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Abstract: Long-staple cotton from Xinjiang is renowned for its exceptional quality. However, it is
susceptible to contamination with plastic film during mechanical picking. To address the issue of
tricky removal of film in seed cotton, a technique based on hyperspectral images and AlexNet-PCA is
proposed to identify the colorless and transparent film of the seed cotton. The method consists of black
and white correction of hyperspectral images, dimensionality reduction of hyperspectral data, and
training and testing of convolutional neural network (CNN) models. The key technique is to find the
optimal way to reduce the dimensionality of the hyperspectral data, thus reducing the computational
cost. The biggest innovation of the paper is the combination of CNNs and dimensionality reduction
methods to achieve high-precision intelligent recognition of transparent plastic films. Experiments
with three dimensionality reduction methods and three CNN architectures are conducted to seek the
optimal model for plastic film recognition. The results demonstrate that AlexNet-PCA-12 achieves
the highest recognition accuracy and cost performance in dimensionality reduction. In the practical
application sorting tests, the method proposed in this paper achieved a 97.02% removal rate of
plastic film, which provides a modern theoretical model and effective method for high-precision
identification of heteropolymers in seed cotton.

Keywords: seed cotton; film; hyperspectral image; dimension reduction; convolutional neural network

1. Introduction

Cotton plays an irreplaceable part in the livelihood of the general population. Xinjiang
is China’s largest major producer of long-staple cotton. However, due to the low rainfall
and strong light, drip irrigation under the film is often adopted to boost yield, which is
prone to mixing with impurities such as plastic film during mechanical picking. In the
spinning and weaving processes, the residual film combined with seed cotton can result in
a significant number of flaws, which can impact the strength and coloring effect of the yarn
and lead to financial losses for the textile sector [1].

The existing mainstream cotton film removal processes include Mechanical separation,
Electrostatic separation, and Optical color separation. Whitelock D. P. et al. investigated
major impurity removal equipment in the US cotton industry. A rotating spiked cylinder
was utilized to eliminate significant impurities from the seed cotton. These impurities
were subsequently gathered in a separate box by means of a grid strip or screen. [2].
Zhang et al. used computational fluid dynamics (CFD) to model the electrostatic separation
of mechanical cotton harvesting and residual plastic film by flying the experimental sample
into an electric field at different speeds and applying different electric field forces [3]. With
the increasing prevalence of machine vision, optical color separation has become a popular
method for the intelligent classification of agricultural products. In a study conducted by
Li et al., a machine vision system was utilized to gather information on the color, shape,
and texture of foreign fibers in cotton. The resulting data were adopted to achieve a
classification accuracy of 92.34% through multi-class support vector machine (MSVM) [4].
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However, mechanical classification is challenging in the aspect of assuring accuracy
and small-size film classification. Electrostatic separation becomes unstable for long-term
work because of environmental conditions. Optical color selection relies on color and
form characteristics, making it challenging to effectively classify film which is colorless,
transparent, or irregularly shaped. Hence, it is imperative to investigate a dependable
technique for identifying transparent films in seed cotton.

Hyperspectral imaging combines advanced knowledge from multiple disciplines
to achieve a perfect fusion of traditional two-dimensional imaging techniques and spec-
troscopy. Guo and Ma described the linear relationship between spectra and data by the
partial least squares (PLS) method, which could realize the analysis of adulterated rice and
the prediction of pork meat fatty acids [5,6]. Zhang, Jiang, et al. employed the support
vector machine (SVM) in combination with shortwave infrared hyperspectral techniques
for cotton foreign matter classification, which significantly improved the detection rate of
plastic films in cotton compared to conventional methods [7–9].

The above literature has yielded promising results. However, extracting features from
hyperspectral images requires manual intervention and has limitations in feature mining. In
addition, manual feature extraction of hyperspectral images requires considerable expertise
and has subjectivity in feature mining and selection. Therefore, it is highly significative for
hyperspectral image features to probe an automatic feature extraction method.

Deep learning is an advanced technology applied to image processing. It has the
capability to automatically detect and analyze complex information, which helps to extract
deeper features. The use of hyperspectral data greatly enhances the accuracy and efficiency
of image recognition [10,11]. However, it is important to note that hyperspectral data can
be affected by elevated latitudes and severe information redundancy issues. To efficiently
extract feature information to support the training of deep learning models, data dimen-
sionality reduction is commonly applied to improve the data processing speed [12]. Jia
et al. employed a method for dimensionality reduction of hyperspectral images by flexible
Gabor-based superpixel-level unsupervised linear discriminant analysis (LDA), which
reduced a large amount of flexible Gabor (FG) features and increased the peculiarity of
image features [13]. Kang et al. proposed a method based on PCA-EPFs for hyperspectral
image (HSI) classification, which used principal component analysis (PCA) to reduce the
dimension of the superimposing Edge-preserving features (EPFs). The literature not only
represented the EPFs in the mean square sense but also highlighted the divisibility of pixels
in EPFs [14]. To reduce the dimension of hyperspectral remote sensing images, Daniela
Lupu et al. established an independent component analysis (ICA) method based on a
stochastic higher-order Taylor approximation-based algorithm, which could identify local
maxima and facilitate minibatching [15]. The previous researchers have utilized LDA, PCA,
and ICA techniques for reducing the dimensionality of hyperspectral data. The experimen-
tal results have demonstrated excellent outcomes, effectively enhancing the efficiency of
image processing.

Convolutional neural network (CNN) is the most frequently employed deep learning
model that performs excellent classification effect in feature extraction of hyperspectral
data; it can be used to solve the problem of plastic film in seed cotton [16,17]. LeNet,
AlexNet, and VGGNet are frequently employed neural network models in CNN which
achieve high classification and recognition accuracy with great fusion with hyperspectral
images. Hüseyin Fırat et al. proposed a method to effectively classify hyperspectral remote
sensing images (HRSIs) based on PCA dimension reduction and LeNet-5 of the 3D-CNN
model. The results showed that a 100% recognition and classification effect was obtained
in all experimental data [18]. Jiang et al. obtained hyperspectral images of different types
of pesticide residues and used the fusion of the AlexNet-CNN deep learning network to
detect post-harvest pesticide residues in apples. The test results showed that when the
number of training epochs was 10, the detection accuracy was 99.09% [19]. Zhao et al.
recorded the waterlogging of cotton after seeding with hyperspectral images. Based on
the comparison experiment of GoogLeNet Inception-v3 (GLNI-v3) and VGG-16 conducted
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by CNN, the classification accuracy of VGG-16 was 97.00% higher than that of GLNI-v3,
and the method could provide theoretical support for the evaluation of cotton loss after
waterlogging [20]. The aforementioned literature demonstrates that the CNN-based models
(LeNet, AlexNet, VGGNet) mentioned above exhibit strong generalization and adaptive
capabilities in processing hyperspectral images, resulting in effective application outcomes.

The combination of hyperspectral imaging and CNN techniques is commonly applied
to the classification of remote-sensing images. However, there have been few reports of
methods to identify the residual film in seed cotton. The academic paper presents a novel
approach for removing film in seed cotton, which combines hyperspectral images and deep
learning algorithm. The innovations are listed as follows:

(1) The study establishes an optimal method for dimensionality reduction of hyper-
spectral data, which can reduce redundant hyperspectral characteristic information and
reduce the time and cost of subsequent neural network training.

(2) The study integrates hyperspectral imaging technology and deep learning algo-
rithm to obtain the optimal AlexNet-PCA-12 model which can effectively remove the
colorless and transparent film in seed cotton in the practical application.

The remainder of the paper is structured as follows. Section 2 describes the hyperspec-
tral sorting system, the theory of dimensionality reduction and CNN. Section 3 illustrates
the discussion of the results of dimension reduction and CNN experiments. Conclusions
and viewpoints are provided in Section 4.

2. Materials and Methods
2.1. Hyperspectral Sorting System
2.1.1. Experimental Materials

Gaia Sorter-Dual, a full-band hyperspectral Sorter, is used in conjunction with the
hyperspectral camera “Image-λ-N25E-SWIR”. A total of 10 kg of machine-picked long-
staple cotton from southern Xinjiang and 50 pieces of film of different sizes are picked out
by skilled workers.

As shown in Figure 1, the hyperspectral imaging system can obtain the hyperspectral
images of seed cotton mixed with the film: the resolution is 384 pixels × 600 pixels, the
spectral range is 1000~2500 nm, 288 bands. The hyperspectral camera is positioned directly
above the platform, with four halogen lamps symmetrically placed around it. The angle
of irradiation of the halogen lamp can be adjusted arbitrarily. All halogen sources are
adjusted to the position directly below the camera. The distance regulating mechanism is
responsible for controlling the vertical motion of the hyperspectral camera in order to adjust
the camera’s image surface. Additionally, the transfer platform can continuously move
horizontally to capture continuous one-dimensional images. Since experimental subjects
come in different sizes, the electronic control platform allows for vertical movement to
create storage space for the subjects. The collected hyperspectral images can be regarded as
230,400 pieces of sample data, including 92,456 seed cotton samples, 63,478 film on cotton
samples, 62,897 background samples and 11,569 film on background samples. The specific
operation steps are as follows:

(1) The samples are placed on the transfer platform and irradiated uniform light from
a halogen lamp. The reflected light is then captured by a hyperspectral camera, which
provides one-dimensional spectral information.

(2) The transfer platform moves horizontally to obtain continuous one-dimensional
spectral information, which is then transmitted to an industrial computer to generate
hyperspectral images containing all the spectral information.
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grated Circuit Manufacturing Co., Ltd. in Taiwan, China, 11 GB was obtained. Software 
environment for tensorflow-gpu 2.0.0, spectral 0.22.1, sklearn 0.23.2, matplotib 3.2.2, kears 
2.3.1, cuda 10.2.89, cudnn 7.6.5 was used employing the Python 3.6 programming lan-
guage. 

2.1.3. Technical Route 
The technical route of the film sorting system is illustrated in Figure 2, where seed 

cotton mixed with the film is given to the study subject. Firstly, a hyperspectral camera is 
used to collect 1000–2500 nm hyperspectral images. Secondly, the experimental validation 
involves nine models, including black and white correction, dimension reduction, and 
CNN training and testing. The purpose is to determine the best models for hyperspectral 
data dimension reduction and CNN. The binarization is established to display the recog-
nition outcome of the optimal AlexNet-PCA-12 model, which has an eminent recognition 
accuracy of 98.07%. Finally, the coordinates of the film are fed into a high-speed spray 
valve to complete the film removal in the practical application sorting tests. 

Figure 1. Hyperspectral imaging system. (1) Hyperspectral camera, (2) Halogen lamp, (3) Electronic
control platform, (4) Distance regulating mechanism, (5) Transfer platform, (6) Industrial computer.

2.1.2. Algorithm Environment

Hardware environment for Intel®Core (TM)i7-6700 CPU by Intel Semiconductor Co., Ltd.
in Dalian, China, 16 GB RAM, and NVIDIA GeForce RTX 2080Ti by Taiwan Integrated Circuit
Manufacturing Co., Ltd. in Taiwan, China, 11 GB was obtained. Software environment for
tensorflow-gpu 2.0.0, spectral 0.22.1, sklearn 0.23.2, matplotib 3.2.2, kears 2.3.1, cuda 10.2.89,
cudnn 7.6.5 was used employing the Python 3.6 programming language.

2.1.3. Technical Route

The technical route of the film sorting system is illustrated in Figure 2, where seed
cotton mixed with the film is given to the study subject. Firstly, a hyperspectral camera is
used to collect 1000–2500 nm hyperspectral images. Secondly, the experimental validation
involves nine models, including black and white correction, dimension reduction, and CNN
training and testing. The purpose is to determine the best models for hyperspectral data
dimension reduction and CNN. The binarization is established to display the recognition
outcome of the optimal AlexNet-PCA-12 model, which has an eminent recognition accuracy
of 98.07%. Finally, the coordinates of the film are fed into a high-speed spray valve to
complete the film removal in the practical application sorting tests.
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Figure 2. The technical route of the film sorting system.

2.2. Black and White Correction of Hyperspectral Images

The stability of data can be impacted by environmental factors including light intensity
and angular variations. In addition, there is a dark current in the camera and noise
interference in the acquisition. Therefore, the hyperspectral images need to be corrected,
which can remove ambient light interference and most of the noise in the image and
effectively improve the classification and recognition accuracy of the subsequent model.
The original hyperspectral images can be corrected by [20]

Iref =
Iraw − Idark

Iwhite − Idark
, (1)

where Ire f represents the corrected image, Iraw is the original image, Iwhite denotes standard
correction image, Idark indicates background correction image.

2.3. Dimension Reduction of Hyperspectral Data

Dimension reduction can effectively eliminate noise and irrelevant information while
also preventing data redundancy and dimension explosion caused by high-dimensional
data during algorithmic processing [21]. At present, the dimension reduction methods of
hyperspectral data mainly conclude linear discriminant analysis (LDA), principal com-
ponent analysis (PCA), independent component analysis (ICA), etc. By extracting and
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mapping the main feature bands of the original data, these methods can effectively reduce
the operating cost of the algorithm while ensuring the recognition accuracy of the algorithm.

2.3.1. Linear Discriminant Analysis

LDA is a linear learning method that employs pattern recognition, machine learning,
and other techniques to extract similar features of two objects or events from multiple
datasets. These features are then combined to more accurately identify the differences
between them [22].

Hyperspectral data contains an LDA multi-classification task, which needs to project
the vector x of the D dimension to y of the d (d < D) dimension, and the projection equation
can be provided by

y = WTx, (2)

where W is the projection matrix and the projection direction of each column vector is
perovided by wi.

Multi-classification task data sets X can be written as

X =
{

x(1)1 , x(2)2 , . . . , x(1)M1
, x(2)1 , . . . x(N)

MN

}
, (3)

where N represents the number of sample types, i indicates the kind of sample, x(i)j denotes
the j sample of class i, Mi is the number of class i training samples (i = 1, 2, . . . , N).

The in-class divergence matrix Sw is obtained as [22]

Sw =
N

∑
i=1

Mi

∑
j=1

p(i, j)
(

x(i)j − µi

)(
x(i)j − µi

)T
, (4)

where µi presents the mean of training samples of class i, p(i, j) is the probability of x(i)j .
The overall divergence matrix St is given by [22]

St =
N

∑
i=1

Mi

∑
j=1

p(i, j)
(

x(i)j − µ
)(

x(i)j − µ
)T

, (5)

where µ represents the mean value of all training samples.
Interclass divergence matrix Sb [22] is

Sb = St − Sw

=
N
∑

i=1
p(i)(µi − µ)(µi − µ)T , (6)

where p(i) denotes the probability of class i.
Then, we obtain the objective function J [22]:

J = WTSbW
WTSwW

S−1
W SbW = λW

. (7)

The projection matrix W of the d dimension can be obtained by calculating the largest
d eigenvalues of S−1

W Sb and the corresponding d eigenvectors; d (d < N) is the dimension
after dimensionality reduction of hyperspectral data.

2.3.2. Principal Component Analysis

PCA is a dimension reduction algorithm based on the discrete Karhunen–Loeve
transform for extracting the main feature components of multivariate data information [23].
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Although the majority of the noise in the image can be removed using PCA, it has greater
advantages in terms of time complexity.

Data conversion. While reading is performed in the hyperspectral image data, each
band data is converted into a one-dimensional vector. The hyperspectral image data are
assumed to have a total of N bands with a w× h resolution, which can be represented as a
matrix of (w× h)× N. Here, the band i can be expressed as

xi =
[

xi
1, xi

2, . . . , xi
w×h

]
, (i = 1, 2 . . . N). (8)

For the eigenspace. The mean vector of all bands is calculated as [24]

x =
1
N

N

∑
i

xi. (9)

The distance vector between each band and the average band can be obtained as

di = xi − x. (10)

We set the matrix B as
B = [d1, d2, . . . , dN ]. (11)

Then, the covariance matrix can be obtained as follows [24]:

1
N

BBT =
1
N

N

∑
i

didT
i . (12)

The transpose matrix in Formula (12) can be written as(
BBT

)T
= BT B. (13)

Since Formula (12) is a high-dimensional vector of (w× h)× (w× h), the calculation
of eigenvectors of the first Z(Z ≤ N) large eigenvalues of the covariance matrix is too large,
while Formula (13) is a low-dimensional vector of N × N, and therefore its eigenvalue can
be calculated first [25]:

vj = Bujλ
− 1

2
j , (j = 1, 2, . . . , Z), (14)

where λj presents the eigenvalue of Formula (12) and uj is the eigenvector of Formula (13).
The eigenspace vj can be formed by the eigenvalues of Formula (13):

W = {v1, v2, . . . , vZ}. (15)

Projection and similarity detection. The difference vector between each band and
the average band is projected into the eigenspace, and the eigenvector i is expressed as

Pi = WTdi, (i = 1, 2, . . . , N). (16)

The Euclidean distance is written as [25]

εi = ‖Pi − Pk‖2, (i, k = 1, 2, . . . N). (17)

When using PCA dimension reduction, similarity between images is determined by
the Euclidean distance. A smaller Euclidean distance indicates a greater similarity and
better results. After this operation, n eigenvector P with minimum Euclidean distance is
tested to form a fresh hyperspectral data set, where n < N is the dimension of hyperspectral
data after dimensionality reduction.



Sensors 2023, 23, 7041 8 of 28

2.3.3. Independent Component Analysis

ICA is a method to find data intrinsic components from multi-dimensional statistical
data which focuses on data analysis from independent sources, decomposing multivari-
ate signals into different non-Gaussian signals [26]. Hyperspectral image data X can be
regarded as a two-dimensional matrix with N rows and L columns (L = w× h). Hyper-
spectral data with band n (n < N) can be obtained through ICA to achieve the purpose of
dimension reduction.

ICA of X can be expressed as [15]

X = AS =
N

∑
d=1

adsd, (18)

where N is the number of bands. d denotes band index number (d = 1, 2, . . . , N),
A = (a1, a2, . . . , ad, . . . , aN) presents a mixing matrix, ad = (a1d, a2d, . . . , aNd)

T denotes
the column vector of A, S = (s1, s2, . . . , sd, . . . sN)

T indicates an independent component
matrix, sd = (sd1, sd2, . . . , adN)

T is the row vector of S.
We set W = A−1 according to Formula (18) [15]:

S = A−1X = WX, (19)

where (w1, w2, . . . wd, . . . , wN) is defined as the transformation matrix W, (w1d, w2d, . . . , wNd)
T

presents the column vector of W. The independent component S is obtained by finding
the appropriate transformation matrix W for the independent statistical and non-Gaussian
properties of each component according to the principle of the central limit theorem.

Depending on the choice of the objective function, ICA includes FastICA, Projection
pursuit, and Infomax, which mainly extract independent components by increasing non-
Gaussian properties, reducing mutual information, and performing maximum likelihood
estimation [15]. The FastICA approach which adopts batch processing to incorporate a
huge quantity of sample data into the iterative process is utilized to optimize independent
components. It also establishes negative entropy as a non-Gaussian measure of random
variables. The steps of solving independent components by the FastICA algorithm can be
described as follows:

(1) Bleaching data. We set the average value of hyperspectral image data X as X and
perform decentralized processing on the data to obtain

P = X− X. (20)

The covariance matrix for P can be written as [27]

C = cov
(

P, PT
)

. (21)

The eigenvalue λ and eigenvalue diagonal matrix D are calculated through |λI − C| = 0
where I denotes the unit vector; the eigenvector E can be found by (λI − C)E = 0.

There is a bleaching transformation matrix U = D−
1
2 ET , and the data after bleaching

are obtained as [27]
Z = U × P. (22)

(2) Finding the matrix W. We let k be the number of iterations, and the iterative
computation of w(k) can be expressed as [27]

w(k) = E
{

ZG
(

w(k−1)T

d Z
)}
− E

{
Zg
(

w(k−1)T

d Z
)}
× w(k−1)

d , (23)

where G(t) = tanh(t) =
(
et − e−t)/(et + e−t) denotes a hyperbolic tangent function, g(t)

is the first derivative of G(t), E(•) indicates mean function.
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We orthogonalize and standardize the matrix W [27]:

d−1
∑

j=1

(
w(k)T

d wj

)
wj → w(k)

d

w(k)
d

‖w(k)
d ‖
→ w(k)

d

. (24)

For any real number ε greater than 0, if
∣∣∣∣w(k)T

d w(k−1)
d − 1

∣∣∣∣ < ε, the wd converges;

otherwise, k = k + 1 takes Formula (23) to continue the iteration. The column vector wd
of W can be obtained from Formula (24), and d (d = 1, 2, . . . , N) is the index number of
each band.

When d = N, the matrix W is calculated as follows:

W = (w1, w2, . . . wd, . . . , wN). (25)

By taking the matrix W into Formula (19), the independent component S can be solved.
(3) Selecting band. The matrix W is defined as

(
w1, w2, . . . wj, . . . , wN

)
, the column

vector d of W is defined as
(
w1j, w2j, . . . wij, . . . , wNj

)T
(i, j = 1, 2, . . . N), where wij indicates

the capacity of the j band containing i independent component information. By calcu-
lating the average absolute weight factor, it can assess how much of each band contains
independent component information:

wj =
1
N

N

∑
i=1

∣∣wij
∣∣. (26)

The gained n bands with the largest average weight coefficient wj are formed into
a new low-dimensional image to achieve the dimensionality reduction of the hyperspec-
tral image; n (n < N) is the number of bands after the dimensionality reduction of the
hyperspectral data.

2.4. Construction of the Convolutional Neural Network

The convolutional neural network mainly concludes with an input layer, convolution
layer, pooling layer, fully connected layer, and output layer, which can effectively solve
the over-fitting problem [28]. The research illustrates a 2D-CNN-based method for hy-
perspectral image classification which can reduce the training cost while ensuring high
classification and recognition accuracy.

Convolution layer. The convolution layer applies a convolution kernel to transform
the input matrix into a unit matrix for the next layer. During forward propagation, the
convolution kernel computes the nodes in the right unit matrix by using the nodes in
the left input matrix [29]. Multiple convolution kernels are used to convolve with input
image data, and a series of feature graphs are obtained through an activation function after
biasing [30]. In the paper, the ReLU activation function is utilized to map the input of
neurons to the output; its nonlinear characteristics are introduced into the neural network,
enabling its application to various nonlinear models. The convolution formula is expressed
as follows [29]:

Xl
j = f

 ∑
i∈Mj

Xl−1
i •wl

ij + bl
j

, (27)

where Xl
j denotes the j element of the l layer, Mj stands for j convolution area of the l − 1

layer feature map, Xl−1
i presents the elements, wl

ij is the weight of the corresponding
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convolutional kernel matrix, bl
j is the offset item, f (·) indicates the activation function,

∑
i∈Mj

Xl−1
i •wl

ij is the convolution formula.

Pooling layer. If all the features obtained through convolution are inputted into the
classifier, a significant amount of computation is required to handle it. In this case, the
Pooling function is required to process the feature maps obtained by convolution, and the
Max pooling method is utilized in this paper. The pooled element matrix can reduce the
dimension of the feature information obtained from the convolution layer and reduce the
size of the matrix in the direction of height and width while ensuring the invariance of the
feature scale. Meanwhile, the number of parameters of the whole neural network can be
reduced, thus improving the generalization ability of the model [31].

Fully connected layer. With multi-layer convolution and pooling processing, images
are gradually extracted with higher-level and more abstract feature information, which
is classified by fully connected layers [32]. After unrolling the input feature vector into
one dimension, the fully connected layer outputs the result via weighted summation and
activation functions. The output formula is [29]

yk = f
(

wkxk−1 + bk
)

, (28)

where k is the serial number of the network layer, yk is the output, xk−1 represents the
expanded one-dimensional eigenvector, wk stands for the weight coefficient, bk is the offset
item. f (·) is a model for probabilistic computation and an activation function suitable for
classification tasks, which can be formulated as follows:

y = softmax(wijxj + b). (29)

The softmax loss function is structured in the fully connected layer to measure the
solving accuracy of the problem, and loss function is adopted to describe the degree of
dissatisfaction with the classification result. The effect of the neural network model is
defined by the loss function. The tinier the loss value, the tinier the deviation between the
result obtained by the model and the real value [33].

The purpose of neural network optimization is to accurately and timely update the
parameters. Two optimization methods are employed for neural networks in the paper:
the first step is the Gradient descent algorithm, and the second is the Back propagation
algorithm. The optimization method of Gradient descent is to randomly select a function on
the training data during the iteration process, which ensures the rapid update of parameters
in each iteration. The back propagation algorithm based on the gradient descent algorithm
can not only calculate vector gradients, but also calculate multidimensional tensors [34].

To avoid training overfitting, the Dropout function is used in the fully connected layers
to make the output of neurons in the hidden layer drop to zero with a certain percentage
probability. Dropout disables some hidden layer nodes that do not participate in the
forward propagation process of the CNN. Due to the stochastic nature of the Dropout, each
sample input to the network corresponds to a different network structure, but all these
structures share weight. Since a neuron cannot depend on additional specific neurons,
it reduces the complexity of inter-neuron adaptation and enables them to learn deeper
features [35].

2.5. Design of Intelligent Recognition Algorithm for Film in Seed Cotton

In this section, three CNN models based on LeNet, AlexNet, and VGGNet are con-
structed for hyperspectral image recognition. The CNN schematic is shown in Figure 3.
The schematic involves two steps. Firstly, the hyperspectral data are used to train the
model and extract useful image features. Secondly, the trained features are applied to the
testing set for verification, and the resulting recognition accuracy is outputted. Additionally,
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the network parameters are regulated through gradient descent and back propagation
algorithms, which ascertain network parameters in time.
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To achieve optimal recognition results for hyperspectral image recognition, LeNet,
AlexNet, and VGGNet models are altered accordingly. The specific parameters for each
model are outlined in Tables 1–3. For facilitating CNN to input hyperspectral data and
output recognition accuracy, CNN is set corresponding to the input layer and output
layer, specifically as follows: In the input layer, 5 × 5 indicates the data size of the input
convolutional network by manual division and D denotes the data dimension obtained
after adopting different dimensionality reduction algorithms. In the output layer, the
Softmax loss function outputs the probabilities of four units, which include “cotton”, “film
on cotton”, “background”, and “film on background”.

Table 1. LeNet structural parameter.

Type Variables Kernel Parameter Data Output

Input layer 5 × 5 × D hyperspectral data set
1-Conv 3 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
2-Pool Max pooling Size: 3 × 3. All zero-filling. Step: 2
3-Conv 9 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
4-Pool Max pooling Size: 3 × 3. All zero-filling. Step: 2 Dropout drops 25% weight
Flatten layer Convert multi-dimensional input into one dimension
FC Input neuron number: 108. Output neuron number: 18
Output layer Softmax loss function outputs the probabilities of four units.

LeNet structure mainly consists of 2 Convs, 2 Pools, and 1 FC. “Conv” is convolution layer, “Pool” denotes
pooling layer, “FC” indicates fully connected layer.
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Table 2. AlexNet structural parameter.

Type Variables Kernel Parameter Data Output

Input layer 5 × 5 × D hyperspectral data set
1-Conv 3 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
1-Pool Max pooling Size: 3 × 3. All zero-filling. Step: 2
2-Conv 9 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
2-Pool Max pooling Size: 3 × 3. All zero-filling. Step: 2
3-Conv 12 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
4-Conv 12 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
5-Conv 9 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
5-Pool Max pooling Size: 3 × 3. All zero-filling. Step: 2
Flatten layer Convert multi-dimensional input into one dimension
FC Input neuron number: 27. Output neuron number: 60
Output layer Dropout drops 50% weight, Softmax loss function outputs the probabilities of four units.

AlexNet structure mainly consists of 3 convolution groups (including 1 Conv and 1 Pool), 2 Convs, and 1 FC.
“Conv” is convolution layer, “Pool” denotes pooling layer, “FC” indicates fully connected layer.

Table 3. VGGNet structural parameter.

Type Variables Kernel Parameter Data Output

Input layer 5 × 5 × D hyperspectral data set
1-Conv 3 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
1-Conv 3 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
2-Pool Max pooling Size: 2 × 2. All zero-filling. Step: 2 Dropout drops 20% weight
3-Conv 6 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
3-Conv 6 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
4-Pool Max pooling Size: 2 × 2. All zero-filling. Step: 2 Dropout drops 20% weight
5-Conv 12 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
5-Conv 12 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
5-Conv 12 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
6-Pool Max pooling Size: 2 × 2. All zero-filling. Step: 2 Dropout drops 20% weight
7-Conv 24 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
7-Conv 24 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
7-Conv 24 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
8-Pool Max pooling Size: 2 × 2. All zero-filling. Step: 2 Dropout drops 20% weight
9-Conv 24 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
9-Conv 24 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
9-Conv 24 convolution kernels Size: 3 × 3. All zero-filling. Step: 1 ReLU activation function
10-Pool Max pooling Size: 2 × 2. All zero-filling. Step: 2 Dropout drops 20% weight
Flatten layer Convert multi-dimensional input into one dimension
FC Input neuron number: 72. Output neuron number: 24
Output layer Dropout drops 20% weight, Softmax loss function outputs the probabilities of four units.

VGGNet structure mainly consists of 5 convolution groups (including 2 or 3 Convs), 5 Pools, and 1 FC. “Conv” is
convolution layer, “Pool” denotes pooling layer, “FC” indicates fully connected layer.

3. Results and Discussion
3.1. Design of Intelligent Recognition Algorithm for Film in Seed Cotton

To verify the generalization of the dimensional reduction, scatter plots are presented
in Figure 4. The plots depict the application of different dimensional reduction methods
on the same hyperspectral data from the three-dimensional reduction experiments. The
scatter plots of dimensionality reduction for different batches of the same data under the
same experimental conditions can be concluded as follows:



Sensors 2023, 23, 7041 13 of 28Sensors 2023, 23, x FOR PEER REVIEW 14 of 29 
 

 

 
Figure 4. The scatter plot of three-dimensional reduction experiments. 

3.2. CNN Model Training 
Comparing three different dimension reduction methods (LDA, PCA, and ICA) after 

the hyperspectral data to a three-dimensional effect, three different structures are adopted 
CNN (LeNet, AlexNet, and VGGNet) for training and testing accuracy. 

LeNet model training. Variations of training and testing accuracy of LeNet with the 
number of training epochs, training and testing loss curves are shown in Figure 5. 

In Figure 5a, LDA recognition accuracy on the test set is about 92%, and the loss value 
is 0.15~0.2. In Figure 5b, PCA recognition accuracy on the test set is about 89%, and the 
loss value is 0.25~0.3. In Figure 5c, ICA recognition accuracy on the test set is about 85%, 
and the loss value is 0.3~0.35. 

Despite the fact that LDA and PCA are relatively stable to changes throughout the 
training phase, PCA slightly underperforms the LeNet model with LDA hyperspectral 
data reduction. However, the LeNet model with ICA hyperspectral data reduction has the 
worst stability of the three. 

Figure 4. The scatter plot of three-dimensional reduction experiments.

(1) Considering only the first two samples, LDA data have obvious clustering and
separability, but LDA data cannot classify sample “background” accurately.

(2) ICA data classified the four types of samples differently in different batches, so it
is not general to data from different batches of dimensionality reduction, and the trained
model cannot achieve ideal results on the test.

(3) Considering only the first two samples, PCA dimension reduction has distinct
aggregation and separability on “background” and “film on background”, while the data
coincidence of the two samples “cotton” and “film on cotton” has no classification.

(4) The result shows that LDA has outstanding classification results with a dimension-
ality reduction of two for hyperspectral data. However, LDA can only reduce the data to
three dimensions. Therefore, when the computer performance is satisfied, PCA obtains
higher recognition accuracy when it is used to retain more dimensions.

3.2. CNN Model Training

Comparing three different dimension reduction methods (LDA, PCA, and ICA) after
the hyperspectral data to a three-dimensional effect, three different structures are adopted
CNN (LeNet, AlexNet, and VGGNet) for training and testing accuracy.

LeNet model training. Variations of training and testing accuracy of LeNet with the
number of training epochs, training and testing loss curves are shown in Figure 5.

In Figure 5a, LDA recognition accuracy on the test set is about 92%, and the loss value
is 0.15~0.2. In Figure 5b, PCA recognition accuracy on the test set is about 89%, and the
loss value is 0.25~0.3. In Figure 5c, ICA recognition accuracy on the test set is about 85%,
and the loss value is 0.3~0.35.
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Despite the fact that LDA and PCA are relatively stable to changes throughout the
training phase, PCA slightly underperforms the LeNet model with LDA hyperspectral data
reduction. However, the LeNet model with ICA hyperspectral data reduction has the worst
stability of the three.
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AlexNet model training. Variations of training and testing accuracy of AlexNet with
the number of training epochs, training and testing loss curves are shown in Figure 6.

In Figure 6a, LDA recognition accuracy on the test set is about 93%, and the loss value
is 0.15~0.2. In Figure 6b, PCA recognition accuracy on the test set is about 90%, and the
loss value is 0.25~0.3. In Figure 6c, ICA recognition accuracy on the test set is about 88%,
and the loss value is 0.3~0.35.
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Despite the fact that LDA and PCA are relatively stable to changes throughout the
training phase, PCA slightly underperforms the AlexNet model with LDA hyperspectral
data reduction. However, the AlexNet model with ICA hyperspectral data reduction has
the worst stability of the three.
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VGGNet model training. Variation of training and testing accuracy of VGGNet with
the number of training epochs, training and testing loss curves are shown in Figure 7.

In Figure 7a, LDA recognition accuracy on the test set is about 90%, and the loss value
is 0.2~0.25. The LDA model is relatively stable to changes throughout the training process
and has excellent model stability.

In Figure 7b, PCA recognition accuracy on the test set is about 84%, and the loss value
is about 0.4. In Figure 7c, ICA recognition accuracy on the test set is about 80%, and the loss
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value fluctuates widely. Both models have minor stability during the training phase. The
ICA results are inferior than the VGGNet model with PCA hyperspectral data reduction.
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3.3. CNN Model Testing

The confusion matrix for the test samples for the different algorithmic models are
illustrated in Tables 4–6. It can be seen that 1 is the cotton, 2 represents the film on cotton,
3 indicates the background, and 4 denotes the film on background, the diagonal expresses
the probability of correct classification. The experimental data analysis is as follows:

(1) Using LDA and PCA dimensionality reduction hyperspectral data, it can be deter-
mined that the three kinds of CNN models have higher recognition accuracy for test samples.
However, there are some errors in the classification of film samples on cotton and film samples
on background, which is consistent with the conclusion of the scatter plots above.
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(2) Since the hyperspectral data for ICA dimension reduction is not the same batch
as the data during training, the extracted dimension information is unstable and the
recognition effect is confused. Therefore, it cannot be applied to hyperspectral image
recognition, which is consistent with the conclusion of the scatter plots above.

Table 4. LDA sample confusion matrix (%).

Model Actual
Predictive

1 2 3 4

LeNet

1 91.89 5.72 2.22 0.17
2 4.78 93.26 0.12 1.83
3 3.99 0.05 90.49 5.47
4 0.09 0.86 2.07 96.97

AlexNet

1 93.10 4.60 2.08 0.22
2 5.17 92.87 0.18 1.77
3 3.60 0.03 90.03 6.34
4 0.00 0.81 1.24 97.95

VGGNet

1 90.44 6.84 2.48 0.23
2 4.06 95.13 0.04 0.77
3 4.40 0.07 84.55 10.98
4 0.03 1.90 0.95 97.12

Table 5. PCA sample confusion matrix (%).

Model Actual
Predictive

1 2 3 4

LeNet

1 89.13 8.86 1.57 0.44
2 15.31 83.88 0.08 0.72
3 3.83 0.08 91.15 4.94
4 0.23 1.33 1.82 96.63

AlexNet

1 91.80 6.72 1.18 0.30
2 14.98 84.41 0.08 0.53
3 3.97 0.10 87.81 8.11
4 0.09 1.35 0.17 98.39

VGGNet

1 87.95 8.75 2.11 1.19
2 16.43 82.05 0.08 1.44
3 4.11 0.02 72.40 23.47
4 0.40 0.81 0.00 98.79

Table 6. ICA sample confusion matrix (%).

Model Actual
Predictive

1 2 3 4

LeNet

1 75.24 0.07 23.07 1.62
2 69.72 2.80 14.28 13.20
3 90.51 0.75 8.62 0.12
4 74.90 23.22 0.13 1.75

AlexNet

1 70.05 5.87 16.41 7.67
2 32.78 32.72 15.84 18.65
3 78.95 0.40 19.75 0.90
4 65.08 24.49 5.19 5.25

VGGNet

1 48.65 18.68 21.23 11.44
2 29.46 38.76 8.64 23.14
3 28.10 10.37 51.14 10.39
4 18.10 58.86 9.01 14.03
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The Overall Accuracy (OA) of the test samples is illustrated in Table 7, representing
the percentage of all samples that are accurately predicted. The results can be summarized
as follows:

(1) When the hyperspectral data are reduced to three dimensions, the average OA of
LDA is 91.68%, while PCA has an average OA of 87.08%; on the other hand, ICA has a lower
average OA of 40.35%. Based on these results, it can be concluded that LDA demonstrates
superior performance in terms of dimensionality reduction.

(2) The data in the table show that the CNN-based AlexNet model can achieve excellent
recognition effects when the data are dimensionally reduced.

(3) When the dimension reduction of ICA is 3, it exhibits poor performance in terms
of average OA compared to the other two dimensionality reduction methods. However,
PCA can retain more dimension information to improve the recognition accuracy, which
has more potential in practical applications.

Table 7. Overall accuracy of the test samples (%).

LDA PCA ICA

LeNet 92.14 88.61 33.41
AlexNet 92.45 89.00 42.78
VGGNet 90.46 83.63 44.86
Average 91.68 87.08 40.35

To distinguish the classification effects more intuitively, three bands are selected to
display the hyperspectral data as pseudocolor images. Additionally, the spectral toolkit is
used in the model tests to plot the predictions in the form of a two-dimensional image. The
pseudocolor and manually labeled images are shown in Figure 8.
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Considering the actual sorting system only needed to locate the spatial coordinate
position of the film, the classification results are combined from four categories into two cat-
egories: “film on cotton” and “film on background” are classified as film, and “cotton” and
“background” are classified as non-film. The binarized images are shown in Figures 9–11.
It can be seen that the combination of the AlexNet neural network structure and the LDA
algorithm indicate the best recognition results, while the VGGNet neural network structure
and the ICA algorithm denote the worst recognition results.
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Regarding the reduction to three dimensions, the above experiments validate the
classification effect of different dimensionality reduction methods on hyperspectral data.
The results show that LDA achieves the highest performance in terms of aggregation
and separability of features preserved by dimensionality reduction of hyperspectral data.
With limited device conditions for hyperspectral images, it is advisable to opt for LDA
dimension reduction. However, due to the limitations of the LDA algorithm, the data can
only be reduced to three dimensions. Therefore, when the computer performance meets
the requirements, PCA achieves higher recognition accuracy when more dimensions are
retained. In summary, the AlexNet-PCA multi-dimensional algorithm is experimented
with to obtain the highest recognition accuracy for seed cotton mixed with the film.

3.4. AlexNet-PCA Multi-Dimensional Algorithm Experiment
3.4.1. AlexNet-PCA Model Training

In Figure 12, the accuracy and loss value curves of the AlexNet model are shown when
PCA is used to reduce the dimensionality by 6, 9, 12, and 15. The accuracy curve of the
test set starts to converge at the training process of up to 40 iterations and mostly peaks at
the training process of up to 60 iterations. The variation is stable throughout the training
process and the model has great stability.
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3.4.2. AlexNet-PCA Model Testing

As shown in Table 8, the experimental data analysis can be summarized as follows:
(1) The AlexNet-PCA algorithm for “cotton” and “background” has a minor number

of errors in sample recognition classification. It can be attributed to the edge junction
containing the reflection spectrum of both the cotton and the background.

(2) Misclassification is observed when using the AlexNet-PCA algorithm to identify
the samples of “cotton” and “film on cotton”, “background” and “film on background”.
It can be attributed to the weak reflection nature of the film, which leads to an indistinct
discrimination of features.

Table 8. AlexNet-PCA-X sample confusion matrix (%).

Model Actual
Predictive

1 2 3 4

AlexNet-PCA-6

1 94.53 4.12 1.27 0.08
2 3.18 96.21 0.11 0.49
3 2.30 0.01 94.44 3.25
4 0.03 0.95 0.29 98.73

AlexNet-PCA-9

1 96.88 1.67 1.37 0.07
2 1.95 97.71 0.05 0.29
3 1.06 0.03 97.68 1.23
4 0.03 0.81 0.43 98.73

AlexNet-PCA-12

1 98.04 1.20 0.73 0.04
2 1.00 98.75 0.02 0.23
3 1.55 0.04 97.34 1.07
4 0.03 0.92 0.43 98.62

AlexNet-PCA-15

1 98.38 0.50 1.11 0.01
2 1.35 98.45 0.04 0.16
3 0.96 0.01 98.38 0.66
4 0.00 0.63 1.27 98.10

Especially for the PCA dimension selection, a set of linearly increasing dimensions 3,
6, 9 and 12 is chosen for the AlexNet-PCA multi-dimensional algorithm experiment. The
linearly increasing dimensions are conducive to the smooth change in the image curve
between overall accuracy and dimension; hence, the experimental results are more intuitive.

The Overall Accuracy (OA) of the test sample is shown in Table 9, representing the
percentage of all samples that are accurately predicted. As the number of dimensions
retained by PCA increases, the OA of the samples keep increasing. Figure 13 illustrates
the OA of the samples as a function of the dimensionality reduction of PCA. The data in
Table 9 and Figure 13 show teh following:

(1) The increase in PCA dimensionality has an inverse relationship with the increase
in accuracy.

(2) When the PCA dimension is set to 12, the proposed algorithm achieves a recognition
accuracy of over 98%. Additionally, the overall classification accuracy of the samples begins
to converge.

With the increase in PCA dimensionality reduction, the complexity of the neural
network model also increases. However, the complexity of the model can lead to overfitting,
which in turn can decrease the generalization ability of the model. In the study, we
primarily utilize the Dropout method to avoid the overfitting problem. Dropout effectively
weakens the connections between neuronal nodes, which reduces the network’s reliance
on individual neurons and thereby enhances model generalization ability.
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Table 9. Overall accuracy of AlexNet-PCA-X test samples (%).

Dimension PCA-3 PCA-6 PCA-9 PCA-12 PCA-15

AlexNet 89.00 95.17 97.42 98.07 98.38
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The binarized images are shown in Figure 14a. As demonstrated in Figure 14b, the
morphological method is utilized to perform an open operation on the binary image, which
effectively minimizes the noise caused by light, dust, and artificial marks. As a result, the
binary image contains the eliminated artifacts of identified small areas and image edges.
The Figure 14 results show that:

(1) Despite reducing the dimensionality to six utilizing PCA, the post-processing
results still exhibit significant imperfections. However, when the dimension reduction
is increased to 12, the post-processed image results successfully meet the requirement of
providing coordinates. With a dimension reduction of 15, there is no significant difference
between the post-processed image results compared to those obtained with a dimension
reduction of 12.

(2) Considering the relationship between speed of accuracy improvement, computer
performance, image processing results, dimension reduction, and training cost, PCA with a
dimension reduction of 12 is the optimal solution for computer performance.
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3.4.3. Practical Application Testing of Model AlexNet-PCA-12

As can be seen from the above, the AlexNet-PCA-12 model with the optimal recog-
nition accuracy is obtained experimentally. To verify the feasibility of the research, an
application sorting test of the algorithm is conducted in a cotton factory in Aksu, Xinjiang.
As depicted in Figure 15, the computer platform running the algorithm obtains the actual
coordinates of the film and inserts them into the industrial control center, which controls
the response time of the high-speed spray valve to complete the film removal.

Table 10 shows the data of several sorting experiments: the overall removal rate of film
is 97.02%, and the cotton sorting amount can reach 3.0 t/h, which meets the requirements
of practical application.
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Table 10. Application of test results.

Quantity of Trials Quantity of Films in Cotton Quantity of Removal Films Removal Accuracy

1 132 128 96.97%
2 112 109 97.32%
3 98 95 96.94%
4 146 142 97.26%
5 157 152 96.82%
6 104 100 96.15%
7 128 125 97.66%
8 168 163 97.02%
9 84 82 97.62%
10 113 109 96.46%

Sum 1242 1205 97.02%

3.5. Summary of Discussions and Results

This chapter focuses on three main tasks: collecting laboratory data, conducting tests
on the algorithm, and comparing the visualized recognition results with the experimental
results. The recognition effects of LeNet, AlexNet, and VGGNet neural networks combined
with LDA, PCA, and ICA dimension reductions are compared and analyzed. Finally, the
feasibility of the proposed optimal model is verified for practical applications.

4. Conclusions

Based on hyperspectral images and the deep learning intelligent recognition algorithm,
a novel intelligent recognition method for seed cotton mixed with colorless and transparent
film is proposed in this paper. The main research topics include the construction of hyper-
spectral classification systems, dimensionality reduction for hyperspectral data processing,
construction of algorithmic recognition models, and the practical application sorting tests.

(1) The basic principles of hyperspectral imaging are studied and a hyperspectral
classification system is designed for the intelligent classification of seed cotton mixed
with the film. The system can obtain 288 hyperspectral data bands with a resolution of
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384 pixels × 600 pixels and a spectral range of 1000~2500 nm, which provides an excellent
data basis for the recognition of film in seed cotton.

(2) LDA, PCA, and ICA are utilized to reduce the dimension of hyperspectral data to
settle the problems of high latitude, large amounts of data, and redundant information of
hyperspectral data. Experimental results suggest that LDA and PCA generalized better
than ICA. LDA is the best method when the dimensionality reduction is the same as the
that of the three. PCA dimensionality reduction is more advantageous when computer
performance is satisfied.

(3) An algorithm is successfully completed for hyperspectral image recognition of film
in seed cotton. Based on the convolutional neural network architectures of LeNet, AlexNet,
and VGGNet, the network model is constructed for hyperspectral image recognition
applications in the seed cotton film domain.

(4) The combination test of the hyperspectral data dimension reduction algorithm
(LDA, PCA, ICA) and the CNN model (LeNet, AlexNet, VGGNet) is completed. The exper-
imental results illustrate that when the computer performance is satisfied, AlexNet-PCA-12
can achieve the best cost-to-performance ratio for both recognition and dimensionality
reduction, and the recognition accuracy of the algorithm can reach 98.07%; the overall
removal rate of film is 97.02% with the data of several sorting experiments in Aksu, Xinjiang.

On the whole, considering the influence of environmental factors such as light, humid-
ity and dust in the practical application sorting tests, data under different environmental
variables should be collected to further improve the generalization of the model. However,
the research has potential applications in various fields, including but not limited to tea
stalks removal, fruit and vegetable flaw separation, and pesticide residue detection in
agricultural products. Further research can explore the use of photoelectric separation
technology to enhance agricultural development.

Author Contributions: Conceptualization, Y.Z. and Q.L.; methodology, Q.L. and X.Y.; software,
Q.L.; validation, Q.L. and X.Y.; formal analysis, Y.Z., Q.L. and X.Y.; investigation, Z.L. and Q.L.;
resources, Q.L.; data curation, Q.L.; writing—original draft preparation, Q.L.; writing—review and
editing, Q.L., Y.Z. and L.Z.; visualization, Q.L.; supervision, X.Y. and Z.L.; project administration,
Z.L.; funding acquisition, L.Z. and Y.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: The research is supported by the Key Research and Development Projects of the Xinjiang
Uygur Autonomous Region: Research on Key Technologies of Automatic Recognition of Foreign
Fibers in Machine-picked Long-Staple Cotton (project number: 2022397193).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, W.; Li, D.; Zhu, L.; Kang, Y.; Li, F. A new approach for image processing in foreign fiber detection. Comput. Electron. Agric.

2009, 2, 68–77. [CrossRef]
2. Whitelock, D.P.; Armijo, C.B.; Gamble, G.R.; Hughs, S.E. Survey of seed-cotton and lint cleaning equipment in US roller gins. Eng.

Ginning 2007, 11, 128–140.
3. Zhang, H.; Wang, Q.; Li, Y.; Liu, Y.; Jia, D. Electrostatic separation motion analysis of machine-harvested cotton and residual film

based on CFD. J. Comput. Methods Sci. Eng. 2020, 2, 771–783. [CrossRef]
4. Li, D.; Yang, W.; Wang, S. Classification of foreign fibers in cotton lint using machine vision and multi-class support vector

machine. Comput. Electron. Agric. 2010, 2, 274–279. [CrossRef]
5. Guo, L.; Yu, Y.; Yu, H.; Tang, Y.; Li, J.; Du, Y.; Chu, Y.; Ma, S.; Ma, Y.; Zeng, X. Rapid quantitative analysis of adulterated rice with

partial least squares regression using hyperspectral imaging system. J. Sci. Food Agric. 2019, 2, 5558–5564. [CrossRef]

https://doi.org/10.1016/j.compag.2009.04.005
https://doi.org/10.3233/JCM-194073
https://doi.org/10.1016/j.compag.2010.09.002
https://doi.org/10.1002/jsfa.9824


Sensors 2023, 23, 7041 27 of 28

6. Ma, J.; Sun, D.W. Prediction of monounsaturated and polyunsaturated fatty acids of various processed pork meats using improved
hyperspectral imaging technique. Food Chem. 2020, 2, 126695. [CrossRef] [PubMed]

7. Zhang, M.; Li, C.; Yang, F. Classification of foreign matter embedded inside cotton lint using short wave infrared (SWIR)
hyperspectral transmittance imaging. Comput. Electron. Agric. 2017, 2, 75–90. [CrossRef]

8. Jiang, Y.; Li, C. mRMR-based feature selection for classification of cotton foreign matter using hyperspectral imaging. Comput.
Electron. Agric. 2015, 2, 191–200. [CrossRef]

9. Zhang, R.; Li, C.; Zhang, M.; Rodgers, J. Shortwave infrared hyperspectral reflectance imaging for cotton foreign matter
classification. Comput. Electron. Agric. 2016, 2, 260–270. [CrossRef]

10. Zhao, Z.Q.; Zheng, P.; Xu, S.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 2,
3212–3232. [CrossRef]

11. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput.
Intell. Neurosci. 2018, 2018, 7068349. [CrossRef] [PubMed]

12. Morales, G.; Sheppard, J.W.; Logan, R.D.; Shaw, J.A. Hyperspectral dimensionality reduction based on inter-band redundancy
analysis and greedy spectral selection. Remote Sens. 2021, 2, 3649. [CrossRef]

13. Jia, S.; Zhao, Q.; Zhuang, J.; Tang, D.; Long, Y.; Xu, M.; Zhou, J.; Li, Q. Flexible Gabor-based superpixel-level unsupervised LDA
for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 2, 10394–10409. [CrossRef]

14. Kang, X.; Xiang, X.; Li, S.; Benediktsson, J.A. PCA-based edge-preserving features for hyperspectral image classification. IEEE
Trans. Geosci. Remote Sens. 2017, 2, 7140–7151. [CrossRef]

15. Lupu, D.; Necoara, I.; Garrett, J.L.; Johansen, T.A. Stochastic Higher-Order Independent Component Analysis for Hyperspectral
Dimensionality Reduction. IEEE Trans. Comput. Imaging 2022, 2, 1184–1194. [CrossRef]

16. Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm.
Remote Sens. 2019, 2, 279–317. [CrossRef]

17. Ni, C.; Li, Z.; Zhang, X.; Zhao, L.; Zhu, T.; Wang, D. Online sorting of the film on cotton based on deep learning and hyperspectral
imaging. IEEE Access 2020, 2, 93028–93038. [CrossRef]
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