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Abstract: Because of its long running time, complex working environment, and for other reasons, a
gear is prone to failure, and early failure is difficult to detect by direct observation; therefore, fault
diagnosis of gears is very necessary. Neural network algorithms have been widely used to realize
gear fault diagnosis, but the structure of the neural network model is complicated, the training
time is long and the model is not easy to converge. To solve the above problems and combine the
advantages of the ResNeXt50 model in the extraction of image features, this paper proposes a gearbox
fault detection method that integrates the convolutional block attention module (CBAM). Firstly,
the CBAM is embedded in the ResNeXt50 network to enhance the extraction of image channels and
spatial features. Secondly, the different time–frequency analysis method was compared and analyzed,
and the method with the better effect was selected to convert the one-dimensional vibration signal
in the open data set of the gearbox into a two-dimensional image, eliminating the influence of the
redundant background noise, and took it as the input of the model for training. Finally, the accuracy
and the average training time of the model were obtained by entering the test set into the model, and
the results were compared with four other classical convolutional neural network models. The results
show that the proposed method performs well both in fault identification accuracy and average
training time under two working conditions, and it also provides some references for existing gear
failure diagnosis research.

Keywords: gearbox; fault detection; ResNeXt50 model; CBAM; time–frequency analysis method

1. Introduction

The purpose of gearbox fault detection is to diagnose and prevent various abnormal
states and fault states in a timely and correct manner, eliminate the impact of faults on
equipment operation, improve the reliability, safety and effectiveness of equipment opera-
tion, and reduce the fault loss to the lowest level [1]. At present, gearbox fault detection
can be roughly divided into three stages. The first stage is to rely on the experience and
knowledge of professional and technical personnel to judge their working status; The
second stage is fault detection technology with fault mechanism and signal processing as
the core. However, the fault diagnosis methods in the first and second stages mostly rely on
the expertise and experience of technicians. With the rapid development of pattern recog-
nition and other disciplines, the third stage of intelligent fault detection with an artificial
intelligence algorithm as the core has gradually developed, and the research into intelligent
fault detection based on artificial intelligence algorithms has become increasingly in-depth.

At present, the third stage of gearbox intelligent fault detection methods with artificial
intelligence as the core can be divided into two categories: the traditional machine learning-
based method and the method based on deep learning [2,3]. The intelligent fault detection
method based on traditional machine learning includes three processes: data acquisition,
artificial feature extraction, and pattern recognition [4]. However, traditional machine
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learning methods generally do not have a deep architecture and are relatively closed
themselves; therefore, the upper limit of the algorithm performance is low. Compared
with traditional machine learning methods, the fault detection model based on deep
learning is a typical end-to-end model with superior nonlinear mapping fitting ability,
which can automatically extract data features in the optimization process. It makes up for
the limitations of manual feature extraction in traditional machine learning methods and
reduces the dependence on mechanism research and subjective experience [5–7]. To some
extent, it improves the accuracy and intelligence of the diagnosis a–nd is more conducive
to realization of the diagnosis of mechanical equipment faults on an automatic and large
scale [8].

Today, in the field of troubleshooting, the most commonly used deep learning methods
are deep belief networks (DBNs), stack auto-encoders (SAEs), recurrent neural networks
(RNNs), generative adversarial networks (GANs) and convolutional neural networks
(CNNs). Deep learning models are also being applied in the field of fault diagnosis.
Xu et al. [9] used DBNs to extract the signal from the bearings and performed a rolling
bearing fault detection. Shang et al. [10] proposed a rolling bearing fault detection model
based on DBNs, and experiments proved that the model could accurately identify all
kinds of faults and had good fault detection ability. Liu et al. [11] have proposed an effec-
tive deep learning approach called stacked auto-encoders (SAEs). This method extracted
significant features directly from the frequency domain signal and eliminated the use of
manual features to solve the problem of gearbox fault detection. Dai et al. [12] combined a
sparse auto-encoder and a denoising auto-encoder, proposed the stacked sparse denoising
auto-encoder diagnosis model, and applied the model to rolling bearing fault detection.
Liu et al. [13] combined recurrent neural networks and autoencoders to realize the intelli-
gent fault detection of rolling bearings. An et al. [14] used recurrent neural networks to
realize the intelligent fault detection of bearings under time-varying working conditions.
Wang et al. [15] used GAN in the fault diagnosis of rotating machinery in nuclear power
plants to improve the generalization ability of the model when the data are inconsistent.

Compared with other deep learning models, the unique convolutional layer and
pooled layer algorithm design of the CNN model can effectively reduce the complexity of
the model, reduce the number of training parameters, and make the model easy to train
and optimize. Common convolutional neural network models include the visual geometry
group (VGG), GoogleNet, ResNet and ResNeXt. In order to improve the recognition
accuracy of the model, the traditional convolutional neural network needs to deepen or
widen the network, but with the deepening of the network layers, there will be gradient
explosion or gradient disappearance, and network degradation will occur. As a variant of
ResNet, the ResNeXt model adopts the idea of an inception network [16] and uses group
convolution instead of traditional convolution to widen the network and reduce the number
of training parameters of the model [17]. Because of its strong feature recognition ability, the
ResNeXt model is widely used in the field of image recognition, such as: Yao Xiao et al. [18]
proposed an automatic insect recognition system based on SE-ResNeXt, which realized
the visual display of insect recognition results and the digital storage of insect data. Wang
Guowei et al. [17] proposed an improved ResNeXt model to identify the occurrence degree
of maize diseases. Pant Gaurav et al. [19] used an improved ResNeXt model to solve the
problem of identification and classification of algae species. The above studies have proved
the performance of the ResNeXt model in the field of image recognition, so this paper
adopts the ResNeXt model as the gearbox fault identification and classification model.

However, when there is too much input, the ResNeXt model also becomes more
complex and the training time is extended. In order to alleviate this problem, attention
mechanisms are applied to neural network algorithms. Zheng et al. [20] proposed a
multi-scale residual aggregation network by adding attention mechanisms to the network.
Jiang et al. [21] applied the attention mechanism to predict the life of rolling bearings.
Wu et al. [22] and Wu et al. [23] applied the attention mechanism to cross-domain fault
detection, enabling neural network models to learn and update fault-related features in
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the training process, and improving the influence of the source domain with a stronger
correlation. All the above studies show that the introduction of attention mechanisms into
neural network models can effectively focus on significant information while ignoring
redundant features, improving the feature extraction ability of neural network models for
fault information, and thus reducing the amount of information processed by models and
reducing computing resources.

In view of this, in this paper the ResNeXt model with strong feature extraction ability is
selected as the basic model. The CBAM is embedded after the first convolutional layer and
before the last convolutional layer of the model to highlight key information of different
fault types and suppress useless information, and a CBAM-ResNeXt50 model is built. By
comparing CWT and STFT, the effective method is selected to convert the vibration signal
into time-frequency images as input to the CBM-ResNeXt50 model to reduce the influence
of redundant background noise and improve the feature extraction ability of the model on
the time-frequency images. The CBAM-ResNeXt50 model is compared with the original
ResNeXt50 model and four other classical convolutional neural network models. The
effectiveness of adding the CBAM and the robustness of the CBAM-ResNeXt50 model
are verified by comparing the average training time and the accuracy of the test set of
each model.

The organization structure was as follows:

i. In Section 2, the theory of two time-frequency analysis methods, the basic principle
of the CBAM, and the basic structure of the ResNeXt50 model are introduced.

ii. In Section 3, the CBAM-ResNeXt50 model integrated into the CBAM module is
established and the flow of the algorithm is detailed.

iii. In Section 4, the proposed method is experimentally studied and verified using the
open gearbox data set from Southeast University. The confusion matrix is obtained
by comparing with four other classical convolutional neural networks. T-distributed
stochastic neighbor embedding (t-SNE) is used to simplify the classification results
into a two-dimensional plane and visualize them in the form of scatter plots. In
addition, the anti-confusion capability of the proposed method is verified by the
above methods.

iv. The conclusions of this study and future research directions are presented in Section 5.

2. Basic Theory

The main work of this paper is to add the CBAM block to the ResNeXt50 model to
build the CBAM-RESNEXT50 model and to make the model pay more attention to the
fault information. Vibration signals are converted into two-dimensional images by CWT
and STFT, and the images are divided into a training set and a test set to train and test the
constructed model. Compared to the original ResNeXt50 model and the four other classical
convolutional neural network models, the performance of the proposed method is judged.

The second section is divided into three parts according to the main work, and respec-
tively introduces the basic theories involved in the research, including the basic knowledge
of CWT and STFT, the basic theory of attention mechanism, and the basic model structure
of ResNeXt.

2.1. Time–Frequency Analysis Method

In the acquisition of vibration signals, there is a lot of noise interference, and it is
difficult to train the network to judge the fault type directly according to the obtained
signals. It is necessary to use the method of time–frequency analysis and processing to
make the characteristics of the fault prominent. Time–frequency analysis methods include
short-time Fourier transform (STFT) and continuous wavelet transform (CWT) [24].

In 1946, Dennis Gaor proposed the STFT algorithm [25]. The basic idea is: In the
framework of the traditional Fourier transform, the nonstationary signal is regarded as
the superposition of a series of short-time stationary signals. The short-time is realized by
adding windows in the time domain, after which it is transformed into a local spectrum in
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a very small period time near the time t. The whole time domain is covered by translation
parameters, that is, the local spectrum of any position is obtained by moving in the whole
time domain with the change in time t, and then the time–frequency–energy analysis is
carried out [26].

For a given non-stationary signal, the STFT of the signal s(t) ∈ L2(R) is defined as:

STFTS(t, ω) =

+∞∫
−∞

s(τ)h(τ − t)e−iωtdτ (1)

where: h(t) is the window function.
It can be seen from Equation (1) that, in the STFT, the translation parameter t is first

used to segment signal s(t) through window function h(t), namely:

st = s(τ)h(τ − t) (2)

The signal at time τ is obtained near time t, and the Fourier transform is then applied
to that signal st(τ).

The time resolution and frequency resolution of STFT are contradictory. The higher
the time resolution is, the lower is the frequency resolution, and vice versa, which causes
STFT to have certain limitations when analyzing high frequency signals. In addition, the
analysis results of STFT are affected by the window function. Different window functions
will produce different analysis results, so it is necessary to choose the appropriate window
function according to the specific situation.

CWT [27] is derived from the decomposition and reconstruction of the input signal
using a finite length or fast attenuation ”mother wavelet”, and the mother wavelet fits the
input signal through scale contraction and wavelet translation. The original signal in the
time–domain y(x) is decomposed into a series of wavelet transform coefficients λ(k, x)
after inner product operation by CWT through a specific mother wavelet ϕ(x), so as to
construct a localized time–frequency signal with good time–domain and frequency domain.

For any square integrable function y(x) ∈ L2(R), its CWT is defined as [28]:

λ(k, x) =
∫

y(x)ϕ∗k,τ(x)dx (3)

where, ϕ∗k,τ(x) is the conjugate operation of the wavelet basis function ϕk,τ(x).
A series of wavelet basis functions can be obtained by stretching and time-delaying

the transformation of the mother wavelet ϕ(x). If we allow ϕ(x) ∈ L2(R), its process can
be expressed as:

ϕk,τ =
1√
k

ϕ

(
x− τ

k

)
, k, τ ∈ R, k > 0 (4)

where k is the scale parameter, when k > 1, the stretching of ϕ(x) is realized, and when
0 < k < 1, the compression of ϕ(x) is realized. τ is the translation parameter, which specifies
the position of the translation of the wavelet function along the time axis. k cannot be
negative, so the normalization unified treatment becomes positive, and |k|−1/2 realizes the
normalization processing of the signal capability.

Compared with the STFT, CWT has a different size time–frequency window at different
times and frequencies, which can achieve higher frequency resolution in the low frequency
region. However, the time–frequency window of CWT is not completely adaptive; it also
needs to choose a suitable mother wavelet.

2.2. Attention Mechanism

An attention mechanism is a way to realize adaptive attention in neural networks.
Generally speaking, it makes the network pay more attention to the effective unit and
suppresses the invalid unit in the feature extraction process [29]. CBAM [30] is a lightweight
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attention module, which is composed of a channel attention module and a spatial attention
module. It can perform the attention mechanism along the channel and space, infer the
weight coefficient, and then multiply the feature map [31]. Its structure is shown in Figure 1:
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Suppose that the input feature map (C, W, H) is denoted as F, where W is the width
of the input feature map, H is the height of the input feature map, and C is the number
of channels in the input feature map. The global spatial information of F is compressed
through the maximum pooling layer and the average pooling layer to generate two feature
maps s1 and s2, both of which are 1× 1× C. s1 and s2 obtained two one-dimensional feature
maps by sharing a multi-layer perception (MLP) consisting of the fully connected layer
FC1, FC2 and ReLU functions. After summing the two one-dimensional feature graphs
according to channels, the Sigmoid function is used to normalize them, and the weighted
statistic value Mc of each channel size 1 × 1 × C is obtained. The process can be expressed
by Formula (5):

Mc(F) = σ{MLP[ Avgpool(F)] + MLP[Maxpool(F)]}

=

{
MLP

[
1

H×W

H
∑

x0=1

W
∑

y0=1
fk0(x0, y0)

]}
+ MLP

[
max fk0(x0,y0)

] (5)

where, σ represents the Sigmoid function, and fk0(x0, y0) represents the pixel value of the
point whose coordinate is x0, y0 in the k0 channel of the input feature graph F.

Spatial attention mechanism. After the output of channel attention, the spatial atten-
tion module is introduced to focus on which part of the space features are meaningful, as
shown in Figure 3.

The spatial attention mechanism takes the feature map F′′ output by the channel
attention module as the input of this module and carries out global maximum pooling
and global average pooling, respectively, on the channel dimension to obtain two channel
descriptions P1 and P2. The two descriptions are concatenated together according to the
channels to obtain the feature description P3. The convolutional layer is used to encode
and fuse the information of different positions in P3, and the spatial weighted information
Ms is obtained. Finally, we multiply the weight coefficient and feature F′ to obtain the new
feature after scaling. The process can be expressed by Formula (6):

Ms(F) = σ
{

f 7×7[Avgpool
(

F′
)
; Maxpool

(
F′
)]}

(6)
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where: f 7×7 represents a convolution layer with a convolution kernel of size 7 × 7.
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CBAM attention mechanism [32]. Multiply the input feature map F with the corre-
sponding elements of the two matrices of the weight value Mc of each channel, carry out
the feature recalibration of F, and obtain the feature mapping F′ which can effectively
reflect the feature key channel information. On the basis of channel weighting, the series
spatial attention mechanism is used to carry out adaptive weighting on the spatial feature
information. F′ is taken as the input to the spatial attention module and multiplied by the
corresponding elements of the two matrices of the spatial weight coefficient Ms to obtain
the significant feature graph F′ containing the channel location information and spatial
location information. The network can pay more attention to the strong input features of
the gearbox two-dimensional image, and improve its spatial feature selection ability. Its
process can be expressed by the formula:

F′ = Mc⊗ F
F′′ = Ms⊗ F′

(7)

2.3. ResNeXt Model

Residual Block. By calculating residuals through identity mapping, part of the upper-
layer information can be directly transmitted to the last layer, which is conducive to the
back propagation of the gradient.

If we suppose that the input sample of part of the neural network is x, F(x) represents
the residual error, and the two together form the expected output H(x). As shown in
Formula (8), H(x) = x forms the identity mapping when F(x) = 0.

H(x) = F(x) + x → F(x) = H(x)− x (8)

The Bottleneck Structure. The bottleneck has two structures. The two structures
correspond to two situations: Different input and output channel counts (Bottleneck1), and
identical input and output channel counts (Bottleneck2).

Bottleneck1 has four mutable parameters C, W, C1, and S. Compared with Bottleneck2,
Bottleneck1 has one more right-side convolution layer, which is designated as a function
H(x). Bottleneck1 corresponds to the different input x and output F(x) channel numbers,
and it is the added convolutional layer that changes x into H(x), which matches the input
and output dimensional differences (H(x) and F(x) have the same number of channels).

Bottleneck2 has two mutable parameters C and W. Assume that the shape of the input
x is (C, W, W), and the three convolution blocks (along with the related BN and ReLU) to
the left of Bottleneck2 are the function F(x). After adding the two together (F(x) + x) and
passing through a ReLU function, the output of Bottleneck2 is obtained. The shape of the
output remains (C, W, W), namely, Bottleneck2 corresponds to situations where the number
of input and output channels is identical.
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ResNeXt Block. The ResNeXt network architecture uses the stack of VGG networks
and the idea of partition and integration inception, using a block with the same structure for
the stack [33]. The essence of ResNeXt is grouping convolution, controlling the number of
groups through cardinality [34]. The ResNeXt block divides the input channels into groups,
then each group performs a convolution calculation with its own convolution kernel, and
finally merges the output of all groups by a 1 × 1 convolution. Because the ResNeXt block
has the same topology, it can be used directly to replace the remaining blocks in the regular
residual network and stack them to construct the desired structure.

3. Gearbox Fault Detection Method Based on the CBAM-ResNeXt50 Model

The data set in this paper was a labeled data set with four fault categories and one
normal category, each of which was distinguished according to the different characteristics
of the fault. The flow of fault diagnosis method based on the CBM-ResNeXt50 model is
shown in Figure 4. Firstly, one-dimensional vibration signals of two working conditions in
the data set were converted into different two-dimensional images as sample data by CWT
and STFT, and the sample data were divided into the training sets and test sets according
to 4:1 by labeling. The training set was used as input to the CBAM-ResNeXt50 model and
features were extracted. The extracted features were then input into the CBAM to make
the model pay more attention to the faulty areas in the time–frequency graph. In addition,
the CBAM information output was input into the global average pooling layer and the full
connection layer. Furthermore, the fault categories of time–frequency images were output
and the trained CBAM-ResNeXt50 model was saved. In the classification module shown
in Figure 4, the output result is the probability of five failure types, including “Chipped”
0.03, “Health” 0.8, “Miss” 0.06, “Root” 0.04, and “Surface” 0.07. Because the probability
of Health is the highest, this gear is judged to be “Health”. Finally, the test sets under
the two conditions were input into the trained network model, respectively, for testing to
obtain the accuracy of the test set. The classification scatter diagram obtained by the t-SNE
technique and the confusion matrix diagram were used to judge the merits and demerits of
this model.
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4. Experimental Research
4.1. Experimental Data and Setting of Parameters

The experimental data are obtained from the drivetrain dynamic simulator (DDS) of
Southeast University [35]. The platform is shown in Figure 5 and mainly consists of six
sections: motor, motor controller, planetary gearbox, parallel gearbox, brake, and brake
controller. The whole experiment was carried out under two working conditions according
to different settings of speed and load. The speed was set at 20 Hz and 30 Hz, and the load
was set at 0 V and 2 V while the signals of four kinds of gear fault state and the signal of
one kind of gear health state were collected. Each state signal includes the vibration signal
of the motor, motor torque, planetary gearbox in x, y, and z directions, and parallel gearbox
in x, y, and z directions. The highest frequency of the collected signal was 2000, and the
sampling frequency was 5120 Hz, namely, 5120 sampling points within 1 s. Four types
of gear failure data include chipped, miss, root, and surface. The detailed data set type
division is shown in Table 1.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 5. Experimental setup for gearbox. 

ResNeXt model is widely used in the field of image recognition due to its strong fea-

ture recognition ability. Therefore, this paper truncated all 3000 data points in the data set, 

and sample graphs with a size of 224 × 224 RGB three-channel through STFT and CWT 

were generated, respectively, to enhance the feature extraction capability of the ResNeXt 

model for the image. Finally, the sum of 4000 two-dimensional images of different fault 

categories under two working conditions was obtained, part of which is shown in Figures 

6 and 7. It can be seen from Figures 6 and 7, after STFT and CWT transformation, that the 

signal used was stable, and that images of various fault types have different characteris-

tics. 

In STFT transformation, the select window type was the Hanning window with size 

256 and moving step size 64. Because a complex morlet wavele adopted a Gaussian func-

tion with minimum time–frequency window area and had good localization performance 

in the time–frequency domain and good symmetry, a complex morlet wavele was selected 

as the parent wavelet in this paper. The mathematical expression of the complex morlet 

wavele is: 

𝜑(𝑡) =
1

√𝜋𝑓𝑏

𝑒2𝑖𝜋𝑓𝑐𝑡𝑒
(
−𝑡2

𝑓𝑏
)
 (9) 

where 𝑓𝑏  is the bandwidth of the wavelet, 𝑓𝑐  is the center frequency of the wave-

let 𝑎𝑛𝑑2𝜋𝑓𝑐 ≥ 5. 

  

Figure 5. Experimental setup for gearbox.

Table 1. Data set division of gearbox of DDS experimental platform.

Type Health Chipped Miss Root Surface Total Working Conditions

Dataset 1
Training 640 640 640 640 640

4000 20 Hz–0 VValidation 160 160 160 160 160

Dataset 2
Training 640 640 640 640 640

4000 30 Hz–2 VValidation 160 160 160 160 160

ResNeXt model is widely used in the field of image recognition due to its strong feature
recognition ability. Therefore, this paper truncated all 3000 data points in the data set, and
sample graphs with a size of 224 × 224 RGB three-channel through STFT and CWT were
generated, respectively, to enhance the feature extraction capability of the ResNeXt model
for the image. Finally, the sum of 4000 two-dimensional images of different fault categories
under two working conditions was obtained, part of which is shown in Figures 6 and 7. It
can be seen from Figures 6 and 7, after STFT and CWT transformation, that the signal used
was stable, and that images of various fault types have different characteristics.
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In STFT transformation, the select window type was the Hanning window with
size 256 and moving step size 64. Because a complex morlet wavele adopted a Gaussian
function with minimum time–frequency window area and had good localization perfor-
mance in the time–frequency domain and good symmetry, a complex morlet wavele was
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selected as the parent wavelet in this paper. The mathematical expression of the complex
morlet wavele is:

ϕ(t) =
1√
π fb

e2iπ fcte
(−t2

fb
)

(9)

where fb is the bandwidth of the wavelet, fc is the center frequency of the wavelet
and 2π fc ≥ 5.

All experiments in this paper were performed on the same platform. The experimental
operating environment was ubuntu20.04 OS, the GPU was RTX 3080(10 GB), and the CPU
was 12-core Intel(R) Xeon(R) Platinum 8255C. During the experiment, the parameters
were adjusted and used as shown in Table 2. The network training epoch was set to
50. In the training process, the initial value of the learning rate was set to 0.001, and the
automatic adjustment strategy was adopted to realize the automatic adjustment of the
learning rate. The dropout value was set to 0.2. All models were trained using adaptive
moment estimation (Adam).

Table 2. Parameter selection.

Hyper Parameter Values

Epoch 50
Batch_size 32

Learning rate 0.001
Learning rate decay 0.1

Dropout rate 0.2
Adam -

4.2. Comparison of Time–Frequency Analysis Method

In this paper, two-dimensional images of CWT and STFT would be used as the input
of the CBAM-ResNeXt50 model, respectively. Figure 8 is a comparison of the accuracy and
convergence rate of the model test set obtained. As can be seen from Figure 8, the accuracy
and convergence speed of the test set after CWT were better than the STFT, which is more
suitable for model training. Therefore, this article used it as a time–frequency analysis
method to carry out the time–frequency transformation of one-dimensional time series
fault signals of the gearbox.
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Figure 8. Comparison of CWT and STFT under two working conditions (a) Working Condition 1:
20 Hz–0 V, (b) Working Condition 2: 30 Hz–2 V.

4.3. Model Training and Result Analysis

After constructing the network, the classification prediction results were obtained
through 50 training epochs. The training convergence curves of the CBAM-ResNeXt50
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model under two working conditions are shown in Figure 9. As can be seen from Figure 9,
the error in the network decreased gradually with the increase in the epoch. After 10 epochs,
the network converged completely. At this time, the network accuracy rate reached 99.95%
and 99.875%, and the loss reached 0.0015 and 0.0135, respectively. It can be seen from the
above that the CBAM-ResNeXt50 model had a good performance in fault classification.
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Figure 9. Accuracy and loss rate convergence curves of CBAM-ResNeXt50 under working conditions
(a) Working condition 1: 20 Hz–0 V, (b) Working condition 2: 30 Hz–2 V.

For complex tasks with a limited sample size but requiring the use of a strong model,
the model is prone to overfitting phenomena with a small loss on the training set and a
large loss on the test set. Figure 10 shows the loss rates of the training set and the test set of
the CBAM model under two working conditions. As can be seen from Figure 10, the loss
rates of the model test set under the two working conditions are very small, and there is no
overfitting problem.
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To demonstrate the effectiveness of CBAM in the fusion model in this paper, com-
parative experiments were conducted on whether to use the CBATM module. Among
them, CBAM-ResNeXt50 represented the ResNeXt50 model integrated into CBAM, and
ResNeXt50 represented the original model not integrated into CBAM. At the same time,
the performance of classical convolutional neural networks such as the DenseNet121, the
ResNet50, and the AlexNet was compared.

Table 3 shows the results of the training time and fault recognition accuracy of each
model. It can be seen from Table 3 that the accuracy of the CBAM-ResNeXt50 model reached
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99.95% and 99.875%, respectively, under two working conditions. The addition of CBAM
significantly improved the accuracy of the ResNeXt50 network in identifying different
faults. The experiment proved the effectiveness of CBAM for gearbox fault identification.

Table 3. Training results of five models under two working conditions.

Working Conditions Neural Network Model Accuracy (%)

Condition 1
20 Hz–0 V

CBAM-ResNeXt50 99.95%
ResNeXt50 97.625%
ResNet50 96.875%

DenseNet121 97.25%
AlexNet 93.25%

Condition 2
30 Hz–2 V

CBAM-ResNeXt50 99.875%
ResNeXt50 98.75%
ResNet50 96.5%

DenseNet121 97.625%
AlexNet 91.125%

Figure 11a,b shows the accuracy curves of five model test sets. Under the two working
conditions, with an increasing number of epochs, the increasing trend of test accuracy
of different models was different. After about 10 epochs, the CBAM-ResNeXt50 model
began to converge, the DenseNet121 and ResNeXt50 models began to converge after small
oscillations, while the ResNet50 and AlexNet models still did not converge. Comparing
several models, we see that CBAM could improve the diagnostic accuracy and convergence
speed of the model.
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Figure 11. Training convergence curves of five models under working conditions (a) Working
Condition 1: 20 Hz–0 V, (b) Working condition 2: 30 Hz–2 V.

Figure 12 compared the average training time of five neural network models under
two working conditions. The number of training epochs was 50, and the sample sizes
of the training and test data sets were 3200 and 800. As can be seen in Figure 12, the
average running time of the CBAM-ResNeXt50 model was shorter than those of the other
three models due to the integration of CBAM. This indicated that the addition of CBAM
can shorten the time of the model training on the premise of improving the accuracy of
the model training. However, the AlexNet model had a single structure and only used a
few convolution layer parameters, so the shortest average training time was reasonable.
Although the AlexNet model took the shortest time, its model training accuracy was low
and could not converge quickly.
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Figure 12. Comparison of the average training time of five models under two working conditions.

The two models were verified by using the two-dimensional images obtained by CWT.
Figures 13 and 14 show the confusion matrix obtained by fault classification by the CBAM-
ResNeXt50 model and the ResNeXt50 model under two working conditions, respectively.
The abscissa represented the real fault and the ordinate represented the predicted result,
which was, respectively, chipped, health, miss, root, and surface. The depth of the color
represents the number of identified samples. The darker the color is, the greater is the
number of correctly identified samples, and the greater is the accuracy.

In this paper, the average precision (AP) and average recall (AR) of five fault types
were used to analyze the confusion matrix obtained. The precision represented the ratio of
correct samples to the total samples in the prediction results. The recall rate represented
the ratio of the number of predicted samples to the total number of actual samples [36].

The gearbox data set published by Southeast University was used to conduct experi-
ments on the CBAM-ResNeXt50 model, the ResNeXt50 model, and three other convolu-
tional network models. As can be seen from Table 4, the DenseNet121 and ResNeXt50
model both had an average precision and recall rate of around 97%, the average precision
and recall rate of the ResNet50 model were both around 96%, and the average precision and
recall rate of the AlexNet model were both about 93%. Based on the original ResNeXt50
model, CBAM was integrated into the method proposed in this paper, which optimized the
average precision rate and the average recall rate of gear fault type detection in the model.
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Using the t-SNE algorithm, the prediction of the CBAM-ResNeXt50 model on the
test set could be displayed visually, so that the multidimensional output prediction data
could be displayed in the two-dimensional space. t-SNE technology was used to reduce
the feature dimension of trained data in data set 1. The result is shown in Figure 15.
Dimensionality reduction visualization showed that at the beginning of classification,
different fault data were mixed and difficult to distinguish. After training, the division
between classes gradually became clear and there were five clear distributions in the entire
connection layer.
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Table 4. Evaluation indexes of confusion matrices of five models under working condition 1.

Neural Network
Model

Average Precision Average Recall

Working
Condition 1

Working
Condition 2

Working
Condition 1

Working
Condition 2

CBAM-ResNeXt50 1.0 1.0 1.0 1.0
DenseNet121 0.9741 0.9778 0.9738 0.9776

ResNeXt50 0.9747 0.9864 0.9738 0.9863
ResNet50 0.9699 0.9655 0.9687 0.9650
AlexNet 0.9322 0.9152 0.9325 0.9113

5. Conclusions

This paper presented a fault detection method for the gearbox based on the CBAM-
ResNeXt50 model. Compared with other existing convolutional neural network models, a
CBAM attention mechanism was added to the ResNeXt basic model in this paper, which
made the model pay more attention to fault information during training. We used the
gearbox data set published by Southeast University to verify the model proposed in this
paper. The results show that under the two working conditions, the accuracy of the
test set was 100% and 99.875%, and the average training time was 22.619 s and 23.083 s.
We comprehensively compared this result with four models, including DenseNet121,
ResNeXt50, ResNet50, and AlexNet, and found that the performance of the proposed
method in this paper was more stable. The model parameters and experimental results
provided in this paper also provide some data reference for existing fault diagnosis research.
However, the existing gear fault data are few, difficult to collect, and the model training
requires a large amount of data, so in the case of a small amount of data, using neural
network model training and achieving good stability is one of the future research directions.
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