.973
2 0.857 0.138 0.417 0.113 0.600 0.416 0.898 0.004
3 0.281 0.128 0.480 0.656 0.600 0.000 0.168 0.002
4 0.428 0.236 0.281 0.549 0.600 0.000 0.293 0.007
5 0.628 0.192 0.256 0.508 0.000 0.416 0.934 0.413
6 0.609 0.030 0.044 0.368 0.000 0.416 0.949 0.047
7 0.406 0.204 0.451 0.637 0.800 0.833 0.578 0.006
8 0.744 0.230 0.336 0.584 0.600 0.000 0.744 0.002
9 0.943 0.288 0.577 0.735 0.600 0.416 0.997 0.189
17018 0.750 0.179 0.551 0.703 0.000 0.416 0.784 0.538

3.2. Analysis of Feature Selection

The dimension of landing gear parameters is high, and there are 15 parameters in
total, including structural parameters and working condition parameters. The dimension
of working condition parameters is 11, which is much more than structural parameters.
Meanwhile, the operation mechanism of landing gear is complex, which leads to redundant
information and invalid information among the working condition parameters. In contrast,
there are only four structural parameters, which are few and designed by experts, and the
physical correlation of the four structural parameters is weak. Therefore, this paper mainly
focuses on the working condition parameters for feature selection.

3.2.1. Sensitivity Analysis

First, sensitivity analysis is performed between the working condition parameters
(X1-X11) and the output (Y1, Y2), as shown in Tables 3 and 4. The ranking represents the
influence degree of the input features on the output. The larger the value is, the higher the
ranking is, and the greater influence is. The features with lower ranking are regarded as
invalid information.
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Table 3. Y1 sensitivity analysis.
Pearson Spearman Kendall
Feature Value Ranking Value Ranking Value Ranking
X1 0.383079 4 0.494972 5 0.399855 4
X2 0.141004 7 0.363665 9 0.293423 9
X3 0.981946 2 0.980942 3 0.871405 3
X4 0.018364 11 0.015115 10 0.010454 11
X5 0.316543 5 0.522409 4 0.396595 5
X6 0.031670 10 0.215045 6 0.159058 6
X7 0.996032 1 0.997465 1 0.963418 1
X8 0.617989 3 0.997464 2 0.963391 2
X9 0.113472 8 0.002074 11 0.081934 8
X10 0.076653 9 0.070595 8 0.046533 10
X11 0.180979 6 0.200939 7 0.137894 7
Note: Bold underline means the result of PSK(sen).
Table 4. Y2 sensitivity analysis.
Feature Pearson Spearman Kendall
Value Ranking Value Ranking Value Ranking
X1 0.760885 3 0.863477 2 0.685512 2
X2 0.317166 6 0.200522 10 0.163976 10
X3 0.047498 10 0.383335 6 0.290905 5
X4 0.282094 7 0.244807 9 0.170098 9
X5 0.747219 4 0.850003 3 0.684735 3
X6 0.960079 1 0.913163 1 0.803743 1
X7 0.145119 9 0.307408 8 0.260701 8
X8 0.034614 1 0.307410 7 0.260751 7
X9 0.940824 2 0.708765 4 0.505762 4
X10 0.178160 8 0.113769 11 0.074262 11
X11 0.408989 5 0.419333 5 0.284607 6

Note: Bold underline means the result of PSK(sen).

As shown in Table 3, for Y1 prediction (vertical load of gravity center), feature Pearson
value, Spearman value, and Kendall values of X2, X4, X9, and X10 are very small and the
corresponding rankings are low, which indicates that these input features have a weak
influence on Y1. Therefore, X2, X4, X9, and X10 are regarded as the result of PSK(sen), i.e.,
invalid features. As shown in Table 4, for Y2 prediction (vertical displacement of gravity
center), the Pearson value, Spearman value, and Kendall values of the input features X4, X7,
X8, and X10 are very small and the corresponding rankings are low, which indicates that
they have a weak influence on Y2. So, features X4, X7, X8, and X10 are regarded as invalid
information in temporary. By sensitivity analysis, some invalid features corresponding to
different outputs would be discriminated, and they will be treated as the candidates which
will be removed.

3.2.2. Redundancy Analysis

After the sensitivity analysis, invalid information in the input parameters can be
effectively extracted. Nevertheless, there is still some redundant information between
input parameters. To further compress data dimensions, redundancy analysis needs to
be carried out, i.e., Pearson, Spearman, and Kendall correlation coefficients are used to
calculate the relationship in different input parameters. The larger the value is, the stronger
the correlation is, that is, there are highly coupled redundant. The results of redundancy
analysis in 11 working condition parameters are shown in Figures 9-11.
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As shown in Figures 9-11, the values of the diagonal region are 1 (represented by
dark), which indicates that the feature is highly correlated with itself. In addition, there are
some dark regions (values close to 1) or white regions (values close to —1), which indicate
that they are redundant features, i.e., they have strong positive /negative correlation with
others. The redundant features (marked in yellow) in Figures 9-11 are counted, as shown
in Table 5.

Table 5. Redundancy analysis.

Pearson Spearman Kendall
X1 +— X5 X1 +— X5 X1 +— X5
X3 +—— X7 X3 +—— X7 X3 +—— X7
X6 <—— X9 X3 <—— X8 X3 +—— X8

X6 +—— X9

Note: Bold means the result of PSK(red).

It can be seen that there is strong linear, nonlinear, and rank redundancy between X1
and X5, X3, and X7. There is strong nonlinear and rank redundancy between X3 and X8.
There is strong linear and nonlinear redundancy between X6 and X9. Therefore, (X1-X5),
(X8-X7), (X3-X8), and (X6—X9) are regarded as the result of PSK(red), i.e., redundant
feature groups.

From the analysis of Tables 3 and 5, it can be seen that the invalid features are X2, X4,
X9, and X10, and the redundant feature groups are (X1-X5), (X3-X7), (X3-X8), and (X6-X9).
By comparing every two parameters in the redundant feature groups, X3 and X5 have less
influence on Y1. Therefore, for Y1 prediction, invalid features X2, X4, X9, and X10, and
redundant features X3 and X5 should be removed. The remaining features are the key
features, which are independent from each other and have a great influence on Y1.

From Tables 4 and 5, it can be seen that the invalid features are X4, X7, X8, and X10, and
the redundant feature groups are (X1-X5), (X3-X7), (X3-X8), and (X6-X9). By comparing
every two parameters in redundant feature groups, it is found that X5 and X9 have less
impact on Y2. Therefore, for Y2 prediction, invalid features X4, X7, X8, and X10, and
redundant features X5 and X9 should be removed. The remaining features are the key
features, which are independent from each other and have a great influence on Y2.
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3.3. Analysis of Landing Gear Performance Prediction

In this section, the corresponding selected key features are used as input for MLPSA
to predict Y1 (vertical load of center of gravity) and Y2 (vertical displacement of center of
gravity). To ensure the accuracy and flexibility of the predictions, this study constructed
MLPSA for Y1 and Y2 separately. On the one hand, by keeping feature selection and base
learner selection separate for Y1 and Y2, it is advantageous to select the most effective
feature information and learning method for each. On the other hand, training Y1 and Y2
separately allows for adjustments and updates to be made to a single model (either Y1 or
Y2) based on engineering requirements.

During the experiment, the landing gear data are randomly split with the proportion
of 6:2:2, that is, 60% for the training set (containing 10210 samples), 20% for the validation
set (containing 3404 samples), and 20% for the test set (containing 3404 samples). The
training set is used to train the internal parameters of the model, the validation set is used
to adjust hyperparameters, and the test set is used to evaluate the final prediction effect of
the model. The prediction result is evaluated by three common metrics, i.e., MAE, MAPE,
and HAPE.

3.3.1. Base Learner Selection

The proposed integrated learning framework in this paper is composed of multiple
heterogeneous base learners, so that the prediction accuracy of each base learner has a
great influence on the final prediction. To this end, single models with high accuracy are
selected as the base learners. In this paper, Ridge, Elastic, KNN, SVM, DT, BP, and RBF are
constructed to predict Y1 (vertical load of center of gravity) and Y2 (vertical displacement
of center of gravity). Then, according to the accuracy of each single model, the base learners
are selected to realize the integrated learning.

Since hyperparameters will affect the feature learning and performance prediction,
to compare different models more objectively, the grid search method is used to adjust
the key hyperparameters of each model (Ridge, Elastic, KNN, SVM, DT, BP, RBF). The
hyperparameter settings are shown in Tables 6 and 7. The alpha of Ridge represents the
L1 regularization coefficient. The 11_Ratio of Elastic represents the combined coefficient of
L1 regularization and L2 regularization. The n_neighbors of KNN represents the number
of samples nearby used to the judge current sample. The kernel and C of SVM represent
the kernel function type and penalty factor, respectively. The criterion and max_depth of
DT represent the basis for node splitting and the depth of the decision tree, respectively.
The hidden_size and learning_rate of BP represent the hidden neurons and learning rate,
respectively. The hidden_size and learning_rate of RBF represent the hidden neurons and
learning rate, respectively.

Table 6. Hyperparameter setting for single model (Y1).

Ridge Elastic KNN SVM DT BP RBF
alpha 11_ratio n_neighbors kernel criterion hidden_size hidden_size
0.2 0.3 5 Poly gini 12 8
_ _ _ C max_depth learning_rate learning_rate
0.7 6 0.012 0.015

Table 7. Hyperparameter setting for single model (Y2).

Ridge Elastic KNN SVM DT BP RBF
alpha 11_ratio n_neighbors kernel criterion hidden_size hidden_size
0.15 0.2 7 Poly gini 9 6
_ _ _ C max_depth learning_rate learning_rate

0.55 7 0.02 0.025
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The single model after hyperparameter optimization is applied to prediction of landing
gear performance, and three metrics (MAE, MAPE, HAPE) are used to evaluated the
prediction results. To avoid randomness, each experiment is repeated 10 times, and the
averaged values are taken as the final results, as shown in Tables 8 and 9.

Table 8. Regression accuracy for single model (Y1).

Metrics\Model Ridge Elastic KNN SVM DT BP RBF
MAE (Y1) 0.0581 0.0435 0.0225 0.0447 0.0173 0.0524 0.0654
MAPE (Y1) 0.1016 0.0776 0.0454 0.0638 0.0535 0.0798 0.1219
[2.28%, [0.65%, [0.59%, [0.24%, [0.21%, [1.48%, [2.76%,
HAPE (Y1) 13.54%] 10.62%] 6.97%] 8.96%] 9.61%] 12.66%] 15.03%]

Table 9. Regression accuracy for single model (Y2).

Metrics\Model Ridge Elastic KNN SVM DT BP RBF
MAE (Y2) 0.0447 0.0558 0.0196 0.0382 0.0246 0.0583 0.0713
MAPE (Y2) 0.0842 0.0984 0.0524 0.0579 0.0617 0.0879 0.1037
[0.97%, [2.25%, [0.99%, [1.04%, [0.42%, [2.58%, [3.96%,
HAPE (Y2) 11.54%] 13.10%] 8.30%] 9.76%] 10.58%] 11.35%] 14.03%]

For the prediction of Y1 (vertical load of gravity center), Elastic, KNN, SVM, and DT
have lower values of MAE, MAPE, and HAPE, indicating better prediction results. For the
prediction of Y2 (vertical displacement of gravity center), Ridge, KNN, SVM, and DT have
lower values of MAE, MAPE, and HAPE, indicating better prediction results. From the
analysis of the prediction results, the above base learners maintain a high accuracy when
the data distribution of the landing gear is complex.

Therefore, for Y1 prediction (vertical load of gravity center), Elastic, KNN, SVM, and
DT are selected as the base learners. For Y2 prediction (vertical displacement of gravity
center), Ridge, KNN, SVM, and DT are selected as the base learners. The base learners
with high accuracy and different structures are initially used for predicting landing gear
performance, and later providing a good basis for the integrated learning.

3.3.2. The Prognostic Results of Weighted Adaptive Integrated Learning

Through the above analysis, we have selected base learners for Y1 prediction (vertical
load of center of gravity) and Y2 prediction (vertical displacement of center of gravity).
To further improve the prediction accuracy of integrated learning, MLPSA is proposed
to sense the data distribution and adaptively adjust the weight of each base learner. The
hyperparameters of the MLPSA are confirmed by the grid search method, as shown in
Tables 10 and 11. Layer1l-Layer5 is the network layer, which is composed of Self Attention,
Dense, Leaky_Relu. Optimizer is Adam, Lr is the learning rate, and Batchsize is the sample
size of each batch.

Table 10. Hyperparameter setting for MLPSA (Y1).

Layerl Layer2 Layer3 Layer4 Layer5
Self-Attention Dense(9,9) Leaky_Relu Dense(9,3) Dense(3,1)
Optimizer Lr Batchsize - -

Adam 0.015 128 - —
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Table 11. Hyperparameter setting for MLPSA (Y2).
Layerl Layer2 Layer3 Layer4 Layer5
Self-Attention Dense(9,9) Leaky_Relu Dense(9,3) Dense(3,1)
Optimizer Lr Batchsize - --
Adam 0.012 64 - --

To verify the rationality and superiority of MLPSA, the MLPSA is applied to the
Y1 prediction and Y2 prediction, and compared with three other mainstream integrated
learning methods (i.e., bagging, linear, MLP). Bagging is the weighted average method,
which sums the predicted values of base learners to obtain the mean value. Linear is a linear
regression layer, which fuses the predicted values of base learners in a linear way. MLP is
a multilayer perceptron, which fuses the predicted values of base learners in a nonlinear
way. The hyperparameters of the above integrated learning methods are confirmed by the
grid search method. In addition, each group of experiments is repeated 10 times and the
averaged value is taken as the final result, as shown in Tables 12 and 13.

Table 12. Regression accuracy for integrated learning (Y1).

Metrics\Model Bagging Linear MLP MLPSA
MAE (Y1) 0.0185 0.0204 0.0153 0.0114
MAPE (Y1) 0.0314 0.0411 0.0337 0.0241
HAPE (Y1) [0.33%, 6.07%] [0.45%, 7.07%] [0.69%, 6.19%] [0.24%, 5.19%]

Table 13. Regression accuracy for integrated learning (Y2).

Metrics\Model Bagging Linear MLP MLPSA
MAE (Y2) 0.0174 0.0190 0.0135 0.0096
MAPE (Y2) 0.0278 0.0457 0.0251 0.0188
HAPE (Y2) [0.51%, 5.91%] [0.61%, 7.71%] [0.57%, 8.20%] [0.28%, 5.01%]

As depicted in Table 12, compared with three other integrated learning methods
(bagging, linear, MLP), the developed MLPSA decreases the MAE by 38.378%, 44.118%, and
25.490%, respectively, decreases the MAPE by 23.248%, 41.363%, and 28.487%, respectively,
and has a better performance on the HAPE.

In addition, as can be seen from the prediction results in Tables 7 and 12, compared
with seven single models (Ridge, Elastic, KNN, SVM, DT, BP, RBF), the developed MLPSA
decreases the MAE by 80.379%, 73.793%, 49.333%, 74.497%, 34.104%, 78.244%, and 82.569%,
respectively, decreases the MAPE by 76.280%, 68.943%, 46.916%, 62.226%, 54.953%, 69.799%,
and 80.230%, respectively, and has a better performance on the HAPE.

To visualize the superiority of the developed MLPSA, Figure 12 illustrates the accuracy
comparison results presented in the form of bar graphs. It can be seen that the developed
MLPSA has achieved the best prediction results in Y1 (vertical load of gravity center).
Compared with single models, MLPSA has significant advantages in regression metrics
such as MAE and MAPE. Meanwhile, the developed MLPSA has a better prediction
performance than that of other integrated learning methods.
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Figure 12. Regression accuracy improvement (Y1).

As shown in Table 13, compared with three integrated learning methods (bagging,
linear, MLP), the MLPSA decreases the MAE by 44.828%, 49.474%, and 28.889%, respec-
tively, decreases the MAPE by 32.374%, 58.862%, and 25.100%, respectively, and has a better
performance on the HAPE.

In addition, as can be seen from the prediction results in Tables 9 and 13, compared
with seven single machine learning models (Ridge, Elastic, KNN, SVM, DT, BP, RBF), the
MLPSA decreases the MAE by 78.523%, 82.796%, 51.020%, 74.869%, 60.976%, 83.533%, and
86.536%, respectively, and decreases the MAPE by 77.672%, 80.894%, 64.122%, 67.530%,
69.529%, 78.612%, and 81.870%, respectively.

To visualize the superiority of MLPSA, Figure 13 also shows the above accuracy
comparison results in the form of bar graphs. It can be seen that the developed MLPSA
has achieved the best prediction effect in Y2 (vertical displacement of gravity center).
Compared with single models and conventional integrated learning methods, the proposed
MLPSA has significant advantages in three metrics (i.e., MAE, MAPE, and HAPE).
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Figure 13. Regression accuracy improvement (Y2).
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From the above analysis, compared with single models, integrated learning has
achieved better prediction results. This is because integrated learning can complement
itself through the differences in data observation and training modes of each base learner,
making up for the limitations of a single model. It is worth noting that compared with
other integrated learning methods, the developed MLPSA achieves the best prediction
results. This is due to the self-attention mechanism, which makes the weight distribution
of integrated learning more reasonable, i.e., dynamically adjusting the weight of each base
learner with the distribution of data.

In the scenario of gradually changeable structure and random loads, the landing gear
performance data have distribution differences, i.e., the distribution of training data and
test data is different, which makes it difficult for the single model or traditional integrated
learning to achieve an accurate prediction of landing gear performance. The developed
MLPSA improves the accuracy of takeoff and landing performance prediction through
adaptive weight adjustment, which is of great significance in engineering practice. On the
one hand, it helps to optimize the parameters in the design phase, giving consideration to
the safety threshold. On the other hand, it helps to intelligently monitor the operation and
maintenance stages to ensure flight safety.

To further demonstrate the excellent prediction ability of MLPSA, the prediction
values and actual values of some samples randomly selected from the test set are visualized.
Figure 14 illustrates the prediction errors of various methods for Y1 (vertical load of gravity
center), while Figure 15 shows the prediction errors of various methods for Y2 (vertical
displacement of gravity center). In Figures 14 and 15, the horizontal coordinates are the no.
of sample points and the vertical coordinates are the normalized error. The dashed lines are
the prediction errors of single machine learning models (KNN, SVM, DT, Elastic, Ridge),
while the solid lines are the prediction errors of the integrated learning models (bagging,
Linear, MLP, MLPSA).
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Figure 14. Prediction error (Y1).
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No matter the prediction for Y1 or Y2, the prediction error curves of the single models
fluctuate greatly within the +0.05 interval, while the prediction error curves of integrated
learning (solid line legend) fluctuate within the £0.03 interval. The experimental results
indicate that integrated learning can complement the limitations of a single model by the
advantages of multiple models, thus reducing the prediction error. More importantly,
compared with three other integrated learning models, the MLPSA (purple solid line) has
the smallest curve fluctuation within the £0.012 interval (fluctuation range is marked with
a straight line), which is closest to the 0 error line. Thus, the experimental results prove
again that the developed MLPSA can substantially reduce the prediction error through
weight adaptation, and achieve high-accuracy landing gear performance prediction.

4. Conclusions

Improving the performance prediction accuracy of aircraft landing gear has been a dif-
ficult issue in engineering practice. On the one hand, because the performance parameters
of the landing gear include many structural parameters and working condition parameters,
excessive redundant parameters and invalid parameters limit the prediction efficiency. On
the other hand, the time-asymptotic nature of the structural parameters and the uncertainty
of the working condition parameters severely limit the prediction accuracy of the predic-
tion model. To solve this problem, a novel MCA-MLPSA model is proposed to accurately
predict the performance of aircraft landing gear. Specifically, a novel MCA method is
used to analyze the redundancy and sensitivity of high-dimensional parameters and select
the key features. Then, the integrated learning framework, based on heterogeneous base
learners, is adopted, which can realize the adaptive sense of landing gear performance
data distribution states and adaptive assignment of weights of each base learner in the
integrated learning framework by the introduction of a self-attention mechanism.

The effectiveness of the proposed MCA-MLPSA is verified by a series of experiments
on the landing gear takeoff and landing performance dataset in comparison with three pop-
ular integrated learning models and seven single models. The experimental results show
that the developed MCA-MLPSA can effectively reduce the data dimension by eliminating
redundant features and invalid features through MCA (multiple correlation analysis), and
substantially improve the prediction performance by weight adaptive learning. Compared
with the seven single models (Ridge, Elastic, KNN, SVM, DT, BP, RBF) and three integrated
learning models (bagging, Linear, MLP), the proposed MLPSA achieved the best prediction
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results in the MAE, MAPE, and HAPE. The above experimental results show that the pro-
posed MCA-MLPSA in this paper can achieve accurate takeoff and landing performance
prediction, which is of great significance for flight safety.
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