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Abstract: The online automated maturity grading and counting of tomato fruits has a certain promot-
ing effect on digital supervision of fruit growth status and unmanned precision operations during
the planting process. The traditional grading and counting of tomato fruit maturity is mostly done
manually, which is time-consuming and laborious work, and its precision depends on the accuracy of
human eye observation. The combination of artificial intelligence and machine vision has to some
extent solved this problem. In this work, firstly, a digital camera is used to obtain tomato fruit image
datasets, taking into account factors such as occlusion and external light interference. Secondly,
based on the tomato maturity grading task requirements, the MHSA attention mechanism is adopted
to improve YOLOv8’s backbone to enhance the network’s ability to extract diverse features. The
Precision, Recall, F1-score, and mAP50 of the tomato fruit maturity grading model constructed based
on MHSA-YOLOv8 were 0.806, 0.807, 0.806, and 0.864, respectively, which improved the performance
of the model with a slight increase in model size. Finally, thanks to the excellent performance of
MHSA-YOLOv8, the Precision, Recall, F1-score, and mAP50 of the constructed counting models
were 0.990, 0.960, 0.975, and 0.916, respectively. The tomato maturity grading and counting model
constructed in this study is not only suitable for online detection but also for offline detection, which
greatly helps to improve the harvesting and grading efficiency of tomato growers. The main innova-
tions of this study are summarized as follows: (1) a tomato maturity grading and counting dataset
collected from actual production scenarios was constructed; (2) considering the complexity of the
environment, this study proposes a new object detection method, MHSA-YOLOv8, and constructs
tomato maturity grading models and counting models, respectively; (3) the models constructed in this
study are not only suitable for online grading and counting but also for offline grading and counting.

Keywords: counting; complex environment; maturity grading; tomato; target detection

1. Introduction

Tomato fruits are rich in nutrients and have a unique flavor. The tomato was originally
produced in South America and has been widely cultivated and promoted in the north and
south of China [1]. Tomatoes are generally divided into two types of consumption: raw and
cooked. Due to their excellent taste, most young people prefer raw food. Mature tomatoes
have the best taste when eaten raw and have the highest market demand [2]. However,
there are individual differences in the growth status of tomatoes during the planting process.
Planters generally grade tomato maturity, pick and estimate yield through manual observa-
tion to ensure market supply [3]. This method is labor-intensive and time-consuming and
is not suitable for maturity monitoring during large-scale tomato cultivation.

With the development of artificial intelligence and robotics technology, more and more
digital technologies are gradually entering the entire agricultural production chain [4].
The overall development trend is to use robots instead of manual labor for agricultural
production operations, ultimately achieving unmanned operations [5]. Taking tomato
picking as an example, assuming that robots replace humans in picking mature tomatoes,
the robots should first have the same function as human eyes, which is to accurately
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determine whether there are mature tomatoes in the field of view and where they are
located [6]. This function determines whether robots can replace manual picking operations.

In addition, in the actual process of tomato picking and sales, tomatoes are generally
divided into three categories, namely mature, semi-mature, and immature [7]. During the
sales process, mature tomatoes have relatively soft flesh and are not suitable for remote
transportation [8]. Generally, mature tomatoes are sold to nearby shopping malls or super-
markets. Semi-mature tomatoes have a harder flesh and can achieve complete ripening
through ripening, making them generally suitable for sale in distant cities [9]. The grading
of mature and semi-mature tomatoes is completed through the human eye evaluation of
the picking personnel, and there are certain human eye errors in this process [10].

The development of artificial intelligence technology has provided certain technical
support for solving this problem [11]. At present, the most mainstream object detection
methods have been widely applied in various fields, such as population counting, wheat
ear counting, fruit counting, etc. The object detection method itself has two functions:
detection and classification, which can detect where the target object is and identify which
category it belongs to [12]. Common object detection methods are mainly divided into
one-stage and two-stage object detection methods. Among them, the one-stage target
detection methods include YOLO series and SSD [13], while the two-stage target detection
methods include Faster RCNN, etc. [14]. The one-stage object detection method can directly
obtain the position of the target box, without the need to generate many candidate boxes
like the two-stage object detection method. In practical applications, the one-stage object
detection method has higher effectiveness.

In recent years, some researchers have conducted relevant research on fruit maturity
detection and recognition, and have achieved various results [15]. In most cases, the
detection of fruit maturity is mainly based on the color changes on the surface of the
fruit using machine vision methods, with very few using relevant electronic sensors for
detection [16–21]. For example, [22] used principal component analysis (PCA) and linear
discriminant analysis (LDA) to classify the maturity of cherry tomatoes, with an overall
accuracy of 94.4%. The authors of [23] compared the performance of hue-mean and red-
green mean in tomato maturity recognition and found that the red-green mean has a better
effect, with recognition accuracy of over 96%. In another study, ref. [24] used PCA, Support
Vector Machine (SVM), and LDA to classify the color features of tomatoes, and the results
showed that the maturity classification model based on SVM had an accuracy of 90.8%.
The authors of [25] used threshold segmentation methods to observe the color of tomato
leaves and fungal infection to distinguish tomato maturity. The authors of [26] estimated
the maturity of tomatoes using partial least squares (PLS) by combining visible/near-
infrared spectroscopy and machine vision information, with a model recognition accuracy
of 90.67%. In terms of fruit maturity detection for other crops, [27] proposed an automatic
classification method for persimmons based on fruit appearance color discrimination
maturity. By combining LDA and Quadratic Discriminant Analysis (QDA) to classify
the color features of fruits, the overall accuracy can reach 90.24%. Another study [28]
used MATLAB to extract the shape, size, and color features of mango fruits, and built
an automated analysis tool for mango fruit maturity. The authors of [29] also conducted
similar work. The authors of [30] collected image data of apricots, preprocessed them
with cropping, filtering, and segmentation, and then extracted image features. LDA and
QDA classifiers were used to classify the maturity of apricots, with accuracy of 0.904 and
0.923, respectively. The authors of [31] classified the maturity of dragon fruit by converting
RGB image to HSV image and combining naïve Bayes method, and the accuracy rate
reached 86.6%. Another study [32] collected relevant image data for Lycium barbarum L.
and conducted preprocessing such as binarization and morphology, then established a
maturity classification model using SVM, with an accuracy of 100%. Similar studies using
traditional image processing methods for fruit maturity detection include [33].

With the development of deep learning, the extraction of image features has been
automated, and the construction of classification models has become increasingly sim-
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ple [34–36]. The authors of [37] constructed a maturity detection model for tomatoes based
on an improved DenseNet, with a detection rate of up to 91.26%. The authors of [38]
constructed a tomato fruit maturity detection model using YOLOv4, with an accuracy of
up to 95%. The authors of [39] used RCNN to identify, locate, and measure the mature
fruits of tomatoes, with a precision of over 95%. The authors of [40] constructed a classi-
fication model for avocado ripeness based on CNN, with an accuracy of 93%. Another
study [41] collected image data of passion fruit based on Kinect depth camera, used Faster
RCNN to detect the fruit, and then used Dense Scale Invariant Feature Transform (DSIFT)
combined with Position Locality-constrained Linear Coding (LLC) to extract features from
each detection box area. The extracted features were then input into SVM for maturity
classification model construction, with a classification accuracy of 91.52%. The authors
of [42] constructed a classification model for blueberry maturity using YOLOv3-spp, and
achieved a Recall of 91%. The authors of [43] demonstrated the best recognition precision of
YOLOv4 for blueberry maturity detection, at 88.12%. YOLOv4 tiny has the fastest inference
speed, with an inference time of only 7.8 ms. The authors of [44] used Mask-RCNN to
identify the maturity of pineapple, with an mAP of 86.7%. Another study [45] first detected
citrus fruits using YOLOv5, and then used ResNet34 to classify the maturity of citrus fruits
using significance maps, with an accuracy of 95.07%. The authors of [46] proposed an
improved version of the YOLOv4 grape maturity detection and localization model, SM-
YOLOv4, with an average accuracy of 93.52%. The authors of [47] improved YOLOv5 using
GhostNet and CBAM attention mechanisms and proposed a new method, GGSC YOLOv5.
Based on this method, the maturity detection of Hemerocallis citrina Baroni was performed
with a detection accuracy of 84.9%. In addition, relevant studies have proved that transfer
learning can help improve the reliability of tomato maturity detection model [48]. The
authors of [49] proposed a cherry maturity detection model based on YOLOX-EIoU-CBAM,
with an mAP of 81.1%.

Although previous studies have used traditional image processing and deep learning
methods to research fruit maturity and achieved fruitful results, there are still areas for
improvement. (1) Although traditional image processing methods require small data
volume and fast computation speed, they have certain scene specificity and may not achieve
satisfactory recognition results in complex actual production scenarios. (2) Some studies aim
to establish an offline tomato maturity grading system, mainly focusing on the construction
of maturity grading models for individual tomatoes under a single background, which is
not suitable for the online maturity grading requirements of group tomatoes in complex
planting environments. (3) Some studies mainly focus on the recognition of mature fruits,
and fruit maturity classification cannot meet actual production needs. (4) Some studies
mainly focus on model construction from a single task perspective, without considering
multi-task model construction.

Therefore, this study focuses on the maturity grading and counting requirements
that exist in the actual planting and sales process of tomatoes. Tomato image datasets
with factors such as occlusion and light interference are collected in the actual planting
environment. Based on the current state-of-the-art one-stage object detection method
YOLOv8 [50], a multi-head self-attention mechanism (MHSA) is used to enhance the
backbone end features of YOLOv8 [51], ensuring the effectiveness of feature extraction
in the model, A new object detection method MHSA-YOLOv8 has been proposed. Then,
this method is used to construct tomato maturity grading and counting models from the
perspectives of maturity grading and counting, laying a good foundation for unmanned
operations during tomato planting. The specific contributions are as follows:

(1) A tomato maturity grading and counting dataset consisting of three categories and
one category was constructed, taking into account practical challenges such as external
light interference and occlusion.

(2) A target detection method based on MHSA-YOLOv8 has been proposed, further
improving the model detection performance of YOLOv8.
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(3) From the perspective of multi-task model construction, tomato maturity grading
and counting models were constructed, respectively, providing technical support for
unmanned operations during tomato planting.

2. Materials and Methods
2.1. Data Acquisition

The data needed for modeling in this study were collected from Shouguang Smart
Agricultural Science and Technology Park in Shandong Province, China. With Provence
tomatoes as the research object and RGB cameras as the main data collection tool, tomato
fruit datasets in different growth states were collected in the real production scene. To
ensure the universality and robustness of the model, occlusion, shadows, and light inter-
ference are fully considered during the data collection process, ensuring the reliability of
the model from the source of the data. The specific data collection example is shown in
Figure 1.
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Figure 1. Tomato data collection. This study mainly collected data during the fruit setting period of
tomatoes, which is in the third inflorescence growth stage.

2.2. Data Preprocessing

This study collected a total of 2208 tomato image datasets in an actual production
environment. The entire dataset was divided into training, validation, and testing sets in a
7:1:2 ratio. The specific data distribution is shown in Figure 2.

This study used LabelImg software (1.8.3) to annotate the collected image dataset.
Among them, due to the fact that this study constructed models from the perspectives of
tomato maturity grading and counting, there were slight differences in the data annotation
process. For the tomato maturity grading model, three types of labels, immature (IM),
semi-mature (SM), and mature (M), are used for dataset labeling. For the tomato counting
model, “tomato” is used as the label for the entire dataset. The specific annotation example
is shown in Figure 3.
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Figure 3. Dataset annotation. Among them, the maturity grading dataset mainly uses three different
colored rectangular boxes for annotation during the annotation process, while the counting dataset
only needs one colored rectangular box for annotation.

2.3. MHSA-YOLOV8

In the actual tomato planting process, the supervision of tomato maturity and yield is
one of the main tasks for planting personnel. In large-scale planting scenarios, the workload
of this task is relatively large. Therefore, an intelligent means is needed to achieve real-time
maturity grading and counting of tomatoes. However, the actual planting environment is
complex and the background interference is significant. In order to further improve the
precision and reliability of intelligent means, this study proposes an improved YOLOv8
object detection method based on MHSA, which can be used not only to construct tomato
maturity grading models, but also to construct tomato counting models. The specific
network structure is shown in Figure 4.

The MHSA-YOLOv8 object detection network structure mainly consists of three parts,
namely Backbone, Neck, and Head. Among them, basic data preprocessing operations,
including data enhancement, are performed before inputting image data into Backbone.
The main function of Backbone is to extract feature information of the target area in the
input image. When the image data are input into Backbone, the target areal features are
extracted through Conv, C2f and SPPF in turn, and then the obtained features are further
processed through the MHSA attention mechanism module to increase the feature weight
of the target area, so as to extract more effective feature information. The main function
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of Neck is feature fusion. From Figure 4, it can be observed that there are three different
scale network branches in the backbone input to the Neck part, including the backbone end
feature branches after feature enhancement using MHSA. The three feature branches after
feature fusion of Neck are input into the Head part again to classify and detect the target
areal feature. The main output information here includes the location information and
category information of tomato fruit. The difference between the tomato maturity grading
model and the counting model is that the former outputs multi-category information in the
Head part, while the latter only outputs single category information identifying tomato
targets in the Head part. The specific introduction of each module is as follows.

Sensors 2023, 23, 6701 6 of 18 
 

 

P5

P4

P3

P2

P1

C

C

C

CC2f

C2f
U

U
C2f

C2f
Conv

Conv

P5

P4

P3

Detect

Detect

Detect
nc

4×reg_max
CIoU+DFL

BCE

Backbone Head

Conv
k=3,s=2,p=1

0

P1

Conv
k=3,s=2,p=1

1

P2

C2f
Shortcut=True, n=3×d

2

Conv
k=3,s=2,p=1

3

P3

C2f
Shortcut=True, n=6×d

4

Conv
k=3,s=2,p=1

5

P4

C2f
Shortcut=True, n=6×d

6

Conv
k=3,s=2,p=1

7

P5

C2f
Shortcut=True, n=3×d

8

SPPF 9

640×640×3

320×320×64×w

160×160×128×w

160×160×128×w

80×80×256×w

80×80×256×w

40×40×512×w

40×40×512×w

20×20×512×w×r

20×20×512×w×r

80×80×256×w

Stride=8

40×40×512×w
Stride=16

20×20×512×w×r
Stride=32

Conv
k=1,s=1,p=0

c=c_out

Split

Bottleneck
Shortcut=?

Bottleneck
Shortcut=?

Concat

Conv
k=1,s=1,p=0

c=c_out

h×w×c_in

h×w×c_out

h×w×0.5c_out

h×w×0.5c_out

h×w×0.5c_out

h×w×0.5c_out

h×w×0.5(n+2)c_out

h×w×c_out

... n

h×w×0.5c_out

h×w×0.5c_out

h×w×0.5c_out

C2f
Shortcut=?, n

Concat 14

C2f
Shortcut=False, n=3×d

15

P3

80×80×512×w

Upsample 13

C2f
Shortcut=False, n=3×d

12

Concat 11

Upsample 10

80×80×256×w

40×40×512×w

40×40×512×w×(1+r)

40×40×512×w×r

20×20×512×w×r

Backbone

Conv
k=3,s=2,p=1

16

P3

40×40×512×w

20×20×512×w×r

Concat 17

C2f
Shortcut=False, n=3×d

18

P4

Conv
k=3,s=2,p=1

19

Concat 17

C2f
Shortcut=False, n=3×d

18

P4

Head

20×20×512×w×(1+r)

20×20×512×w

40×40×512×w

40×40×512×w

40×40×256×w

80×80×256×w

Detect
80×80×256×w

40×40×512×w
Detect

Detect

Conv
k=3,s=1,p=1

Conv
k=3,s=1,p=1

h×w×c_in

h×w×0.5c_out

h×w×c

shortcut = False
Bottleneck

h×w×c_out

Conv
k=3,s=1,p=1

Conv
k=3,s=1,p=1

h×w×c

h×w×0.5c

h×w×c

shortcut = True
Bottleneck

h×w×c

Conv
k=3,s=1,p=1

MaxPool2d

MaxPool2d

MaxPool2d

Concat

Conv
k=3,s=1,p=1

SPPF

Conv2d
k, s, p, c

BatchNorm2d

SiLU

Conv
k, s, p, c

Conv
k=3,s=1,p=1

Conv
k=3,s=1,p=1

Conv
k=3,s=1,p=1

Conv
k=3,s=1,p=1

Conv2d
k=1, s=1, p=0, 
c=4×reg_max

Conv2d
k=1, s=1, p=0, 

c=nc

Bbox.Loss

Cls.Loss

Detect

MHSA

MHSA
Neck

Neck  
Figure 4. Network structure of MHSA-YOLOV8. Among them, the black arrow represents the di-
rection of data flow during network operations, and different colors represent different network 
modules. For example, blue represents convolutional modules and yellow represents C2f modules. 
The name of each module is located at the top left or bottom left of the rectangle where it is located. 

The MHSA-YOLOv8 object detection network structure mainly consists of three 
parts, namely Backbone, Neck, and Head. Among them, basic data preprocessing opera-
tions, including data enhancement, are performed before inputting image data into Back-
bone. The main function of Backbone is to extract feature information of the target area in 
the input image. When the image data are input into Backbone, the target areal features 
are extracted through Conv, C2f and SPPF in turn, and then the obtained features are 
further processed through the MHSA attention mechanism module to increase the feature 
weight of the target area, so as to extract more effective feature information. The main 
function of Neck is feature fusion. From Figure 4, it can be observed that there are three 
different scale network branches in the backbone input to the Neck part, including the 
backbone end feature branches after feature enhancement using MHSA. The three feature 
branches after feature fusion of Neck are input into the Head part again to classify and 
detect the target areal feature. The main output information here includes the location 
information and category information of tomato fruit. The difference between the tomato 
maturity grading model and the counting model is that the former outputs multi-category 
information in the Head part, while the latter only outputs single category information 

Figure 4. Network structure of MHSA-YOLOV8. Among them, the black arrow represents the
direction of data flow during network operations, and different colors represent different network
modules. For example, blue represents convolutional modules and yellow represents C2f modules.
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2.3.1. Model Input

In the construction process of tomato maturity grading model and tomato counting
model in this study, the input image size was 640 × 640. When inputting image data,
MHSA-YOLOv8 adopts the same data enhancement strategy as YOLOv5.

2.3.2. Backbone

The backbone of MHSA-YOLOv8 adopts the Darknet-53 network and replaces all C3
modules in the backbone with C2f modules. Compared to the C3 module, the C2f module
is designed by referencing the ideas of the C3 module and ELAN, which can extract richer
gradient flow information while maintaining lightweight. In addition, C2f has added more
jumper connections and split operations. The number of blocks in C2f has been modified
from 3-6-9-3 to 3-6-6-3.

In the tomato maturity grading model involved in this study, some categories have
certain similarity due to external light environment interference. In order to ensure that the
model extracts richer feature information, this study uses the MHSA attention mechanism
to enhance the feature branches output by the backbone end. Usually, a typical self-attention
mechanism consists of three matrix operations: Q, K, and V, which essentially belong to
self-operation. MHSA is an upgraded version of the typical self-attention mechanism,
where each attention operation can extract effective feature information from multiple
dimensions through grouping, as shown in Figure 5.
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2.3.3. Neck

The Neck part still adopts the SPP-PAN structure. Unlike YOLOv5 and YOLOv6,
MHSA YOLOv8 replaces the C3 module and RepBlock of the Neck with C2f, removing the
1 × 1 convolution before up-sampling and directly inputting the feature maps output from
different stages of the backbone into the up-sampling stage.

2.3.4. Head

The Head part of MHSA-YOLOv8 has two main improvements compared to YOLOv5:
(1) adopting the current mainstream decoupling head structure to separate classification
and detection; (2) replacing Anchor-based with Anchor-free.
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2.3.5. Network Structure Parameters

In order to facilitate readers to have a clear understanding of the network structure
and parameter information of MHSA-YOLOv8, we have listed relevant information as
shown in Table 1.

Table 1. Network Structure and Parameters of MHSA-YOLOv8.

Layers From n Params Module Arguments

0 −1 1 928 Conv [3, 32, 3, 2]
1 −1 1 18,560 Conv [32, 64, 3, 2]
2 −1 1 29,056 C2f [64, 64, 1, True]
3 −1 1 79,384 Conv [64, 128, 3, 2]
4 −1 2 197,632 C2f [128, 128, 2, True]
5 −1 1 295,424 Conv [128, 256, 3, 2]
6 −1 2 788,480 C2f [256, 256, 2, True]
7 −1 1 1,180,672 Conv [256, 512, 3, 2]
8 −1 1 1,838,080 C2f [512, 512, 1, True]
9 −1 1 656,896 SPPF [512, 512, 5]

10 −1 1 787,968 MHSA [512, 14, 14, 4]
11 −1 1 0 Upsample [None, 2, ‘nearest’]
12 [−1, 6] 1 0 Concat [1]
13 −1 1 591,360 C2f [768, 256, 1]
14 −1 1 0 Upsample [None, 2, ‘nearest’]
15 [−1, 4] 1 0 Concat [1]
16 −1 1 148,224 C2f [384, 128, 1]
17 −1 1 147,712 Conv [128, 128, 3, 2]
18 [−1, 13] 1 0 Concat [1]
19 −1 1 493,056 C2f [384, 256, 1]
20 −1 1 590,336 Conv [256, 256, 3, 2]
21 [−1, 10] −1 0 Concat [1]
22 −1 1 1,969,152 C2f [768, 512, 1]
23 [16, 19, 22] 1 2,117,209 Detect [3, [128, 256, 512]]

summary: 230 layers, 11,924,729 parameters, 11,924,713 gradients, 29.3 GFLOPs

2.4. Model Train and Evaluation

The training process of the tomato maturity grading model and tomato counting
model is based on RTX3090 (24G), and the dataset partitioning ratio used by the two
models is consistent. The detailed training process parameter settings are shown in Table 2.

Table 2. Parameter settings for model training.

Parameters Value

Image-size 640 × 640
Epochs 100

Batch-size 8
lr 0.01

Momentum 0.937
Weight_decay 0.0005

warmup_epochs 3
Optimizer SGD

Loss VFL_loss, CIOU_loss + DFL

The tomato maturity grading model and tomato counting model constructed in this
study belong to the problem of target detection. After the model construction is completed,
Precision, Recall, F1-score, and mAP50 are used as the main model validation indicators for
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model performance evaluation [46,50]. Among them, AP is Average Precision. The specific
calculation formula for the validation indicators is as follows:

Pr ecision =
TP

TP + FP
× 100% (1)

Recall =
TP

TP + FN
(2)

F1 − score =
2 × Recall × Pr ecision

Recall + Pr ecision
(3)

mAP =
∑ C

i=1APi

C
(4)

where TP, FP, FN, and TN represent true positive, false positive, false negative, and true
negative, respectively. C represents the total number of categories, and APi represents the
AP value of the i-th category.

3. Experimental Results
3.1. Comparison of Modeling Results of Classical Object Detection Methods

In order to better monitor the ripeness and yield of tomato fruits during the culti-
vation process online, this study adopts target detection methods to construct tomato
ripeness grading models and counting models. Maturity grading is a multi-classification
detection task, while counting is a single classification detection task. Compared to single
classification detection tasks, modeling multiple classification tasks is more challenging.
Therefore, this study first compares and analyzes multiple classic methods based on the
tomato maturity grading dataset, in order to obtain a relatively optimal modeling method.
The specific modeling results are compared as shown in Table 3.

Table 3. Comparison of modeling methods.

Methods Precision Recall F1-Score mAP50 Model-Size

Faster-RCNN 54.0% 0.616 0.576 0.597 108 M
YOLOv3 80.9% 0.761 0.784 0.772 235 M
YOLOv4 81.6% 0.671 0.736 0.768 244 M
YOLOv5 84.0% 0.684 0.754 0.778 14.1 M
YOLOv7 74.7% 0.751 0.749 0.798 72 M
YOLOv8 84.7% 0.763 0.803 0.859 21.4 M

As we can see from Table 3, YOLOv8 has shown significant advantages over other
methods in the construction of tomato maturity grading models. On the premise of
prioritizing model performance over other methods, the model size is only 21.4 M, second
only to the model size of YOLOv5. Therefore, this study will improve the subsequent
model based on YOLOv8.

3.2. Modeling Results of Tomato Maturity Detection Model Based on MHSA-YOLOV8

In Section 3.1, we conducted a comparative analysis of modeling based on the tomato
maturity grading dataset. Although YOLOv8 has better modeling advantages compared
to other methods, the performance of the model still needs further improvement. MHSA
is a multi-head attention mechanism that to some extent alleviates the problem of poor
modeling ability of single head attention mechanisms in limited feature subspaces. This
study further enhances the model’s ability to extract feature diversity and enhance the
performance of the tomato maturity grading model by adding MHSA to the end of the
YOLOv8 backbone feature extraction network. The specific comparison results are shown
in Table 4.
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Table 4. Comparison of effects before and after model improvement.

Methods Class Precision Recall F1-Score mAP50 Model-Size

YOLOv8

all 84.7% 0.763 0.803 0.859

21.4 M
IM 89.4% 0.779 0.833 0.878
SM 80.8% 0.702 0.751 0.815
M 83.9% 0.809 0.824 0.883

MHSA-
YOLOv8

all 80.6% 0.807 0.806 0.864

22.9 M
IM 84.6% 0.829 0.837 0.88
SM 76.4% 0.764 0.764 0.824
M 80.7% 0.828 0.817 0.888

As we can see from Table 4, the performance of the YOLOv8 model improved by
MHSA has been further improved. Overall, MHSA-YOLOv8 has improved on Recall,
F1-score, and mAP50 by 0.044, 0.003, and 0.004 compared to YOLOv8. In terms of model
classification performance for each category, there is a certain degree of feature similarity
between SM and M due to external light interference. Therefore, the overall recognition
performance of the model in IM categories is better than that of SM and M. Through
comparison, it was found that MHSA-YOLOv8 has a certain performance improvement in
the recognition reliability of each category, which further proves the effectiveness of MHSA
in extracting diversity features.

In addition, due to the relatively complex dataset of tomato maturity grading collected
in this study, overfitting of the model is the biggest concern during the training process.
Therefore, this study plotted the relevant curves during the training and validation process,
and the specific results are shown in Figure 6.
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As we can see from Figure 6, during the training and validation process, the loss curve
showed a trend of first rapid decline and then gradually flattening, while the curves of
validation indicators such as Precision, Recall, and mAP showed a trend of first rapid rise
and then tending to flatten and stabilize. It has been proven that there is no overfitting
problem in the process of constructing tomato maturity grading models based on MHSA-
YOLOv8, and the model exhibits good convergence.
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In order to more intuitively evaluate the actual effect of MHSA-YOLOv8 tomato fruit
maturity grading model in the recognition of various categories, this study has drawn the
confusion matrix of MHSA-YOLOv8 model, as shown in Figure 7.

Sensors 2023, 23, 6701 11 of 18 
 

 

     

Figure 6. Training and validation process curve of tomato maturity grading model. 

As we can see from Figure 6, during the training and validation process, the loss 
curve showed a trend of first rapid decline and then gradually flattening, while the curves 
of validation indicators such as Precision, Recall, and mAP showed a trend of first rapid 
rise and then tending to flatten and stabilize. It has been proven that there is no overfitting 
problem in the process of constructing tomato maturity grading models based on MHSA-
YOLOv8, and the model exhibits good convergence. 

In order to more intuitively evaluate the actual effect of MHSA-YOLOv8 tomato fruit 
maturity grading model in the recognition of various categories, this study has drawn the 
confusion matrix of MHSA-YOLOv8 model, as shown in Figure 7. 

 
Figure 7. Confusion matrix of tomato maturity grading model. 

As we can see from Figure 7, the tomato maturity grading model based on MHSA-
YOLOv8 has the best recognition performance in IM categories, followed by M. Due to 
the fact that SM is a growth stage between IM and M, interference from external light 
environments can lead to similarity in color features between SM and M, resulting in a 
certain error rate in the model’s judgment of SM and M. 

3.3. Modeling Results of Tomato Counting Model Based on MHSA-YOLOv8 
The tomato counting model can provide some data support for yield estimation. In 

Section 3.2, the effectiveness of MHSA-YOLOv8 has been demonstrated based on the to-
mato maturity grading dataset. In this section, a tomato counting model was constructed 
using MHSA-YOLOv8, and the specific results are shown in Figure 8. 

Figure 7. Confusion matrix of tomato maturity grading model.

As we can see from Figure 7, the tomato maturity grading model based on MHSA-
YOLOv8 has the best recognition performance in IM categories, followed by M. Due to
the fact that SM is a growth stage between IM and M, interference from external light
environments can lead to similarity in color features between SM and M, resulting in a
certain error rate in the model’s judgment of SM and M.

3.3. Modeling Results of Tomato Counting Model Based on MHSA-YOLOv8

The tomato counting model can provide some data support for yield estimation. In
Section 3.2, the effectiveness of MHSA-YOLOv8 has been demonstrated based on the
tomato maturity grading dataset. In this section, a tomato counting model was constructed
using MHSA-YOLOv8, and the specific results are shown in Figure 8.

Sensors 2023, 23, 6701 12 of 18 
 

 

 
Figure 8. Results of tomato counting model construction. 

As we can see from Figure 8, compared with the tomato maturity grading model, the 
validation indicators of the tomato counting model can achieve relatively ideal results. 
The reason for this is that the modeling difficulty of single category detection models is 
lower than that of multi-category detection models, and the performance of the models is 
relatively good. There are three categories of datasets in the tomato maturity grading da-
taset, among which SM and M have high similarity due to external light interference. In 
addition, the number of instances for each category in the entire dataset is also uneven, 
resulting in limited performance during model training. The tomato counting dataset is a 
dataset that unifies the three categories of the former as “tomato”; the entire dataset only 
contains one type of instance and has a large number. During the training process of the 
counting model, all three categories of tomato fruits are considered as one category for 
feature information extraction, and the MHSA attention mechanism can improve the 
backbone’s ability to extract effective feature information of tomato targets in the target 
area, so the effectiveness of the constructed counting model is better than that of the ma-
turity grading model. 

Similarly, to demonstrate the reliability of the model training process, this study plot-
ted the relevant curves during the training and validation process of the counting model, 
as shown in Figure 9. 

     

     

Figure 9. Training and validation process curve of tomato counting model. 

Figure 8. Results of tomato counting model construction.



Sensors 2023, 23, 6701 12 of 18

As we can see from Figure 8, compared with the tomato maturity grading model, the
validation indicators of the tomato counting model can achieve relatively ideal results.
The reason for this is that the modeling difficulty of single category detection models is
lower than that of multi-category detection models, and the performance of the models
is relatively good. There are three categories of datasets in the tomato maturity grading
dataset, among which SM and M have high similarity due to external light interference.
In addition, the number of instances for each category in the entire dataset is also uneven,
resulting in limited performance during model training. The tomato counting dataset is
a dataset that unifies the three categories of the former as “tomato”; the entire dataset
only contains one type of instance and has a large number. During the training process of
the counting model, all three categories of tomato fruits are considered as one category
for feature information extraction, and the MHSA attention mechanism can improve the
backbone’s ability to extract effective feature information of tomato targets in the target area,
so the effectiveness of the constructed counting model is better than that of the maturity
grading model.

Similarly, to demonstrate the reliability of the model training process, this study
plotted the relevant curves during the training and validation process of the counting
model, as shown in Figure 9.
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As we can see from Figure 9, we can observe that the relevant curves exhibit good
convergence, which proves the reliability of the tomato counting model constructed based
on MHSA-YOLOv8 in this study.

3.4. Practical Application Effect of Tomato Maturity Detection and Counting

In Sections 3.2 and 3.3, this study used MHSA-YOLOv8 to construct tomato maturity
grading models and tomato counting models, respectively. In order to verify the effective-
ness of the constructed model in practical applications, this study randomly selected eight
images from the test dataset for tomato maturity grading and counting, and the specific
results are shown in Figures 10 and 11.
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and the pink box represents M.

Through comparative analysis of Figures 10 and 11, it was found that both the maturity
grading model and the counting model can achieve good model recognition performance
within an effective field of view. However, there are still certain limitations to the model’s
effectiveness in severe occlusion situations, especially when it comes to maturity grading. In
terms of the detection effectiveness of tomato objects, the counting model has shown better
performance, especially in the face of partial occlusion. The reason for this may be that
the network can learn rich and diverse features during the construction process of a single
category model, which has certain advantages in dealing with complex environments.
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4. Discussion

The main objective of this study is to achieve automated maturity grading and count-
ing during tomato planting, in order to assist the operating robot in achieving online
maturity grading and counting, greatly reducing the time-consuming and labor-intensive
problem of manual grading and counting. Due to the presence of multiple tomato fruits on
a single tomato plant and differences in individual fruit growth. Compared to using tradi-
tional image processing methods for tomato maturity grading, object detection methods are
more suitable for online grading [41]. For example, some studies have conducted IM, SM,
and M grading on cherry tomatoes, but they used a combination of PCA and LDA meth-
ods [22,24,25,27]. The model construction process is relatively complex and only suitable
for offline grading of individual tomatoes. Although some studies have conducted maturity
grading for tomatoes, they mainly focus on individual tomatoes in offline state and do
not meet the online grading requirements in actual production processes [23]. Although
image classification methods based on convolutional networks can achieve fruit maturity
grading, they are generally suitable for individual maturity grading and not suitable for
group target grading containing fruits of different maturity levels [9]. Previous studies
have demonstrated the feasibility of using object detection methods for fruit maturity
grading and counting [13,49]. Some studies have also used YOLO series algorithms for
fruit maturity grading, but most have used YOLOv3, YOLOv4, or YOLOv5 [52]. YOLOv8
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is the latest object detection method in the current YOLO series, which has better perfor-
mance advantages compared to earlier versions of YOLO algorithms. Therefore, the best
modeling method YOLOv8 was preliminarily selected by comparing mainstream object
detection methods in Section 3.1, which is also the most popular one-stage object detection
method currently.

However, the actual tomato planting scene is relatively complex, and problems such
as leaf obstruction, external light environment interference, and obstruction between
fruits pose certain challenges to the maturity grading and counting of tomatoes [3]. In
addition, the tomato maturity grading model is more difficult to construct than the tomato
counting model. Therefore, this study used MHSA to improve YOLOv8, which to some
extent improved the effectiveness of the tomato maturity grading model. Considering the
performance improvement of MHSA-YOLOv8 in tomato maturity grading tasks, this study
further constructed a tomato counting model based on this method and found that the
counting model has better performance improvement compared to the maturity grading
model. The difference between maturity grading models and counting models is that the
former is a three-classification problem, while the latter is a single-classification problem.
In the process of model construction, the single classification problem allows the network
to learn rich and diverse feature information of tomato fruits under different growth states,
which is more conducive to the model detecting target objects in complex environments.
Therefore, the counting model performs better than the maturity grading model.

Whether it is a tomato maturity grading model or a counting model, the main rea-
sons limiting the further improvement of model performance are tomato fruit occlusion,
background virtualization, and category similarity issues under external light environ-
ment interference outside the effective visual field. In the subsequent research process, if
the model is deployed in the mobile robot assisted operation process, maturity grading
and counting can be considered only for tomato targets within the effective field of view.
Targets outside the effective field of view are generally tomato fruits growing on other
ridges, which are not within the scope of operation and can be ignored. Secondly, the matu-
rity grading model and counting model constructed in this study are based on complex
growth environment conditions, and the model has certain ability to cope with complex
environments. Therefore, if applied to offline tomato grading and counting, it also has
great potential. Finally, the reason for constructing an online tomato fruit maturity grading
and counting model in this study is to achieve graded packaging while machine picking
tomato fruits, in order to avoid physical trauma caused by secondary grading. Therefore,
the model constructed in this study will have great potential and advantages in assisting
unmanned operating robots in completing graded harvesting tasks in the future. Of course,
there are still certain shortcomings in the actual implementation process of this study. If the
model constructed in this study is mounted on a mobile robot, the limited area and space
that the robot can monitor due to the limited space between the planting slots in actual
planting modes will limit the robot’s operational efficiency.

5. Conclusions

This study focuses on the digital monitoring requirements during tomato cultivation
and constructs an artificial intelligence model that can assist intelligent equipment such as
unmanned robots in precise operation from the perspectives of tomato maturity grading
and counting. First, a tomato maturity grading and counting dataset derived from actual
production scenarios was constructed, providing data support for the construction of matu-
rity grading and counting models. Second, to ensure the reliability of the model in practical
complex planting scenarios, this study improves YOLOv8 based on the MHSA attention
mechanism and proposes a new object detection method, MHSA-YOLOv8. The mAP of
the tomato maturity grading model and counting model constructed based on this method
are 0.864 and 0.916, respectively, providing good technical support for precise grading
picking and counting of tomato fruits. Finally, the models constructed in this study are
applicable to actual production scenarios and can achieve online tomato maturity grading
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and counting. However, occlusion, background virtualization, and light interference are
still the main factors that limit the further improvement of the model performance. In
the subsequent research process, it is necessary to try to mitigate the impact of the above
confounding on the model performance.
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