
Citation: Lamrini, M.; Chkouri, M.Y.;

Touhafi, A. Evaluating the

Performance of Pre-Trained

Convolutional Neural Network for

Audio Classification on Embedded

Systems for Anomaly Detection in

Smart Cities. Sensors 2023, 23, 6227.

https://doi.org/10.3390/s23136227

Academic Editors: Pavlos Lazaridis,

Euler Cássio Tavares De Macêdo and

Christos Tachtatzis

Received: 30 May 2023

Revised: 26 June 2023

Accepted: 5 July 2023

Published: 7 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Evaluating the Performance of Pre-Trained Convolutional
Neural Network for Audio Classification on Embedded Systems
for Anomaly Detection in Smart Cities
Mimoun Lamrini 1,2,* , Mohamed Yassin Chkouri 2 and Abdellah Touhafi 1,3

1 Department of Engineering Sciences and Technology (INDI), Vrije Universiteit Brussel (VUB),
1050 Brussels, Belgium; abdellah.touhafi@vub.be

2 SIGL Laboratory, National School of Applied Sciences of Tetuan, Abdelmalek Essaadi University,
Tetuan 93000, Morocco; mychkouri@uae.ac.ma

3 Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
* Correspondence: mimoun.lamrini@vub.be

Abstract: Environmental Sound Recognition (ESR) plays a crucial role in smart cities by accurately
categorizing audio using well-trained Machine Learning (ML) classifiers. This application is partic-
ularly valuable for cities that analyzed environmental sounds to gain insight and data. However,
deploying deep learning (DL) models on resource-constrained embedded devices, such as Raspberry
Pi (RPi) or Tensor Processing Units (TPUs), poses challenges. In this work, an evaluation of an existing
pre-trained model for deployment on Raspberry Pi (RPi) and TPU platforms other than a laptop is
proposed. We explored the impact of the retraining parameters and compared the sound classification
performance across three datasets: ESC-10, BDLib, and Urban Sound. Our results demonstrate the
effectiveness of the pre-trained model for transfer learning in embedded systems. On laptops, the
accuracy rates reached 96.6% for ESC-10, 100% for BDLib, and 99% for Urban Sound. On RPi, the
accuracy rates were 96.4% for ESC-10, 100% for BDLib, and 95.3% for Urban Sound, while on RPi
with Coral TPU, the rates were 95.7% for ESC-10, 100% for BDLib and 95.4% for the Urban Sound.
Utilizing pre-trained models reduces the computational requirements, enabling faster inference.
Leveraging pre-trained models in embedded systems accelerates the development, deployment, and
performance of various real-time applications.

Keywords: deep learning; pre-trained models; environment sound recognition; embedded system

1. Introduction

ESR is a critical component for various applications, such as noise pollution monitor-
ing, public safety [1], industrial safety, and smart cities [2]. Environmental noise monitoring
is conducted to detect and track the sources of disturbance in residential and natural envi-
ronments, including the sound produced by aircraft during takeoff and landing at nearby
airports [3]. Intelligent sound monitoring devices are commonly deployed using embedded
platforms, such as microcontrollers or digital signal processors. Various methods, including
Machine Learning algorithms and signal processing techniques, have been investigated to
achieve the accurate classification of urban sounds with a limited number of embedded
devices. Several studies have employed the classical ML algorithms, such as k-Nearest
Neighbor (k-NN), Support Vector Machine (SVM), Naive Bayes, and Decision Trees, which
have been previously evaluated [4]. Sound recognition has seen significant progress in ML,
as evidenced by the recent advancements. Specifically, ANN and CNN have been shown
to offer precise sound recognition with high accuracy levels [5]. Nonetheless, when these
methods are applied to embedded devices, there is a reduction in the accuracy and longer
inference times. This is due to the need for computationally intensive operations, which
are often limited by the available resources of embedded systems. Capturing audio using a

Sensors 2023, 23, 6227. https://doi.org/10.3390/s23136227 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23136227
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8451-7255
https://orcid.org/0000-0001-7256-329X
https://orcid.org/0000-0001-8891-180X
https://doi.org/10.3390/s23136227
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23136227?type=check_update&version=1

Sensors 2023, 23, 6227 2 of 27

microphone on-site and analyzing it in the cloud may not always be feasible or preferable.
This method not only raises privacy concerns due to potential interception by a third party
but also results in significant latency.

There are existing specialized platforms available for this purpose [6]. For instance,
Google has developed an extension to its well-known machine learning framework Tensor-
Flow (TF), which allows for rapid and efficient inference of DL on advanced embedded
platforms such as RPi. In addition, Google has developed a specialized hardware accelera-
tor exclusively designed for deep neural networks, known as the TPU, which serves as an
embedded solution with low latency and low power consumption.

The work presented in this paper assesses the current methods for implementing
a pre-trained model on embedded systems. The pre-trained model for ESR has been
embedded as an example. Due to the demands of low latency, power efficiency, and
real-time response required by the application, the evaluation focuses on low-end TPUs
as embedded devices, whereas high-performance general-purpose embedded devices
such as the RPi are employed as a benchmark or comparison point. The evaluation of
hardware accelerators, specifically TPUs, was conducted from both accuracy and latency
perspectives. Additionally, various tool flows are examined, evaluated, and discussed
in terms of embedding pre-trained models, including Edge TPU [7] and TensorFlow Lite
(TFLite) [8]. This comprehensive analysis offers valuable insights into the necessary steps
and effort required for embedding pre-trained models on TPUs as well as the different
strategies employed to use these technologies.

The principal achievements of this study can be summarized as follows:

• A technique to evaluate audio features based on windowing, aimed to increase the
size and diversity of a training datasets;

• Combination of CNN and ANN based on DL with a pre-trained model and evaluation
of their deployment on embedded devices for ESR;

• An in-depth examination, assessment, and discussion of existing tool flows for de-
ploying a pre-trained model on TPUs;

• A comparison of the performance attainable on TPUs for ESR using a combination of
a pre-trained model with CNN and ANN models.

Our proposed system represents a significant advancement in utilizing a pre-trained
model to replicate the performance achieved on laptops. In addition to introducing our
innovative methodology, we present two DL models specifically designed to address the
constraints imposed by embedded devices. To thoroughly assess and compare the effec-
tiveness of both approaches, we conduct experiments across different platforms, including
a standard PC and a widely used embedded device. To ensure a fair and comprehensive
evaluation, we leverage multiple audio datasets commonly used in related studies. Our
evaluation process focuses on key metrics such as accuracy and execution time, which
provide valuable insights into the performance of our models.

Time-series classification refers to the task of categorizing or labeling time-series data
into different classes or categories based on their temporal patterns. In this problem, the
input data consists of sequences of observations or measurements taken at regular intervals
over time. Two important aspects of the time-series classification problem are feature
extraction and evaluation metrics. Feature extraction plays a critical role in time-series
classification. The objective is to identify meaningful features or representations that
capture the distinctive patterns in the data. Techniques such as Fourier transforms, wavelet
transforms, or feature engineering can be employed to achieve this goal. When assessing
the performance of a time-series classification model, standard classification metrics such as
accuracy, precision, recall, and F1-score are commonly used. However, additional metrics
specific to time-series tasks can also be relevant. For instance, the dynamic time warping
distance measures the similarity between two time-series by accounting for temporal
distortions. The area under the receiver operating characteristic curve (AUC-ROC) is
another metric that assesses the model’s ability to discriminate between different classes
based on the receiver operating characteristic (ROC) curve. By focusing on effective feature

Sensors 2023, 23, 6227 3 of 27

extraction and selecting appropriate evaluation metrics, researchers and practitioners can
enhance the accuracy and interpretability of time-series classification models. Some real-
world examples of time-series classification problems include detecting anomalies in sensor
data, classifying human activities based on accelerometer readings, predicting disease
outbreaks based on historical data, or identifying fraudulent financial transactions based
on transaction patterns. Addressing these challenges requires specialized techniques and
models tailored for time-series classification, such as CNN-1D.

The remainder of this paper is organized as follows: Section 2 covers the related
work that falls within the scope of our problem. Section 3 provides the context and
methodology for the evaluation. In Section 4, we provide a description of the data pre-
processing and experimental setup. In Section 5, we present all the essential background
information required for comprehending the employed models, assessing the solutions
that were generated, understanding tool workflows, and examining the descriptions of
the embedded systems being tested. In Section 6, we evaluate the pre-trained model on a
laptop and embedded systems. Section 7 encompasses the examination of experimental
outcomes and the insights gained from the process. Finally, we conclude this paper in
Section 8.

2. Related Work

In recent years, ESR has garnered significant attention, with a focus on leveraging DL
methods to enhance the performance of ML models. Previous studies have explored various
techniques for sound identification using DL models. Some models employ spectrograms
or MFCCs as inputs for ANN (Artificial Neural Network) or CNN (Convolutional Neural
Network) classifiers, while others directly use the raw waveform [9,10].

The authors of [11] proposed the use of a CNN for sound classification in a Wireless
Sensor Network (WSN) consisting of RPi nodes. The RPi devices were utilized to encode
audio and transmit it to a computer for classification. The authors demonstrated that sound
classification and feature extraction could be performed on the embedded device, which
possessed sufficient computational power for these tasks. Experiments were conducted by
running all the necessary sound recognition operations on an RPi.

In [6], several traditional ML algorithms were implemented and evaluated on an
RPi in terms of accuracy and classification time. The study introduced a hierarchical
approach to audio classification, involving multiple stages and providing a flexible solution.
This approach allowed for the selection of suitable classifiers for each stage, considering
factors such as audio type, execution time, and power usage. In our research, we have
almost a similar representation of the process, but we have made several changes and
additions to incorporate operations and methods that result in improved accuracy and
faster classification time compared to the previous methods.

The research presented in [5] was one of the early investigations into the application of
CNNs for ESR and has become a highly influential reference for evaluating the performance
of more recent networks, particularly when using the ESC dataset [12]. However, there
is a lack of discussion regarding the advantages and practicality of integrating machine
learning techniques for sound classification.

Within the IoT context, ref. [7] proposed a solution for the instant classification of
urban sounds using a CNN model specifically designed for deployment on an RPi 4. The
model utilized 2D convolutions and spectrogram feature maps as inputs for classification.
However, no evaluation of the model’s inference time was provided. Similarly, ref. [8] intro-
duced and evaluated an embedded solution that employed CNNs and spectrogram inputs
for sound classification on a low-power microcontroller. Various CNN architectures were
evaluated to identify the best trade-off between accuracy, CPU, and memory usage on the
microcontroller. Furthermore, the timing summary, which demonstrates that lightweight
Convolutional Neural Networks (CNNs) can achieve state-of-the-art accuracy even on
resource-constrained embedded devices, is not provided. Meanwhile, the timing summary
is integrated in our result.

Sensors 2023, 23, 6227 4 of 27

In their research [13], the authors proposed a temporal–frequency attention-based
CNN model (TFCNN) to effectively learn time and frequency features from Log-Mel
spectrograms. To validate the effectiveness of their proposed method, they designed
an experiment to examine the influence of a specific frequency band in the spectrogram
on the model’s classification. Furthermore, the study introduced two novel attention
mechanisms: the temporal attention mechanism and the frequency attention mechanism.
These mechanisms enable the model to focus on important frequency bands and meaningful
time frames within the spectrogram, effectively reducing the impact of background noise
and irrelevant frequency bands.

Hardware accelerators, such as TPUs (Tensor Processing Units) and FPGAs (Field
Programmable Gate Arrays), were investigated in [14] to improve the DL inference perfor-
mance for audio applications. However, due to factors such as cost or real-time processing
requirements, these specialized solutions may not be universally accessible or suitable for
all platforms. As an alternative, CPUs were considered for inference, which can be used in
both embedded devices and desktop audio plugins. The authors conducted an evaluation
of the classification time and accuracy of these models, but unfortunately, they did not
achieve satisfactory results on different devices. In contrast, our proposed innovation
revolves around utilizing pre-trained models, which have proven to yield favorable results
and can be implemented quickly.

The study [15] investigates an improved approach to multiclass damage localization,
considering various damage severities and scenarios. The limited dataset challenge is
addressed by augmenting the data through windowing the acceleration measurements.
Additionally, a novel majority voting technique is employed using a global CNN-1D model
to enhance the classification results. The effectiveness of the proposed CNN-1D model
is assessed by systematically tuning hyperparameters, including window size, random
weight initialization, and optimal learning rates. This evaluation showcases the robustness
of the selected optimal architecture for the CNN-1D network. In our research, we faced the
similar challenge of the limited dataset, and we found that augmenting the data through
windowing the acceleration measurements was a good solution.

In summary, while various sound classifiers have been examined in previous research,
only a limited number have been tested on embedded systems. Our evaluation goes beyond
prior work by not only covering a broader range of sound classifiers but also evaluating
their performance on a modern embedded system.

3. Methodology

This section provides an overview of sound classification and connects it with the
methodology employed in this study. It then introduces the selected datasets, the pre-
trained model chosen, and the metrics used for evaluation.

These experiments seek to evaluate how the performance of the pre-trained model
compares across different platforms and to investigate its potential to exceed the outcomes
achieved by traditional ML techniques. Similar to the many other tasks that involve classify-
ing patterns, sound classification consists of three crucial components:

• Sensing: Quantifying a signal or audible event;
• Pre-processing of audio: Extracting distinct features from the captured sound signal;
• Lastly, classification: Identifying the sound event’s characteristics.

The audio signal processing component primarily involves extracting features from
a recorded audio signal. To accomplish this, diverse methods of time-frequency analysis,
originally designed for speech processing, are employed. The goal of feature extraction is
to quantize the audio signal and transform it into distinct characteristic features, resulting
in an N-dimensional feature vector that often represents each audio frame. A classifier
then uses this feature vector to determine the context of the audio event and classify
it accordingly.

Sensors 2023, 23, 6227 5 of 27

The classification process involves two distinct phases:

• The training phase: During this phase, a representative model is trained through the
use of pre-recorded audio data obtained from labeled training sets. In addition, during
the final phase of training, a pre-trained YAMNet model was incorporated, which
enabled the system to predict 521 different classes. Following this, the final dense
layer was frozen and replaced with a suitable layer to meet our specific requirements.
The resulting model could predict 10 classes instead of the original 512;

• The classification phase: The system obtains audio inputs from diverse sources such
as pre-recorded audio data or directly from a microphone.

During the classification stage, the models created during the training phase were
employed to recognize and categorize the types of audio captured through the microphone.
Figure 1 illustrates this process.

Figure 1. Steps involved in the process of audio classification.

The key innovation of our method lies in the utilization of the pre-trained model in
embedded systems. This approach allows us to leverage the knowledge and capabilities
captured by the pre-trained model; the key innovation of our method lies in the utilization
of a pre-trained model on embedded systems. This approach enables us to leverage the
knowledge and capabilities captured by this model, which have been trained on large-scale
datasets, and apply them to resource-constrained embedded devices. By employing a
pre-trained model, we can benefit from their learned representations, feature extraction
capabilities, and generalization abilities without the need for extensive on-device training
or significant computational resources. This innovation enables us to achieve efficient
and accurate inference on embedded systems, thereby opening up new possibilities for
deploying advanced machine learning models in real-world applications with limited
computational resources.

Moreover, our proposed systems distinguish themselves from previous research in the
following ways:

• Implementations of the pre-trained model on embedded systems with the Coral TPU
bring together several benefits, including efficient inference, real-time responsiveness,
on-device privacy, portability, and edge intelligence. This integration allows for
advanced AI applications at the edge, expanding the range of possibilities.

• We conducted a comparative study across different platforms, which provides valuable
insights and enables us to evaluate the performance and suitability of our approach in
comparison to other systems.

• During our study, we discovered that the Coral TPU is not supported on all operat-
ing systems. This finding highlights a limitation in compatibility, which should be
considered when implementing our proposed systems.

Sensors 2023, 23, 6227 6 of 27

3.1. Datasets Selection

Table 1 summarizes the characteristics of the popular datasets that we incorporated
into our methodology to identify appropriate sound systems for embeddeding. Although
many of these datasets encompass categories beyond urban sounds, they still encompass a
significant number of representative urban sounds that align with our objective.

Table 1. The original datasets that were used in this study.

BDLib Dataset ESC-10 Dataset Urban Sound Dataset

Categories Total Time (s) Categories Total Time (s) Categories Total Time (s)

Airplane 100 Dog barking 200 Air conditioner 6577
Alarms 100 Baby crying 200 Car horn 4819

Applause 100 Clock tick 200 Children playing 13,454
Birds 100 Person sneezing 200 Dog bark 8399
Dogs 100 Helicopter 200 Drilling 4864

Motorcycles 100 Chainsaw 200 Engine idling 3604
Rain 100 Rooster 200 Gun shot 7865

Sea waves 100 Fire cracking 200 Jackhammer 4328
Rivers 100 Sea waves 200 Siren 4477

Thunderstorm 100 Rain 200 Street music 6453

• BDLib2 [16]: Consisting of audio segments lasting 10 s, the collection was sourced
from both the BBC Complete Sound Effects Library [17] and Freesound.org [18]. The
authors carefully selected 180 samples in a meticulous manner to ensure the absence
of background noise or overlap across the 10 classes. Each class comprises 18 samples,
which are presented as 16-bit .wav files with a sample rate of 44,100 Hz.

• ESC [12]: In this dataset, a collection of over 2000 short audio clips are categorized into
50 different categories, which are known as ESC-50. This dataset encompasses a wide
range of sounds not limited to urban environments, including animal, natural, and
domestic sounds. However, for the purposes of this study, the shorter version of the
dataset, ESC-10, which recognizes only 10 audio categories, was used.

• Urban Sound: This dataset is larger than other environmental sound classification
datasets; it consists of over 12 GB and contains 1302 short audio clips with 10 classes
with a total duration of 97,200 s of audio tagged [19]. Urban Sound was created by
manually filtering and labeling each recording obtained from Freesound [19], which is
an online sound repository.

3.2. Theoretical Background

In this section, we provide a summary of the models used in our evaluation of the
two platforms. The first model is a simple ANN, and the second is a CNN, which has
one-dimensional convolution layers. In our research, it was not the purpose to make two
stronger models but to test pre-trained models on PC and RPi 4 with or without the USB
Coral TPU.

3.2.1. Artificial Neural Network

ANN is widely recognized as one of the prevailing ML methodologies utilized in
modern times [20]. The objective of this algorithm was to address intricate non-linear
problems. ANNs were designed to emulate the neural networks observed in the human
brain [21]. Figure 2 on the left depicts a simple example of a Neural Network architecture.

The architecture of an ANN consists of an input layer, one or more hidden layers, and
an output layer [22].

As illustrated in the right panel of Figure 2, each layer consisted of one or more neurons.

Sensors 2023, 23, 6227 7 of 27

Figure 2. The left panel displays a node example in a neural. The right panel shows an example of an
ANN with a single output. The middle nodes within the hidden layers and the last node within the
output layer represent neurons.

In our ANN model experiment, we employed the Adam optimizer and conducted
100 epochs for each analysis. The batch size was set to 32 uniformly. The Rectified Linear
Unit (ReLU) activation function was used for the first two layers, while the Softmax
activation function was applied to the last layer of each model. The characteristics of our
proposed ANN architecture are summarized in Table 2. The architecture consists of the
following layers:

• Dense Layer 1: This layer consists of 256 neurons with the ReLU activation function.
• Dense Layer 2: This layer consists of 128 neurons with the ReLU activation function.
• Flatten Layer: This layer flattens the output from the previous layer.
• Output Layer: The final output layer consists of the output units, which are equal to

the number of classes used in the dataset. The Softmax activation function is applied
in the last layer.

The characteristics of our proposed ANN architecture are summarized in Table 2.

Table 2. Architecture of our proposed ANN model and parameter information used in each layer.

Type of Layer Output Shape Number of Parameters

Input_1 (InputLayer) [(None, 1024)] 0
dense (dense) (None, 256) 262,400
dense_1 (Dense) (None, 128) 32,896
flatten (Flatten) (None, 128) 0
dense_2 (Dense) (None, 10) 1290

Total: 296,586
Trainable: 296,586
Non-trainable: 0

3.2.2. Convolutional Neural Networks

The CNN model has made significant strides in computer vision, recognition and
language modeling, among other fields [23]. Empirical evidence confirms the superior effi-
ciency of CNN-based architectures compared to conventional methods across various classi-
fication tasks [24]. In recent years, CNNs have yielded excellent results in automatic sound
event recognition. There has been a remarkable surge in the use of CNNs for classifying
distinct audible sounds over the past decade [25], with numerous researchers implementing
different techniques on CNNs to develop their sound classification models [26,27].

In our CNN model experiment, we incorporated several important parameters and
mechanisms. These include utilizing the Adam optimizer, conducting 100 epochs for each
analysis, maintaining a uniform batch size of 32, applying an L2 norm regularizer with a
value of 0.001, utilizing the Rectified Linear Unit (ReLU) activation function for the initial

Sensors 2023, 23, 6227 8 of 27

two layers, and employing the Softmax activation function for the final layer in each model.
These characteristics define our proposed architecture for the CNN model.

Hyperparameter tuning such as Adam, batch-size 32, epochs 100 and L2 norm regu-
larizer with a value of 0.001 is a widely employed strategy to improve the performance of
ML and DL models. It involves an iterative process wherein the model is retrained at each
iteration to discover the optimal hyperparameter values. This technique has been widely
adopted by numerous compelling research studies in the field [28].

The characteristics of our proposed ANN architecture are summarized in Table 3. The
architecture is composed of the following layers:

• L1: The first layer contains 256 filters with a kernel size equal to three. The regularize
L2 norm with a value of 0.001 is used. The activation function utilized is ReLU.

• L2: The second layer contains 128 filters with a kernel size equal to three. The L2 norm
regularizer is also used. The padding for all the feature extraction involves in this
layer is “valid” and ReLU as the activation function.

• L3: Flatten the output from the previous layer.
• L4: The last layer is the 2nd dense layer. It consists of the output units. These are equal

to the number of classes used in the dataset. The Softmax activation function is used
in the last layer.

Table 3. Architecture of our CNN model and parameter details for each layer utilized in our
proposed method.

Type of Layer Output Shape Number of Parameters

Input_1 (InputLayer) [(None, 1024)] 0
tf.reshape (TFOpLambda) (None, 1024, 1) 0
conv1d (Conv1D) (None, 1022, 256) 1024
conv1d_1 (Conv1D) (None, 1020, 128) 98,432
flatten (Flatten) (None, 130,560) 0
dense_2 (Dense) (None, 10) 1,305,610

Total: 1,405,066
Trainable: 1,405,066
Non-trainable: 0

3.2.3. Transfer Learning

Transfer learning is an ML strategy that entails adapting a model trained on one task
to a related yet distinct task by leveraging knowledge acquired from a source domain and
applying it to a target domain [29]. This technique is beneficial for dealing with limited or
insufficient data in the target domain. Transfer learning has been successfully employed
in various domains [30], including classification, regression, and clustering. For instance,
utilizing features extracted from ImageNet images has shown efficacy in the PASCAL VOC
dataset [31].

In the context of sound classification, transfer learning can involve using image-based
representations of sound, such as spectrograms and scalograms, as the common input
to both the pre-trained model and the raw data [29]. To preprocess sound excerpts, they
are commonly transformed into images, typically following suitable segmentation. CNN
is frequently employed for this purpose by utilizing convolutional and pooling layers to
extract the features. The classification layers connected to the initial segment are responsible
for classifying the input. The most suitable approach for transfer learning depends on the
characteristics of the specific problem and similarity between the original and target tasks.

3.3. YAMNet Model

Yet another Audio Mobilenet Network, or in short the YAMNet model, is a pre-
trained deep neural network incorporating the MobileNetV1 (depthwise separable CNN)
architecture. This model was trained with the AudioSet ontology [32], and it can predict

Sensors 2023, 23, 6227 9 of 27

audio events from 521 classes from more than 2 million YouTube clips [33]. The dataset
comprises various classes of environmental sounds, such as laughter, barking, sirens, etc.

The YAMNet is an efficient model designed to fit a minimal delay in the processing
of AI models on low-cost devices, where the computational resources are quite restrained.
In the architecture of the MobileNet model [34], this model based on depthwise separable
convolutions is replaced by the standard convolution. The original paper was provided by
Google Inc. [34] to give more detail about this particular approach, where it was shown
that the computational cost may be minimized up to nine times compared with standard
convolution [5]. Furthermore, as shown in Table 4, the YAMNet model consists of 28 con-
volutional layers, 1 global average pooling layer, and 1 fully connected layer serving as its
input and output layers. Depthwise separable convolutions and standard convolutions
are sequentially stacked up to the pooling layer [33]. The convolutional layers in YAMNet
utilize ReLU activation functions and incorporate a batch normalization technique [34].
Finally, the output layer utilizes a Softmax activation function to provide the sound class
prediction [9].

Table 4. Details of the YAMNet model.

CNN Type Trained in Number of Layers Millions of Parameters

YAMNet Sound Youtube 28 3.7

The model accepts a 1D arbitrary length containing a waveform, and it is necessary
to resample the audio clips to 16,000 HZ in the range [−1.0, +1.0] with single-channel
audio [35]. The complete inference process of YAMNet, starting from the sound file and
leading to the prediction, is illustrated in Figure 3.

Figure 3. The process of conducting inferences using YAMNet was derived from a modified source.

3.4. Mel Spectrogram Features

The feature maps utilized as input for YAMNet are generated by extracting coefficients
from time-frequency representations of sounds. Nevertheless, the frequency content of
sound is not perceived linearly by humans. It is widely noted that the auditory systems
of humans are most sensitive within the 2–5 kHz frequency range [36]. Our ability to
differentiate tones is more accurate in lower frequency ranges compared to higher frequency
ranges, where the tones may exhibit greater similarity, assuming a consistent frequency gap
between the two sounds [33]. Hence, it is easy for humans to distinguish between various
sounds without much effort, such as differentiating between speech and music, the sounds
of a car and truck, the quality of speech of babies and adults, various speakers, noise, and
other useful sounds. We want machines to be able to classify sounds in a similar way to
how humans do it effortlessly [37]. In particular, YAMNet uses a Mel spectrogram as its
feature map.

The Mel scale and Mel Spectrogram were designed to account for the logarithmic
nature of human hearing. The Mel scale is based on the psychoacoustic perception of pitch
and can be used to convert frequencies (f) using Equation (1). These tools were developed

Sensors 2023, 23, 6227 10 of 27

based on empirical evidence and consider the way that the human ear perceives sound,
which is not a linear process.

Mel =

{
f , f ≤ 1000 Hz

2595 log10

(
1 + f

700

)
, f > 1000 Hz

(1)

3.5. Metrics

To ensure a comprehensive assessment of the various classifiers, we used a range
of metrics that included both accuracy and performance. This includes the F1 score, a
widely used accuracy metric, as well as metrics such as inference time, power consumption,
and energy usage, which are particularly relevant for real-time applications on embedded
devices. By considering both accuracy and performance, we can make more informed and
complete evaluations of the classifiers.

3.5.1. Accuracy

To assess the accuracy of the multi-classifiers, we used the F1 score, which combines
precision and recall into a single metric. These two metrics, which are based on the number
of true positives, false positives, and false negatives, are essential for evaluating the perfor-
mance of the classifiers. Using the F1 score, we obtained a more comprehensive view of the
classifiers’ accuracy. Precision (as defined by Equation (2)) measures the classifier’s ability
to correctly identify the instances of each class, while recall (as defined by Equation (3))
represents the classifier’s ability to find all of the correct instances for each class. These
metrics can be expressed as follows:

Precision =
tp

tp + fp
(2)

Recall =
tp

tp + tn
, (3)

where tp represents the number of true positives, tn represents the number of true negatives,
and fp represents the number of false positives. These parameters are utilized to calculate
the F1 score using Equation (4)

F1 score =
2 × Precision × Recall

Precision + Recall
. (4)

3.5.2. Inference Time

For real-time audio recognition, both accuracy and speed in classification are important
considerations. To evaluate the classifiers, we measured the classification time, which is
the amount of time required to determine the class of an audio sample. The value of this
classification time may differ based on the platform being used and can be a useful factor
in selecting the target platform for a given application. The algorithm used in our study is
provided in Algorithm 1.

Sensors 2023, 23, 6227 11 of 27

Algorithm 1 Inference Time Calculation

1: procedure CALCULATEINFERENCETIME(model, Xtest)
2: Variables:
3: input_data, start_time, prediction_in f erence_time, mean_time : float;
4: times : list;
5: i : int;
6:
7: for i ≤ length(Xtest) do
8: input_data = Xtest[i] . Get the input data for the current sample
9: input_data = np.newaxis(input_data, axis = 0) . Reshape the input to match

the expected shape
10: start_time = time.perf_counter() . Record the start time
11: prediction = model.predict(input_data) . Perform the forward pass to get the

prediction
12: in f erence_time = time.perf_counter() − start_time . Calculate the inference

time
13: times.append(in f erence_time × 1000) . Append the inference time to the list
14: end for
15: mean_time = np.mean(times) . Calculate the mean inference time
16: std_time = np.std(times) . Calculate the standard deviation of inference times
17: return mean_time, std_time
18: end procedure

4. Evaluation and Platform

In this section, the pre-processing of audio and the training procedure are provided as
well as the evaluation of embedded platforms. The evaluation process as shown in Figure 4
was utilized in this evaluation. To ensure sufficient training data, a windowing technique
is employed during the feature extraction process.

Figure 4. Evaluation process outlining the steps executed to ensure an equitable comparison of the
DL-based approach.

Sensors 2023, 23, 6227 12 of 27

During this procedure, the audio features were extracted for each individual audio
frame and processed sequentially. Features with similar attributes are combined to create a
unified feature vector, and statistical metrics such as the mean are employed for aggregation.
However, the sum, median, or GMM (Gaussian mixture model) can also be used. The
purpose of this aggregation is to reduce the data and characteristics of audio frame samples
into a single feature vector.

All results were then compared to a pre-trained model. The results are further detailed
and discussed in the sections below.

4.1. Dataset Pre-Processing: Windowing

The ESC-10 dataset has 400 audio files in the ogg format compared to 180 audio files
in the wav format in the BDLib dataset. Meanwhile, there are 1302 audio recordings in the
Urban Sound collection. The length of the audio files in the BDLib is 10 s, while the length of
those in ESC-10 is 8 s; however, the length of the audio files in the Urban Sound dataset varies
from 1 s to several minutes.

To streamline the experimentation process, the audio files in the Urban Sound dataset,
which are originally available in various formats such as wav, ogg, mp3, etc., are converted
into the wav format. This format is preferred due to its lossless quality and the majority of
audio files in the dataset already being stored in this format.

The windowing technique allows the production of additional data from these audio
files. The function of the windowing process is shown in Figure 5.

Figure 5. A graphical illustration depicts the utilization of the windowing method to gather seven
audio segments from a four-second audio file for training purposes.

Sensors 2023, 23, 6227 13 of 27

The windowing flow is applied in the first 4 s when an audio file is loaded. The 4 s of
audio have been split into seven separate one-second frames of audio with an overlap of
50%. The frames obtained from the windowing process are temporarily stored in an array,
while features are extracted from them during this time.

The process is then repeated for each subsequent audio file in the dataset, generat-
ing seven times more feature groups to ensure an ample amount of training data. For
example, in the case of the ESC-10 dataset, the windowing technique resulted in obtaining
2800 feature groups compared to only 400 without it.

It is important to note that the primary objective of windowing is to create additional
training samples, and the multiple feature groups are not merged to form an averaged
feature group per audio file.

The audio files in the dataset used in this research are diverse from one another,
meaning that the duration of the audio files can vary. In addition, the relevant audio
segments did not consistently commence at the beginning of the audio files.

Consequently, each folder of the dataset comes with the csv file content, and the
metadata give all the information about the audio files, such as the start time. The starting
time serves as an offset to determine the starting point of the 4 s used for windowing. For
instance, if audio file X starts at 2 s, the windowing process is applied from seconds 2 to 6.

A feature group is produced for each frame, and the feature groups extracted from the
initial 4 s of the audio file are utilized for both training and testing of the classifiers. This is
because all the feature groups obtained from the first 4 s of the audio files are utilized to
train classifiers that form the basis of our approach.

4.2. Dataset Processing

The classification process included partitioning the data into training (80%), test-
ing (10%), and validation (10%) sets. Notably, feature extraction and sound classifica-
tion are independent processes because they both utilize the same extracted features for
classifying sounds.

Hence, the experiments in this study primarily aimed to determine the accuracy of the
sound classifiers. A 5-fold cross-validation technique was employed to assess the models,
where four folds were used for training with an (80%) training split and the remaining
portion was divided between testing and validation.

4.3. Platforms and Experimental Setup

In this section, we provide an overview of the various tools and materials used
in this study. The Python 3.10 package included the LibROSA 0.9.2 library, enabling
effective processing and extraction of the feature. For this research, we have selected the
LibROSA package to extract meaningful features from sound data. One reason for this
choice is that LibROSA is compatible with Arm-based processors. We can use the librosa
package in conjunction with the scikit-learn Python library, which is useful for our analysis.
Additionally, the scikit-learn 1.0.2 Python library was implemented. The experiments
served as a reference and were carried out on a laptop. The laptop used in the experiments
featured an Intel(R) Core(TM) i7-9850H CPU running Windows 10.

One objective of this study was to execute a pre-trained model on an embedded
system while maintaining high accuracy and low inference times, thus allowing for a fair
comparison with laptop performance.

5. Optimizing Models: Toward Integration with Embedded Systems

Before initiating experimentation on embedded devices, it is critical to comprehend
the limitations that ensue from the constraints imposed by the device’s design. These con-
straints comprise computational and power limitations that are pivotal to determining the
practicality of reversing the computing process on the devices. It is pertinent to acknowl-
edge that the majority of embedded devices operate on battery power, thereby further
exacerbating the computational constraints of DL models that have become increasingly

Sensors 2023, 23, 6227 14 of 27

voluminous and intricate in recent years. Furthermore, the high computational demands of
these models translate into substantial time requirements and power consumption.

The process of embedding models in embedded devices is crucial to adhere to a set
of meticulously defined procedures. Among these procedures, one of the most pivotal
involves adapting the model to the target platform, ensuring compatibility, and optimizing
performance.

This procedure can be observed in Figure 6, which provides a comprehensive overview
of the essential tools and techniques utilized in the process of embedding DL models onto
various embedded devices. At the top of the training architecture, we employed the
TensorFlow framework to train our CNN-1D model. Subsequently, we performed post-
training quantization (PTQ) or quantized-aware training (QAT) to convert the floating-point
models into fixed-point models. Further details regarding the specific tools used to compile
the quantized models for different platforms can be found in the subsequent section. At
the conclusion of our study, a comprehensive listing of the diverse embedded platforms
that were employed is presented.

Figure 6. Tools for Embedding Deep Learning Models on Diverse Embedded Devices.

The TensorFlow framework, which serves as a prominent general-purpose platform,
was utilized at the forefront of our results to enable the training of the CNN-1D model.
Moreover, to facilitate the embedding of the model on embedded devices and mobile
platforms, we also employed TensorFlow Lite (TFLite) [38], which is a specialized extension
optimized for such settings. Additionally, these tools facilitate the optimization of the
complexity of the model while retaining its original level of accuracy.

5.1. Platforms

The general-purpose embedded platform was used to implement our models and
evaluate their performance, as depicted in Figure 7.

Sensors 2023, 23, 6227 15 of 27

Figure 7. On the (left), we have the general-purpose embedded platform, represented by the RPi 4 B,
while on the (right), we have the TPU-based platform, represented by the USB Coral TPU.

• General-purpose embedded platform

3 The RPi 4B+ is equipped with 8 GB of RAM and a quad-core 64-bit BCM 2711
SoC (ARM Cortex A72 cores) [39], which, according to previous benchmarks [40]
conducted on deep learning, offers notably superior performance compared to
its predecessors.

• Platform that Utilizes TPU Technology

3 Google developed the USB Coral TPU, which is a dedicated hardware accelerator
designed to improve the inference speed of quantized deep neural network
models written in TFLite. It was initially introduced in 2017 [41] and employs
a USB 3.0 interface for communication [42]. To evaluate the performance of the
model, the USB Coral TPU is linked to a RPi 4B+ through a USB connection.

5.2. Optimizations

To achieve successful inference on an embedded platform, adjustments must be
made to the DL model to accommodate differences in architecture between a laptop and
the embedded platform. These adaptations serve to not only facilitate inference on the
embedded platform but also optimize the performance of the model. In this subsection, the
model optimization technique employed in this research will be elaborated on.

Model Quantization

Even though deep learning models are typically trained using floating-point numbers,
fixed-point representation generally yields superior performance on embedded devices.
To address this difference, the floating-point models are quantized, meaning that the
model parameters are converted from floating-point to fixed-point representation. This
quantization process played a vital role in optimizing the performance of our models on
embedded devices.

3 Post-Training Quantization (PTQ)
To convert a DL model from floating point to fixed point, one common method is PTQ,
which involves training the CNN-1D model using floating point and then quantizing
the weights after training. It is important to note that the precision of the numbers in
fixed-point representation affects the accuracy of the DL model. While it is possible
for accuracy to increase, it often decreases. Additionally, the number of bits required
for fixed-point representation may vary depending on the specific tool used, enabling
the conversion of a 32-bit floating point DL model into a fixed-point representation
with as few as 5-bit for the parameters.
In addition to Keras, TFLite [38] provides a range of resources for converting and de-
ploying models on embedded devices. It is primarily used for converting trained Keras
models from the ‘.h5’ format to the more compact ‘.tflite’ format, which is well suited
for the RPi and other embedded systems. Furthermore, TFLite offers a set of tools that

Sensors 2023, 23, 6227 16 of 27

can accelerate embedded inference or ensure high accuracy when using quantized
models. This paper utilized TFLite v2.5.0 to perform the aforementioned tasks.

3 Quantization Aware Training (QAT)
QAT is an alternative approach to PTQ, where quantized parameters are utilized
during the model training process. Although QAT is more time-consuming than PTQ,
it is more accurate or has a smaller accuracy loss after quantization. However, it
should be noted that the model error used to update the parameters during training is
still calculated as a floating-point number in QAT.
Although TF supports QAT, the model parameters are stored as 32-bit floating point
numbers. Therefore, additional quantization using TFLite was necessary after training
the model. Additionally, TensorFlow allows only fixed-point numbers of 8, 16, or
32-bit. Despite its greater flexibility, TFLite is the preferred option.

5.3. Tool Flows

The embedding of CNN models may necessitate the use of various tools and additional
steps, which are platform dependent.

Tool Flows for TPU

The fixed structure of TPUs imposes limitations on model optimization. To perform
inference on TPU, the models must be quantized to an 8-bit integer format. The quantized
models then need to be compiled for the TPU using Google’s Edge TPU compiler [43]. The
Edge TPU compiler converts a “.tflite” model into a TPU-compatible format and handles
the mapping of unsupported operations to the host CPU. Figure 8 depicts the tool flow
used for deploying a model on a coral device.

Figure 8. The process of embedding a model onto the Coral Dev Board can be divided into
two fundamental stages. At the forefront lies the conventional training methodology, while the
subsequent steps involve exporting the trained model to the boar board (emerging) at the base.

It is a noteworthy consideration that the TPU compiler has a critical constraint, as
it cannot support the execution of all operations, and consequently, some operations
are offloaded to the CPU [38]. Furthermore, in the current iteration of the compiler, all
operations subsequent to the initial non-supported operation are also mapped onto the
CPU [44]. The CPU’s performance is inferior to that of the TPU, thereby rendering the
model’s architecture a significant factor in determining its performance on the TPU [45].

Sensors 2023, 23, 6227 17 of 27

6. Evaluating Pre-Trained Model for ESR on Various Platforms

In this section, we provide the experimental results achieved from using various
platforms. The aim of this study was to ascertain whether combining a pre-trained model
can lead to enhanced accuracy and a shortened inference time. Additionally, we aim to
explore the advantages of a pre-trained model for embedded systems. The experimental
results in this section are divided into three categories: evaluation on a laptop, assessment
using an RPi, and evaluation on both the RPi and TPU platforms.

First, the ANN and CNN-1D classifiers were assessed using the BDlib, ESC-10, and
Urban Sound datasets. In addition to this section, the results obtained are compared to
the performance documented in the existing literature. In the second phase, three datasets
were evaluated on a laptop, and the accuracy and inference time were compared to assess
the potential of a pre-trained model in this context. It is widely acknowledged that model
accuracy diminishes as the number of parameters increases. We employed two models: the
first with a small number of parameters, as depicted in Section 3.2.1, and the second with a
significantly larger number of parameters, as depicted in Section 3.2.2. Lastly, all proposed
solutions were assessed on an embedded system. A solution for faster performance was
found when we used an RPi with a Coral TPU.

6.1. Evaluation on PC

In this section, we assess the two proposed models for ESR, as described in Section 3.2.
The experimental results for the ESC-10, BDLib, and Urban Sound datasets are presented
in Tables 5–7, respectively. The evaluation of the BDLib dataset revealed that the ANN
classifier not only outperformed the other classifiers in terms of F1 Micro but also in other
metrics. However, this superior performance comes at the expense of a higher inference
time. A similar trend is observed when assessing classifiers for the Urban Sound dataset,
with the ANN classifier demonstrating the highest accuracy and favorable inference time.
However, the CNN-1D demonstrated higher accuracy when applied to the BDLib and
Urban Sound datasets. Figure 9, shows the accuracy and inference times for all the datasets
for the two models.

Table 5. F1 scores and classification times were measured for the two models using the ESC-10 dataset.
The solution with the highest F1 score is indicated.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 0.157 ± 0.002 0.957 0.957 0.957
CNN-1D 0.303 ± 0.002 0.966 0.967 0.966

Table 6. F1 scores and classification times were measured for the two models using the BDLiB dataset.
The solution with the highest F1 score is indicated.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 0.278 ± 0.003 1.000 1.000 1.000
CNN-1D 0.4397 ± 0.010 0.996 0.996 0.996

Table 7. F1 scores and classification times were measured for the two models using the Urban Sound
dataset. The solution with the highest F1 score is indicated.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 0.107 ± 0.001 0.999 0.987 0.990
CNN-1D 0.252 ± 0.003 0.976 0.973 0.976

Sensors 2023, 23, 6227 18 of 27

(a) Accuracy (b) Inference Time

Figure 9. Evaluation of accuracy (F1 micro) and inference time for all datasets using our proposed models.

6.2. Evaluation on Embedded System

An advanced embedded system, the RPi 4B+, was employed to assess the various
models. The choice of this embedded platform was driven by its ability to replicate the
experiments conducted on a laptop without requiring significant modifications. Utilizing
alternative embedded platforms may present challenges due to the need for proprietary
tools, specialized ML support, and unique implementations when compared to open-source
alternatives or different libraries. Furthermore, several traditional ML techniques may
not be supported by certain platforms. The main factors to consider when applying the
mentioned approaches are accuracy and computational speed. Although the accuracy
is expected to remain consistent, there is likely to be a significant increase in the overall
execution time. The latter is crucial for real-time recognition and relevant when selecting
the audio frame size.

6.2.1. Post-Training Quantization (PTQ) without Quantization

In order to evaluate models on embedded platforms, they must be converted to
TFLite [38], which is a framework specifically designed for deploying ML algorithms
on embedded devices. TFLite converts a pre-trained TensorFlow model into a more
compact version, enabling its deployment on embedded systems. Tables 8–10 display
the performance of the full-precision TFLite models on the RPi 4B+. It is important to
note that the accuracy remained consistent with the measurements obtained on a laptop.
Interestingly, the inference time does not significantly change, as expected when executing
on constrained embedded devices. This can be attributed to the optimization of advanced
embedded devices, such as the RPi 4 B+, to efficiently support DL-based models in recent
years. Consequently, there is no compromise in terms of time or accuracy when migrating
models to these embedded platforms. In Figure 10, the accuracy and inference time of all
the used datasets are presented.

Table 8. Evaluation of RPi using TFLite without quantization on the ESC-10 dataset.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 0.605 ± 0.024 0.964 0.965 0.965
CNN-1D 20.448 ± 0.647 0.964 0.965 0.965

Table 9. Evaluation of RPi using TFLite without Quantization on the BDLiB Dataset.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 0.601 ± 0.024 1.000 1.000 1.000
CNN-1D 20.498 ± 0.575 1.000 1.000 1.000

Table 10. Evaluation of RPi using TFLite without Quantization on the Urban Sound Dataset.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 0.581 ± 0.032 0.953 0.962 0.953
CNN-1D 20.506 ± 0.045 0.953 0.963 0.953

Sensors 2023, 23, 6227 19 of 27

(a) Accuracy (b) Inference Time

Figure 10. Evaluation of accuracy (F1 micro) and inference time for all datasets using our proposed
models with post-training quantization (PTQ) without quantization.

6.2.2. Post-Training Quantization (PTQ) with Quantization

The converted model can be either a full-precision, 32-bit floating-point model or
an 8-bit integer model achieved through post-training quantization. Several constrained
embedded devices or hardware accelerators, such as TensorFlow Processing Units, support
only quantized models. Quantized models provide advantages in terms of reduced size and
potentially improved speed compared with non-quantized alternatives. Nevertheless, the
process of quantization unavoidably results in some loss of information, which can affect
the accuracy achieved. Tables 11–13 present the performance of our proposed model when
quantized to 8-bit integers. Despite a slight decrease in accuracy following quantization,
the speed improvement is only marginally noticeable compared with the non-quantized
TFLite models (Figure 11).

(a) Accuracy (b) Inference Time

Figure 11. Evaluation of accuracy (F1 micro) and inference time for all datasets using our proposed
models with post-training quantization (PTQ) with quantization.

Table 11. Evaluation of RPi using TFLite and post-training quantization with 8-bit on the ESC-
10 dataset.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 0.088 ± 0.010 0.962 0.963 0.963
CNN-1D 21.434 ± 0.491 0.960 0.961 0.961

Table 12. Evaluation of RPi using TFLite and post-training quantization with 8-bit on the
BDLiB dataset.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 0.090 ± 0.016 1.000 1.000 1.000
CNN-1D 21.383 ± 0.712 1.000 1.000 1.000

Sensors 2023, 23, 6227 20 of 27

Table 13. Evaluation of RPi using TFLite and post-training quantization with 8-bit on the Urban
Sound dataset.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 0.089 ± 0.008 0.954 0.964 0.954
CNN-1D 21.442 ± 0.365 0.952 0.961 0.952

6.2.3. Quantization Aware Training (QAT)

In this section, the classification accuracy of QAT 8-bit for the ANN and CNN-1D
models is presented. It is evident that the accuracy of the ANN model, as shown in
Tables 14 and 15 for Esc-10 and BDLib, respectively, is slightly higher compared to the
CNN-1D model. However, in Table 16, there is a slight increase in the classification
accuracy for the Urban Sound dataset using the CNN-1D model (Figure 12).

Table 14. Evaluation of RPi using TFLite and quantization-aware training with 8-bit on the ESC-
10 dataset.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 0.125 ± 0.010 0.953 0.954 0.954
CNN-1D 19.211 ± 0.276 0.824 0.825 0.825

Table 15. Evaluation of RPi using TFLite and quantization-aware training with 8-bit on the
BDLib dataset.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 0.121 ± 0.0131 1.000 1.000 1.000
CNN-1D 19.087 ± 0.712 0.912 0.913 0.913

Table 16. Evaluation of RPi using TFLite and quantization-aware training with 8-bit on the Urban
Sound dataset.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 0.121 ± 0.009 0.942 0.950 0.944
CNN-1D 18.856 ± 0.171 0.951 0.960 0.951

(a) Accuracy (b) Inference Time

Figure 12. Evaluation of accuracy (F1 micro) and inference time for all datasets using our proposed
models with quantization-aware training (QAT).

6.3. Evaluation on RPi4 and Coral TPU

In this section, we employ quantization-aware training (QAT) to implement two mod-
els, ANN and CNN-1D, on the Coral TPU. Our objective was to evaluate the performance
and accuracy of these models by utilizing Coral TPU hardware.

Post-Training Quantization (PTQ)

Likewise, the two models are assessed on the embedded platform, this time with Coral
TPU. While the accuracy is anticipated to be comparable to the results on the PC and RPI

Sensors 2023, 23, 6227 21 of 27

without Coral TPU, the execution time might improve when adapting the approach to an
embedded device with Coral TPU. Tables 17–19 display the accuracy and classification
times achieved when using Coral TPU in post-training quantization using 8-bit. In this case,
the accuracy remained consistent with the measurements on the PC, while the classification
time for the ANN model increased. However, unlike the CNN-1D standalone, where the
timings decreased by three milliseconds on the RPi, the ANN model time only increased
slightly, as shown in Figure 13.

Table 17. Evaluation of the ESC-10 dataset using RPi with Coral TPU and post-training quantization
(PTQ) with 8-bit.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 1.003 ± 0.405 0.957 0.957 0.957
CNN-1D 17.669 ± 2.243 0.955 0.956 0.956

Table 18. Evaluation of the BDLiB dataset using RPi with Coral TPU and post-training quantization
(PTQ) with 8-bit.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 1.035 ± 0.576 1.000 1.000 1.000
CNN-1D 17.665 ± 1.581 1.000 1.000 1.000

Table 19. Evaluation of the Urban Sound dataset using RPi with Coral TPU and post-training
quantization (PTQ) with 8-bit.

Models Inference Time (ms) F1 Micro F1 Macro F1 Weighted

ANN 1.027 ± 0.347 0.952 0.962 0.953
CNN-1D 18.095 ± 1.120 0.954 0.963 0.954

(a) Accuracy (b) Inference Time

Figure 13. Evaluation of the accuracy (F1 micro) and inference time for all datasets using our proposed
two models with Coral TPU and post-training quantization (PTQ).

6.4. ESR Comparison: State-of-the-Art CNNs

The effectiveness of the suggested approach was evaluated in relation to existing
literature reviews that utilize the same datasets. We compared the accuracy of our proposed
approach with the highest accuracy recently reported in the literature, as demonstrated
in Table 20. The methodology proposed in [46] achieved the highest level of accuracy by
employing Mel-Spectrogram features in conjunction with the ResNet-152 and DenseNet-161
models. In [25], two CNN models with data augmentation were presented. The authors
utilized Log-Mel audio feature extraction, with the primary distinction being that the
first model incorporates max-pooling while the second one does not. Unfortunately, both
proposed models demonstrate increasing accuracy, but their large size imposes excessive
memory demands that are impractical for embedded platforms. Furthermore, there is
additional research that utilizes a similar implementation approach but employs different
methodologies, unlike the one proposed by [29].

Sensors 2023, 23, 6227 22 of 27

The proposed methodology significantly improves accuracy, achieving 95.70% and
96.60% accuracy, respectively, for ESC-10, 100% and 99.60% for BDLiB, and 99.90% and
97.60% for UrbanSound datasets.

Our methodology offers several anticipated advantages, including significant speed
enhancements over current state-of-the-art solutions and compatibility with embedded
devices due to its lower memory requirements.

Table 20. Evaluation of Recent Sound Classifiers Based on CNNs Using Multiple Datasets.

References Year ESC-10 BDLib Urban Sound

[46] 2021 94.94 - -
[25] 2020 94.90 - -
[29] 2021 91.25 - -
[6] 2021 90.71 97.25 83.00
[14] 2021 83.25 74.44 63.05

Proposed ANN 2023 95.73 100 99.96
Proposed CNN 2023 96.66 99.66 97.61

7. Discussion

In this section below, a comparison will be made between two platforms: a 32-bit PC
versus a Raspberry Pi, and a Raspberry Pi versus a Coral TPU 8-bit enabled Raspberry Pi.

The measured accuracy remained rather consistent when they are embedded. This fact
can be associated with the fact that the parameters and architecture of the pre-trained model
are not affected by deployment on the embedded device. According to our analysis, the
accuracy of the proposed models ranged between 95 and 100% for the datasets used. This
represents a higher range than the other research, as depicted in Table 20. Although Coral
TPU is a new commercial device, all details are presented in Section 5.1. This facilitated
the use of this technique in edge computing; however, it did not support all operations.
Nonetheless, the measurement of QAT in Coral TPU is beyond the scope of this paper.

Our measurements demonstrated high accuracy in environmental sound classifica-
tion. One notable implication arising from the consistent accuracy observed when deploying
the models on embedded devices is the significant potential it holds for real-world appli-
cations. These findings strongly indicate that the models perform robustly and reliably,
even when operating on resource-constrained platforms such as the RPi. Consequently,
this opens up a wide range of possibilities for implementing sound classification systems
in edge computing scenarios, where processing is conducted locally on the device rather
than relying on cloud-based solutions. The ability to achieve high accuracy on embedded
devices greatly enhances their suitability for diverse applications, including Internet of
Things (IoT) devices, smart homes, and surveillance systems.

Additionally, we include two models proposed in our comparison in Section 3.2. The
summary depicted in Figure 14 illustrates the attainable accuracies of the two distinct
platforms for both models. The dependence on the dataset was significant. The ANN
model achieved the highest accuracy for three datasets, while the CNN-1D model had a
slightly lower accuracy compared to the ANN model. However, the performance of both
models was comparable when evaluated on the BDLib dataset. The cost of achieving high
accuracy with the ANN and CNN-1D models was reflected in their classification times.
Figure 15 illustrates the classification and inference times for the ANN and CNN-1D models.
The CNN-1D model required a significantly higher time cost to achieve this accuracy.
In particular, when considering embedded platforms, the difference in performance can be
as high as 20 times that of an ANN model.

Sensors 2023, 23, 6227 23 of 27

Figure 14. Comparison of accuracy (F1 micro score) of proposed models between PC and RPi.

Figure 15. Comparison of classification time of proposed models between PC and RPi.

The selection of audio frame size during windowing directly affects the total execu-
tion time. By considering experimental timings and assuming that audio recognition is
performed in streaming mode with a 50% overlap between audio frames, the minimum
windowing size is determined based on the time required for feature extraction.

The determination of shorter audio frame sizes depends on both the feature extraction
time and the chosen platform. However, larger audio frame sizes can lead to power
savings in embedded devices due to shorter feature extraction and classification times
in comparison to the audio frame size. This observation provides invaluable insights for
optimizing power consumption in resource-constrained environments. By meticulously
selecting the audio frame size based on feature extraction time and platform capabilities, it
becomes possible to strike a harmonious balance between accuracy and energy efficiency.
This consideration assumes particular relevance in applications where power-saving modes
are crucial, such as portable devices and battery-powered systems.

Figure 16 outlines the attainable accuracies for both ANN and CNN-1D models in
RPi and RPi with Coral TPU. The dependence on the dataset was quite evident. The ANN
model reached the highest accuracy for three datasets, while the CNN-1D model had
a negligibly lower accuracy than the ANN model. Regardless, the performances of the

Sensors 2023, 23, 6227 24 of 27

ANN and CNN-1D models were comparable when evaluated using the BDLib dataset.
The trade-off for achieving high accuracy with these models is evident in their respective
classification times.

Figure 16. Comparison of accuracy (F1 micro score) of proposed models between RPi and RPi with
Coral TPU.

Figure 17 displays the classification and inference times for the ANN and CNN-1D
models. The CNN-1D model requires a significantly greater time investment to achieve such
accuracy, particularly when considering embedded platforms. On embedded platforms,
the time cost of the CNN-1D model was up to 20 times higher than that of the ANN model.

Figure 17. Comparison of classification time of proposed models between RPi and RPi with
Coral TPU.

Nevertheless, the strength of our approach lies in its ability to achieve comparable clas-
sification accuracy on embedded devices such as laptops. An important aspect that emerges
from the research is the trade-off between accuracy and computational performance when
comparing the ANN and CNN-1D models. Across multiple datasets, the ANN model
consistently achieves higher accuracy, albeit at the cost of slightly lower accuracy for the
CNN-1D model. Nevertheless, it is crucial to consider the computational cost associated
with these models, especially when deployed on embedded platforms. The CNN-1D

Sensors 2023, 23, 6227 25 of 27

model necessitates significantly more time for classification and inference, rendering it less
efficient in terms of execution time. This trade-off assumes paramount significance when
selecting the most appropriate model for specific applications. If attaining high accuracy is
of utmost importance and computational resources are not a constraint, the CNN-1D model
may prove to be a suitable choice. Conversely, if computational efficiency is a priority, the
ANN model would represent a more favorable option.

Another key finding from the research underscores the considerable impact of the chosen
dataset on model performance. While the ANN model consistently achieves the highest
accuracy across three datasets, the relative performance of the models varies depending
on the specific dataset employed. This necessitates recognition of the fact that the models’
generalizability to unseen or diverse datasets may differ significantly. Hence, when applying
these models to new sound classification tasks, it becomes imperative to carefully consider
the characteristics of the specific dataset and evaluate their performance accordingly. This
highlights the utmost importance of dataset selection, diversity, and augmentation techniques
to ensure the models’ robustness and adaptability in real-world scenarios.

In light of these research findings, it is essential to emphasize the need for future
investigations into power consumption aspects encompassing feature extraction, training,
inference time, and sound classification processes. Conducting a comprehensive analysis of
power consumption would engender a more comprehensive understanding of the energy
requirements associated with sound classification systems. This analysis, in turn, could
serve as a guide for developing power-efficient models and algorithms explicitly tailored
for embedded devices. Additionally, future research should explore techniques such as
quantized-aware training (QAT) to optimize model performance and resource utilization
on emerging hardware platforms such as the Coral TPU.

In conclusion, the research findings offer valuable insights into the implications and
limitations of deploying sound classification models on different platforms. The consistent
accuracy observed on embedded devices, the trade-offs between model performance,
dataset dependency, audio frame size considerations, and the focus on power consumption
analysis collectively contribute to a deeper understanding of the practical applicability and
optimization of sound classification systems in real-world scenarios. These findings pave
the way for further advancements in the field of edge computing, wherein accurate and
efficient sound classification can be achieved on resource-constrained devices.

8. Conclusions

The primary objective of our research is to showcase the potential of a pre-trained
model to compete in terms of classification accuracy for ESR on embedded systems. Addi-
tionally, these models can attain accuracy results similar to those obtained using laptops.
However, it is crucial to consider the trade-off between the increased classification time
associated with these models. While this time cost is manageable on non-embedded plat-
forms, it becomes significantly amplified when considering computational limitations on
devices such as the RPi.

The results obtained indicate that pre-trained models are suitable for embedded de-
vices owing to their resource efficiency. Nevertheless, experiments conducted on inference
time revealed that larger model parameters pose difficulties for embedded devices, leading
to increased inference time compared to laptops because of limited resources. Although
there was a slight improvement in the inference time when applying the Coral TPU, it was
negligible. Furthermore, we encountered limitations with the Coral TPU when deploying
our QAT model, as it does not support all operations.

Author Contributions: Conceptualization, M.L., M.Y.C. and A.T.; methodology, M.L.; software, M.L.;
validation, M.L.; investigation, M.L.; data curation, M.L.; writing—original draft preparation, M.L.;
writing—review and editing, M.L.; visualization, M.L.; supervision, M.Y.C. and A.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Sensors 2023, 23, 6227 26 of 27

Data Availability Statement: The data are available on demand.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ozkan, Y.; Barkana, B.D. Forensic audio analysis and event recognition for smart surveillance systems. In Proceedings of the

2019 IEEE International Symposium on Technologies for Homeland Security (HST), Woburn, MA, USA, 5–6 November 2019;
pp. 1–6. [CrossRef]

2. Adamson, A. Paris Testing Noise Radar System That Can Identify Furthermore, Ticket Loud Cars. 2019. Available online:
https://www.techtimes.com/articles/245203/20190902/paris-testing-noise-radar-system-that-can-identify-and-ticket-loud-
cars.htm (accessed on 19 March 2023).

3. López, J.M.; Alonso, J.; Asensio, C.; Pavón, I.; Gascó, L.; de Arcas, G. A Digital Signal Processor Based Acoustic Sensor for
Outdoor Noise Monitoring in Smart Cities. Sensors 2020, 20, 605. [CrossRef]

4. da Silva, B.; Happi, A.W.; Braeken, A.; Touhafi, A. Evaluation of classical machine learning techniques towards urban sound
recognition on embedded systems. Appl. Sci. 2019, 9, 3885. [CrossRef]

5. Piczak, K.J. Environmental sound classification with convolutional neural networks. In Proceedings of the 2015 IEEE 25th
International Workshop on Machine Learning for Signal Processing (MLSP), Boston, MA, USA, 17–20 September 2015; pp. 1–6.

6. Lhoest, L.; Lamrini, M.; Vandendriessche, J.; Wouters, N.; da Silva, B.; Chkouri, M.Y.; Touhafi, A. MosAIc: A Classical Machine
Learning Multi-Classifier Based Approach against Deep learning Classifiers for Embedded Sound Classification. Appl. Sci. 2021,
11, 8394. [CrossRef]

7. Shah, S.K.; Tariq, Z.; Lee, Y. Iot based urban noise monitoring in deep learning using historical reports. In Proceedings of the
2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 4179–4184.

8. Nordby, J. Environmental Sound Classification on Microcontrollers Using Convolutional Neural Networks. Master’s Thesis,
Norwegian University of Life Sciences, Oslo, Norway, 2019.

9. Huzaifah, M. Comparison of time-frequency representations for environmental sound classification using convolutional neural
networks. arXiv 2017, arXiv:1706.07156.

10. Zinemanas, P.; Cancela, P.; Rocamora, M. End-to-end convolutional neural networks for sound event detection in urban
environments. In Proceedings of the 2019 24th Conference of Open Innovations Association (FRUCT), Moscow, Russia,
8–12 April 2019; pp. 533–539.

11. Mendoza, J.M.; Tan, V.; Fuentes, V.; Perez, G.; Tiglao, N.M. Audio event detection using wireless sensor networks based
on deep learning. In Proceedings of the Wireless Internet: 11th EAI International Conference, WiCON 2018, Taipei, Taiwan,
15–16 October 2018; Proceedings 11; Springer: Berlin/Heidelberg, Germany, 2019; pp. 105–115.

12. Piczak, K.J. ESC: Dataset for environmental sound classification. In Proceedings of the 23rd ACM International Conference on
Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 1015–1018.

13. Mu, W.; Yin, B.; Huang, X.; Xu, J.; Du, Z. Environmental sound classification using temporal-frequency attention based
convolutional neural network. Sci. Rep. 2021, 11, 21552. [CrossRef] [PubMed]

14. Vandendriessche, J.; Wouters, N.; da Silva, B.; Lamrini, M.; Chkouri, M.Y.; Touhafi, A. Environmental sound recognition on
embedded systems: From FPGAs to TPUs. Electronics 2021, 10, 2622. [CrossRef]

15. Sony, S.; Gamage, S.; Sadhu, A.; Samarabandu, J. Multiclass damage identification in a full-scale bridge using optimally tuned
one-dimensional convolutional neural network. J. Comput. Civ. Eng. 2022, 36, 04021035. [CrossRef]

16. Bountourakis, V.; Vrysis, L.; Papanikolaou, G. Machine learning algorithms for environmental sound recognition: Towards sound-
scape semantics. In Proceedings of the Audio Mostly 2015 on Interaction with Sound, Thessaloniki, Greece, 7–9 October 2015;
pp. 1–7.

17. bbc.co.uk. BBC Sound Effects. BDLib2 Environmental Sound Dataset-M3C. Available online: http://m3c.web.auth.gr/research/
datasets/bdlib/ (accessed on 19 March 2023).

18. Font, F.; Roma, G.; Serra, X. Freesound technical demo. In Proceedings of the 21st ACM International Conference on Multimedia,
Barcelona, Spain, 21–25 October 2013; pp. 411–412.

19. Salamon, J.; Jacoby, C.; Bello, J.P. A dataset and taxonomy for urban sound research. In Proceedings of the 22nd ACM International
Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 1041–1044.

20. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U.
Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access 2019, 7, 158820–158846.
[CrossRef]

21. Haykin, S.S. Neural Networks and Learning Machines; Pearson: London, UK, 2009.
22. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674.

[CrossRef]
23. Abayomi-Alli, O.O.; Damaševičius, R.; Qazi, A.; Adedoyin-Olowe, M.; Misra, S. Data Augmentation and Deep Learning Methods

in Sound Classification: A Systematic Review. Electronics 2022, 11, 3795. [CrossRef]
24. Ahmed, M.R.; Robin, T.I.; Shafin, A.A. Automatic environmental sound recognition (aesr) using convolutional neural network.

Int. J. Mod. Educ. Comput. Sci. 2020, 12, 41–54. [CrossRef]

http://doi.org/10.1109/HST47167.2019.9032996
https://www.techtimes.com/articles/245203/20190902/paris-testing-noise-radar-system-that-can-identify-and-ticket-loud-cars.htm
https://www.techtimes.com/articles/245203/20190902/paris-testing-noise-radar-system-that-can-identify-and-ticket-loud-cars.htm
http://dx.doi.org/10.3390/s20030605
http://dx.doi.org/10.3390/app9183885
http://dx.doi.org/10.3390/app11188394
http://dx.doi.org/10.1038/s41598-021-01045-4
http://www.ncbi.nlm.nih.gov/pubmed/34732762
http://dx.doi.org/10.3390/electronics10212622
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0001003
http://m3c.web.auth.gr/research/datasets/bdlib/
http://m3c.web.auth.gr/research/datasets/bdlib/
http://dx.doi.org/10.1109/ACCESS.2019.2945545
http://dx.doi.org/10.3390/s18082674
http://dx.doi.org/10.3390/electronics11223795
http://dx.doi.org/10.5815/ijmecs.2020.05.04

Sensors 2023, 23, 6227 27 of 27

25. Mushtaq, Z.; Su, S.F. Environmental sound classification using a regularized deep convolutional neural network with data
augmentation. Appl. Acoust. 2020, 167, 107389. [CrossRef]

26. Valero, X.; Alias, F. Gammatone cepstral coefficients: Biologically inspired features for non-speech audio classification. IEEE Trans.
Multimed. 2012, 14, 1684–1689. [CrossRef]

27. Cotton, C.V.; Ellis, D.P. Spectral vs. spectro-temporal features for acoustic event detection. In Proceedings of the 2011 IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 16–19 October 2011;
pp. 69–72.

28. Navon, D.; Bronstein, A.M. Random Search Hyper-Parameter Tuning: Expected Improvement Estimation and the Corresponding
Lower Bound. arXiv 2022, arXiv:2208.08170.

29. Tsalera, E.; Papadakis, A.; Samarakou, M. Comparison of pre-trained cnns for audio classification using transfer learning. J. Sens.
Actuator Netw. 2021, 10, 72. [CrossRef]

30. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
31. Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. Learning and transferring mid-level image representations using convolutional

neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA,
23–28 June 2014; pp. 1717–1724.

32. TensorFlow Hub. Available online: https://tfhub.dev/google/yamnet/1 (accessed on 4 May 2023).
33. Brusa, E.; Delprete, C.; Di Maggio, L.G. Deep transfer learning for machine diagnosis: From sound and music recognition to

bearing fault detection. Appl. Sci. 2021, 11, 11663. [CrossRef]
34. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
35. Models/Research/Audioset/Yamnet at Master · Tensorflow/Models · GitHub. Available online: https://github.com/tensorflow/

models/tree/master/research/audioset/yamnet (accessed on 23 February 2023).
36. Johnson, K.; Johnson, K. Acoustic and auditory phonetics. Phonetica 2004, 61, 56–58. [CrossRef]
37. Sharma, G.; Umapathy, K.; Krishnan, S. Trends in audio signal feature extraction methods. Appl. Acoust. 2020, 158, 107020.

[CrossRef]
38. TensorFlow Lite. Available online: https://www.tensorflow.org/lite/guide (accessed on 3 January 2023).
39. Raspberry Pi 4 Computer Model B. Available online: https://www.raspberrypi.org (accessed on 23 February 2023).
40. Benchmarking Machine Learning on the New Raspberry Pi 4, Model-Hackster.io. Available online: https://www.hackster.io/

news/benchmarking-machine-learning-on-the-new-raspberry-pi-4-model-b-88db9304ce4 (accessed on 17 January 2023).
41. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.

In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, Toronto, ON, Canada, 24–28 June 2017; pp. 1–12.

42. USB Accelerator Datasheet|Coral. Available online: https://coral.ai/docs/accelerator/datasheet (accessed on 18 February 2023).
43. Edge TPU Compiler|Coral. Available online: https://coral.ai/docs/edgetpu/compiler/#system-requirements (accessed on

18 February 2023).
44. TensorFlow Models on the Edge TPU|Coral. Available online: https://coral.ai/docs/edgetpu/models-intro (accessed on

18 February 2023).
45. Rancaño, X.; Molanes, R.F.; González-Val, C.; Rodríguez-Andina, J.J.; Fariña, J. Performance evaluation of state-of-the-art edge

computing devices for DNN inference. In Proceedings of the IECON 2020 the 46th Annual Conference of the IEEE Industrial
Electronics Society, Singapore, 18–21 October 2020; pp. 2286–2291.

46. Mushtaq, Z.; Su, S.F.; Tran, Q.V. Spectral images based environmental sound classification using CNN with meaningful data
augmentation. Appl. Acoust. 2021, 172, 107581. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.apacoust.2020.107389
http://dx.doi.org/10.1109/TMM.2012.2199972
http://dx.doi.org/10.3390/jsan10040072
http://dx.doi.org/10.1109/TKDE.2009.191
https://tfhub.dev/google/yamnet/1
http://dx.doi.org/10.3390/app112411663
https://github.com/tensorflow/models/tree/master/research/audioset/yamnet
https://github.com/tensorflow/models/tree/master/research/audioset/yamnet
http://dx.doi.org/10.1159/000078663
http://dx.doi.org/10.1016/j.apacoust.2019.107020
https://www.tensorflow.org/lite/guide
https://www.raspberrypi.org
https://www.hackster.io/news/benchmarking-machine-learning-on-the-new-raspberry-pi-4-model-b-88db9304ce4
https://www.hackster.io/news/benchmarking-machine-learning-on-the-new-raspberry-pi-4-model-b-88db9304ce4
https://coral.ai/docs/accelerator/datasheet
https://coral.ai/docs/edgetpu/compiler/#system-requirements
https://coral.ai/docs/edgetpu/models-intro
http://dx.doi.org/10.1016/j.apacoust.2020.107581

	Introduction
	Related Work
	Methodology
	Datasets Selection
	Theoretical Background
	Artificial Neural Network
	Convolutional Neural Networks
	Transfer Learning

	YAMNet Model
	Mel Spectrogram Features
	Metrics
	Accuracy
	Inference Time

	Evaluation and Platform
	Dataset Pre-Processing: Windowing
	Dataset Processing
	Platforms and Experimental Setup

	Optimizing Models: Toward Integration with Embedded Systems
	Platforms
	Optimizations
	Tool Flows

	Evaluating Pre-Trained Model for ESR on Various Platforms
	Evaluation on PC
	Evaluation on Embedded System
	Post-Training Quantization (PTQ) without Quantization
	Post-Training Quantization (PTQ) with Quantization
	Quantization Aware Training (QAT)

	Evaluation on RPi4 and Coral TPU
	ESR Comparison: State-of-the-Art CNNs

	Discussion
	Conclusions
	References

