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Abstract: To address the problem of low fault diagnosis accuracy caused by insufficient fault samples
of rolling bearings, a dual-input deep anomaly detection method with zero fault samples is proposed
for early fault warning of rolling bearings. First, the main framework of dual-input feature extraction
based on a convolutional neural network (CNN) is established, and the two outputs of the main
frame are subjected to the autoencoder structure. Then, the secondary feature extraction is performed.
At the same time, the experience pool structure is introduced to improve the feature learning ability
of the network. A new objective loss function is also proposed to learn the network parameters. Then,
the vibration acceleration signal is preprocessed by wavelet to obtain multiple signals in different
frequency bands, and the two signals in the high-frequency band are two-dimensionally encoded
and used as the network input. Finally, the unsupervised learning of the model is completed on five
sets of actual full-life rolling bearing fault data sets relying only on some samples in a normal state.
The verification results show that the proposed method can realize earlier than the RMS, Kurtosis,
and other features. The early fault warning and the accuracy rate of more than 98% show that the
method is highly capable of early fault warning and anomaly detection.

Keywords: rolling bearing; dual-input deep anomaly detection; unsupervised learning; zero fault
samples; CNN

1. Introduction

As one of the universal and key components of rotating machinery, rolling bearings
increase the cost of maintenance and cause unexpected accidents once failure occurs.
Therefore, it is of great significance to explore more accurate, more efficient, and more
intelligent early fault detection technology so that the monitoring of bearings can be realized
in the early stage of bearing faults [1,2].

At present, with the development of artificial intelligence (AI) technology in the fields
of image and voice [3,4], the technology has also been applied in the field of rolling bearing
fault diagnosis [5]. In recent years, Deep Learning methods, such as CNN [6], Transfer
Learning [7], and Deep Belief Networks (DBN) [8] have been widely used in the field of
rolling bearing fault diagnosis and have obtained good diagnostic results. For example,
Sun et al. [9] compressed the rolling bearing data by using stacked sparse autoencoders,
thereby improving diagnostic accuracy. He et al. [10] realized the fault diagnosis of rolling
bearings by using deep learning and acoustic emission technology. However, in actual
engineering, it is difficult to obtain the operation data of the mechanical system in the ‘sick’
state. As a result, the obtained samples contain a large number of normal data and the
abnormal data amount are very small or even zero in various typical fault states [11,12]. In
this situation, the unsupervised anomaly detection (AD) method driven only by normal
data has become an effective way of realizing the early AD of rolling bearings.
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Classical AD methods such as the Support Vector Data Description (SVDD), Hyper-
spherical Distance Discrimination (HDD), or PCA, were usually used for rolling bearing
AD. Wu proposed a diagnosability analysis framework based on Deep PCA (Principal
Component Analysis) and verified the effectiveness of the algorithm on the TDCS-FIB
platform [13]. Wang [14] used Sparse Non-negative Matrix Factorization (SNMF) results
as the input of SVDD, established a composite fault AD method for rolling bearings, and
realized the accurate AD of composite faults of rolling bearings. Lin [15] proposed a novel
HDD method to assess the performance of aero-engine bearings, which can solve problems
with many parameters and high computational complexity. Liu [16] used PCA and the
decision tree algorithm to realize the early fault warning of civil engine rolling bearings,
with a warning rate up to 99.8%. However, Classical AD methods often require human
experience to provide features and fail in high-dimensional samples [17].

In comparison, the AD method based on deep learning has also been applied in the
early fault detection of rolling bearings. This kind of method mainly includes reconstruction-
based methods and classification-based methods [18]. AE and generative adversarial
networks (GAN) are representative of reconstruction-based methods. Huang [19] proposed
a novel method, which can achieve 97.97% and 93.51% accuracy on the IMS and XJTU-SY
datasets, respectively. Zhao [20] combined sparse autoencoder and transfer learning to
propose a network model for rolling bearing AD. Wu [21] used the GAN + AE structure
feature extraction network to realize rolling bearing AD. In addition, such Variational
Autoencoder (VAE) [22] and many other reconstruction-based AD methods have achieved
good performance in the early fault detection of rolling bearings. Deep Support Vector Data
Description (DSVDD) [23] inherited the feature extraction advantages of deep learning and
the classification performance of SVDD. Shao [24] used DSVDD for the early AD of rolling
bearings and achieved good results. At the same time, Deep OC-NN [25] was also applied
in the early AD of rolling bearings.

The evolution of rolling bearing spalling fault is an energy transfer process from high
frequency to low frequency. In the early fault stage, the energy is mainly concentrated in
the high-frequency band. In the middle stage of evolution, the energy is concentrated in
the middle-frequency band. In the late stage of evolution, the energy is concentrated in the
low-frequency band [26].

Traditional features such as root mean square value (RMS) and kurtosis value [19]
characterize the evolution of this energy to a certain extent; that is, in the normal stage,
such features tend to perform smoothly, and once bearings become abnormal, the value
will change rapidly, through which the state of the bearing at this time can be judged.
However, these features are easily affected by noise, working conditions, etc., resulting in
irregular changes. If the AD method can extract a kind similar to the RMS or kurtosis, the
feature not only reflects the ability to bear the failure of the energy transfer in the evolution
process, making it more reliable and relative, but also, the differences in the normal and
abnormal conditions are relatively more significant, and adopting the difference can be
more intuitive to the identification of the abnormal state of bearing. This is very useful for
achieving early fault detection of rolling bearings. Because of this, to extract this stable
and reliable feature, and then realize the AD of bearing, this paper proposes a Dual-Input
Deep Anomaly Detection (DIDAD) method by considering signals from different frequency
bands. The method is applied to the early fault warning of rolling bearings, and the method
is verified by using multiple sets of actual rolling bearing fault test data. The method is
verified on multiple rolling bearing life data sets, which achieves better performance than
the comparison methods.

The main innovations of this paper are:

1. A dual-input anomaly detection structure is proposed;
2. Introduce the experience pool structure into anomaly detection;
3. A new loss function is proposed.
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2. Dual-Input Deep Anomaly Detection
2.1. The Overall Structure of DIDAD

The established DIDAD model is mainly composed of a dual-input feature extraction
main framework, secondary feature extractor, autoencoder, experience pool, and other
structures, and the specific structure is shown in Figure 1.
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Figure 1. Dual-Input Deep Anomaly Detection. Figure 1. Dual-Input Deep Anomaly Detection.

(1) Dual-Input feature extraction network based on a three-layer CNN. Firstly, wavelet
decomposition is carried out to obtain signals of different frequency bands. Then,
two high-frequency signals are selected as two inputs of the model. Finally, a three-
layer convolutional neural network is used to extract features. The output results
o1 ∈ R1×m, o2 ∈ R1×m of the two networks are laterally stacked and used as the input
of the subsequent secondary feature extraction.

(2) The secondary feature extractor mainly uses a one-dimensional convolution kernel
of size 5 × 1 to convolute the output o5 (There are four outputs in this method. To
facilitate writing, the four outputs are denoted as O1, O2, O3, and O4. O5 is only an
intermediate transition state and is not used to calculate the loss function.) to further
extract features.

(3) AE is one of the classic unsupervised machine learning algorithms. In this paper,
the AE module has three layers, the fully connected layer O3, the encoder, and the
decoder O4. Among them, a one-dimensional convolution operation is used from
the fully connected layer O3 to the encoder, and a one-dimensional deconvolution
operation is used between the encoder and the decoder O4.

(4) DIDAD introduces the concept of experience pool. (The experience pool structure was
proposed by the Google DeepMind team, and is mainly used to store state information
data in reinforcement learning) [27]. For the batch samples of this training, the samples
whose output results deviate from the overall mean value are stored in the designed
experience pool cache. The balanced cross-sampling technique is used, and part
samples and original data samples are randomly selected from the two experience
pools to form a batch-size sample set as the input of the model in each training process.

In Figure 1: Conv is the convolutional layer [28], BN is a batch normalization layer [28],
LeakyRelu is the activation layer, and the activation function is LeakyRelu [28].

NVIDIA GTX1660 6G is used in this experiment. i5-9600K CPU; the system is Windows
10; 8 GB of memory; and the programming language is python 3.7. The framework for all
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deep learning models is Pytorch 1.11; and the batch size is 128. The number of iterations is
200. The Adam optimization algorithm is used with a learning rate of 0.001.

2.2. A New Loss Function

For the training set with n samples, each sample has p features after passing through
the convolutional network, assume that the X follows the normal distribution:

X ∼ Fp(µ, Σ) (1)

where µ =(µ1, µ2, µ3, · · · , µp)
T is the expectation of X and Σ is the covariance matrix. Fp()

is a normal distribution function.
The estimated value of and can be obtained via Equations (2) and (3)

µ̃ =
1
n

n

∑
i=1

Xi (2)

Σ̃ =
1
n

n

∑
i=1

(Xi − ũ)(Xi − ũ)T (3)

For the four outputs O1, O2, O3, and O4 of DIDAD, Equations (2) and (3) can be used
to calculate their corresponding global and with all data. They are recorded as global
κ̃ = [µ̃1, µ̃2, µ̃3, µ̃4], χ̃ = [Σ̃1, Σ̃2, Σ̃3, Σ̃4]. Similarly, if the batch size is k in the training
process, the µ̃ and Σ̃ of k samples obtained from the four outputs can be written as follows:
κ = [µ1, µ2, µ3, µ4], χ = [Σ1, Σ2, Σ3, Σ4].

To make the output of k samples and the global computation have the same distribu-
tion, their corresponding expectation and covariance variance matrices need to be equal.
The subloss function is proposed as shown in Equation (4):

L̃t =
p
∑

i=1
(κ̃t

i − κt
i)

2

Lt =
p
∑

j=1

p
∑

i=1
(χ̃t

ij − χt
ij)

2
(4)

where Lt or L̃t are the tth (t = 1, 2, 3, 4), Covariance matrix error (CME) and expectation
error (EE) of the outputs.

For the network driven only by normal data, the outputs O1 and O2 are the features
that can denote the normal state. Therefore, the error between them should be as small as
possible. For this reason, the error loss between these two outputs is considered:

L̃12 =
p
∑

i=1
(µ1

i − µ2
i )

2

L12 =
p
∑

j=1

p
∑

i=1
(Σ

1
ij − Σ

2
ij)

2
(5)

In addition, the reconstruction errors between O3 and O4 are shown in Equation (6)

L̃34 =
p
∑

i=1
(µ3

i − µ4
i )

2

L34 =
p
∑

j=1

p
∑

i=1
(Σ

3
ij − Σ

4
ij)

2 (6)
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All the subloss functions used to construct the joint loss function have been calculated
at this point. The traditional joint loss function is to accumulate all subloss functions
according to different weights, as shown in Equation (7)

L =
T

∑
z=1

λzLz + ε
S

∑
s=1
‖ws‖2 (7)

where L is the total loss, T is the number of subloss functions, λz is the penalty factor of the

zth subloss function Lz, ε
S
∑

s=1
‖ws‖2 is the loss penalty term, ε is the penalty factor, ε = 10−5,

S is the total number of network parameters, and ws is the sth network parameter.
One of the disadvantages of Equation (7) is that it is difficult to obtain the optimal λz

for each subloss function. In the calculation, it is assumed that every such subloss function
has the same importance. Therefore, according to the proposed subloss function, this paper
designs a joint loss function based on the max-min algorithm, as shown in Equation (8)

L = minmax([L̃t, Lt, L̃12, L12, L̃34, L34]) (8)

Equation (8) firstly selects the maximum value of all the subloss values and then adopts
the stochastic gradient descent algorithm to minimize the loss value. Equation (8) abandons
the process that the traditional joint loss function needs to design the penalty factor, and
only needs to optimize the maximum loss value in each training process. Theoretically,
all the subloss functions will change toward their respective minimum values during the
iteration process.

After the model’s training is completed, the anomaly score (the bearing fault evolution
feature extracted in this paper) of all samples is calculated according to Equation (9), and
the results are evaluated quantitatively via the AUC measure. For training, of course, we
do not use any labels

St = log10(
4

∑
t=1

p

∑
i=1

(κ̃t
i − κt

i)
2) (9)

2.3. Experience Pool

The experience pool structure is mainly used to store the “Anomaly” samples in the
normal data in the training process, and these “anomaly“ samples can participate in more
training times by balanced cross-sampling, to achieve the purpose of improving the AD
accuracy. 3σ criteria are mainly used to judge the “Anomaly” samples contained in the
normal data.

(1) Compute the mean β of the k samples X = (Xi1, Xi2, · · · , Xik)
T i = 1, 2, · · · , p in the

batch and the mean µ̃r and variance σ of the individual samples:

µ̃r =
1
p

p
∑

i=1
Xir

β = 1
k

k
∑

r=1
µ̃r

σ = 1
k

k
∑

r=1
(µ̃r − β)2

(10)

(2) Use Equation (11) to determine whether the current sample is an “anomaly”.

|µ̃r − β| − 3σ > 0 (11)

(3) The samples of an “anomaly“ judged by Equation (11) are stored in the experience
pool structure. (The anomaly here does not mean that it represents a fault, but a
sample with poor performance in the normal state.)
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(4) Balanced cross-sampling [26]. In the process of model training, part of the data are
randomly selected from the experience pool and the original data set in proportion
to form the batch samples required for the training, which are used as the input of
the model. This ratio is set to 0.2, that is, 20% of the sample size of batch sizes is
derived from the experience pool structure, and the remaining 80% is derived from
the original dataset.

3. Examples of Early Fault Detection of Rolling Bearings

To verify the effectiveness of DIDAD in early fault warning of rolling bearings, four sets
of run-to-failure experimental completed by the Intelligent Diagnosis and Expert System
(IDES) laboratory of Nanjing University of Aeronautics and Astronautics and one set of
run-to-failure experimental completed by the Intelligent Maintenance Systems (IMS) [27]
Laboratory, University of Cincinnati, USA are studied using the proposed AD method. At
the same time, the results are compared with DSVDD [23], DCGAN [23], ANOGAN [23],
OC-NN [21] and other methods. In addition, to highlight the effect of the DIDAD on early
fault warning, the DIDAD is compared with the RMS, Kurtosis, and other features that can
characterize the fault.

3.1. Data Preprocessing

All of the vibration signals are preprocessed in the same way. Wavelet decomposition
and reconstruction methods are used to obtain data with m points in different frequency
bands. The obtained sequence data are directly transformed into two-dimensional matrix
data with c rows and d columns according to the column transformation, which is used as
the input of the AD model. In this paper, the db8 [29] wavelet base is used to decompose
the vibration signals of rolling bearings in five layers (This decomposition can be based on
the characteristics of the signal and artificial experience, we have more experience usually
decomposing the signal into five layers), and a total of five detail signals d1, d2, d3, d4,
d5, and one approximate signal a5 are obtained. d1 and d2 signals are selected as the
dual-inputs of the DIDAD model in this paper. The data preprocessing process is shown in
Figure 2.
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3.2. IDES Bearing Data Sets

The IDES bearing data sets were collected from March to July 2021. It contains the
damage evolution tests of 10 groups of bearings of 2 types. The parameters of the two
types of bearings are shown in Table 1. The experimental system is ABLT-1A bearing
strengthening testing machine developed by Hangzhou Bearing Test Center, as shown in
Figure 3a. Four sets of bearings for a single test are installed in the test head, and four
acceleration sensors are installed on the bearing housing to collect vibration acceleration
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signals of rolling bearings. The sampling frequency is 51,200 Hz, the sampling interval is
2.4 min, and the data volume of a single sample are 32,768 sampling points. What needs to
be explained is that first, this is a test of rolling bearing in the whole life cycle; that is, the
rolling bearing is intact at the beginning of the test, without any damage. After the test,
No. 1 and No. 2 bearings are inner ring spalling faults, with a size of about 5 × 6 mm. Since
No. 3 and No. 4 are cage fracture faults, the size of the fault cannot be calculated.

Table 1. Rolling bearing parameter information.

Bearing Type Inner
Race/mm

Outer
Race
/mm

Thickness
/mm

Rolling
Element

Speed
/rpm

Life
/Hours

Sample
Number

Fault
Sample
Point

Load (KN) Failure
PartsRadial Axial

BMD6009
No. 1

45 75 16 12 12,000 143 3564 2480 5.1 2.1 Inner
No. 2 235.2 5884 3210 5.1 2.1 Inner

C&U
61807

No. 3
35 47 7 21 15,000 34.8 872 540 2.2 0 cage

No. 4 101 2522 1220 2.2 0 cage
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Figure 3. ABLT-1A bearing tester and fault bearing. (a) ABLT-1A test rig, (b) No. 2 bearing peel fault,
(c) No. 3 bearing cage fault.

In the verification process, according to the location of the fault sample point in Table 1,
the samples before the fault sample point are considered normal data, and the samples
after the fault sample point are considered abnormal data.

In the process of model training, the first 1000 samples are used as normal samples
for the BMD6009 bearing, and the first 500 samples are used as normal samples for the
C&U61807 bearing. All samples are set as the testing set. As long as the model is trained
according to the data of the normal state, the new data in the later stage are only used for
input, and then the test results are given. There is no need to retrain in this process.

To illustrate the influence of the balance ratio on the results, 0.1, 0.2, 0.3 were selected
for verification. The results are shown in Table 2. It can be seen from the results in Table 2
that when the selection ratio is 0.2, the optimal detection effect can be obtained on four sets
of bearings.

Table 2. Different ratios of test results.

Ratio
No. 1 Bearing No. 2 Bearing No. 3 Bearing No. 4 Bearing

AUC AUC AUC AUC

0.1 98.9 99.8 99.4 99.5
0.2 99.8 99.9 99.7 99.5
0.3 99.4 99.5 98.9 98.8
0.4 98.3 99.7 99.1 98.2
0.5 98.1 99.1 97.9 97.6
0.6 97.9 99.9 98.2 97.1
0.7 98.4 99.7 97.5 98.2
0.8 98.8 99.2 97.9 98.3
0.9 98.6 99.1 98.3 97.7
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The fault occurrence time points of various methods on the four test bearings and the
AUC measure values are shown in Table 3.

Table 3. Test Results on the IDES dataset.

Method
No. 1 Bearing No. 2 Bearing No. 3 Bearing No. 4 Bearing

d1 d2 AUC d1 d2 AUC d1 d2 AUC d1 d2 AUC

DIDAD 2482 99.8 3216 99.9 539 99.7 1227 99.5
DSVDD 2506 2510 97.3 3627 3690 89.7 672 688 82.2 1463 1446 92.5

ANOGAN 2520 2515 96.9 3223 3657 99.6 669 685 83.1 1367 1389 94.8
OC-NN 2652 2652 94.7 3232 3248 99.4 665 691 83.2 1636 1649 89.6

The comparison results in Table 3 show that DIDAD can more accurately realize the
early fault warning of bearings than other AD algorithms, and the accuracy on four rolling
bearing test data sets reaches more than 99%. In the No. 3 bearing, DIDAD improves
the accuracy by about 16.5% compared with the better-performing OC-NN. In the No. 4
bearing, the AUC value of DIDAD is 99.5%, while the value of ANOGAN is 94.8%. That
is a relative increase of about 4.7%. In the No. 1 bearing, the AUC value of DIDAD is
99.8%, Compared with DSVDD, ANOGAN, and OC-NN, the results are improved by 2.5%,
2.9%, and 5.1%, respectively. In addition, the accuracy of DIDAD on the No.2 bearing is
improved by 10.2%, 0.3%, and 0.5% compared with the other three models, respectively.
The results show that the DIDAD shows good performances on AD with a high accuracy
score in four bearing sets.

To further prove the superiority of the DIDAD, the score S4 of the output O4 is selected
as the evolution feature of the bearing and the RMS value (denoted as RMS1) and kurtosis
in the full frequency band, as well as the RMS value (denoted as RMS_d1 and RMS_d2) of
the d1 and d2 signals. The values of the above five features are very different in normal
and abnormal states. Based on these differences, we can determine whether the current
status is abnormal. The comparison results are shown in Figure 4. To visually compare
and verify, each feature is divided by its maximum value in the process of drawing, to
normalize the feature.

The comparison results show that, compared with the RMS1, kurtosis, and other
features, the S4 is smoother in the whole life stage, and there is a significant difference
between the normal and abnormal stages. Through this difference, the early abnormal state
of bearings can be well judged. The more stable the S4 is in the normal stage, it shows that
the vibration energy is stable at this time, and only in the normal stage can the vibration
energy be stable. Therefore, in the normal stage, the smoother the S4 is, the better. When
spalling occurs, the vibration energy will gradually increase with the size of the spalling,
which is reflected in S4 as increasing or decreasing, which is completely different from
the output value of the normal stage. If S4 is not smooth, fluctuations indicate that the
vibration is unstable at this time. Therefore, it is difficult to distinguish between normal
and fault states.

Specifically, the No. 1 bearing, RMS1 begins to show an increasing trend at the 2547th
sample. However, the RMS_d1 and RMS_d2 fluctuated greatly during the whole test
period, especially RMS_d1 could not even check its trend. In addition, the kurtosis value
has no significant fault evolution trend. In contrast, in addition to the relatively smooth
characteristics of S4, there is a significant increase before and after the failure. Compared
with RMS1 finding the fault at the 2547th sample, DIDAD finds the early fault at the 2482
sample points, about 2.6 h earlier.

In the No. 2 bearing, the RMS_d1 and RMS_d2 fluctuate greatly during the whole
test period; and RMS_d1 does not change at all. The RMS1, RMS_d2 and kurtosis values
showed relatively significant changes at about the 4700th sample point, and S4 finds an
anomaly at the 3216th sample, which is about 59 h earlier than that.
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Figure 4. Multiple feature comparison results in the IDES dataset. (a) No. 1 bearing the S4 and RMS1, 
(b) No. 1 bearing the S4 and kurtosis, (c) No. 1 bearing the S4 and RMS_d1, RMS_d2, (d) No. 2 bearing 
the S4 and RMS1, (e) No. 2 bearing the S4 and kurtosis, (f) No. 2 bearing the S4 and RMS_d1, RMS_d2, 
(g) No. 3 bearing the S4 and RMS1, (h) No. 3 bearing the S4 and kurtosis, (i) No. 3 bearing the S4 and 
RMS_d1, RMS_d2, (j) No. 4 bearing the S4 and RMS1, (k) No. 4 bearing the S4 and kurtosis, (l) No. 
4 bearing the S4 and RMS_d1, RMS_d2. 

The comparison results show that, compared with the RMS1, kurtosis, and other fea-
tures, the S4 is smoother in the whole life stage, and there is a significant difference be-
tween the normal and abnormal stages. Through this difference, the early abnormal state 
of bearings can be well judged. The more stable the S4 is in the normal stage, it shows that 
the vibration energy is stable at this time, and only in the normal stage can the vibration 
energy be stable. Therefore, in the normal stage, the smoother the S4 is, the better. When 
spalling occurs, the vibration energy will gradually increase with the size of the spalling, 
which is reflected in S4 as increasing or decreasing, which is completely different from the 
output value of the normal stage. If S4 is not smooth, fluctuations indicate that the vibra-
tion is unstable at this time. Therefore, it is difficult to distinguish between normal and 
fault states. 

Figure 4. Multiple feature comparison results in the IDES dataset. (a) No. 1 bearing the S4 and RMS1,
(b) No. 1 bearing the S4 and kurtosis, (c) No. 1 bearing the S4 and RMS_d1, RMS_d2, (d) No. 2
bearing the S4 and RMS1, (e) No. 2 bearing the S4 and kurtosis, (f) No. 2 bearing the S4 and RMS_d1,
RMS_d2, (g) No. 3 bearing the S4 and RMS1, (h) No. 3 bearing the S4 and kurtosis, (i) No. 3 bearing
the S4 and RMS_d1, RMS_d2, (j) No. 4 bearing the S4 and RMS1, (k) No. 4 bearing the S4 and
kurtosis, (l) No. 4 bearing the S4 and RMS_d1, RMS_d2.
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The No. 3 bearing has a small fluctuation in both RMS1 and kurtosis values. However,
compared with S4, these two features only show an increasing trend in the late fault period.
The RMS_d1 and RMS_d2 can identify the bearing anomaly at the 551th sample. However,
the S4 is relatively more stable under the normal stage, and has a significant growth trend
in the abnormal stage. The anomaly can be identified at the 539th sample about 0.5 h earlier.

RMS1, RMS_d1, RMS_d2 and the kurtosis value of the No. 4 bearing have no signifi-
cant trend, which cannot directly reflect the fault state of the bearing. On the contrary, S4
shows a relatively more stable growth law. A spike occurred at point 1227, indicating an
early bearing failure at this time.

Generally speaking, the value of the feature proposed in this paper is very stable
under normal conditions, which is around zero, while the value of the abnormal state
has particularly significant fluctuation, and the value is large. The results show that the
features extracted by DIDAD can clearly distinguish the normal and abnormal states, are
more sensitive than the RMS and kurtosis, and can identify the early fault earlier and
more clearly.

3.3. IMS Bearing Data Sets

To illustrate the versatility of this method and its advantages over traditional vibration
features, we use the IMS data set for further verification. The IMS rolling bearing type is
Rexnord ZA-2115 (Rexnord, Milwaukee, WI, USA). The experimental system is shown
in Figure 5. The speed is constant at 2000 rpm, the sampling frequency is 20,480 Hz, the
sampling points of each sample are 20,480, and the sampling interval is 10 min. The No.3
bearing in the test is used for AD test and verification. A total of 984 samples were collected
during the bearing’s lifetime. According to the literature [19], the outer ring spalling fault
occurred at the 533rd sample of this bearing. Therefore, in the process of AD, the first
300 samples are taken as the training set, and all the sample data are taken as the test set.
In the test process, the larger AUC values calculated by d1 and d2 signals are taken as the
AUC values. The test results are shown in Table 4.
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Table 4. Test Results on the IMS Dataset.

Signal DIDAD DSVDD ANOGAN OC-NN

d1
533

534 533 533
d2 535 542 535

AUC 100.0 99.9 100.0 100.0

The comparison results in Table 4 show that a DIDAD can accurately realize the early
fault warning of bearings, and the warning accuracy can reach 100.0%. The accuracy
of DSVDD, ANOGAN, and OC-NN are 99.9%, 100.0%, and 100.0%, respectively. There-
fore, it is further proven that DIDAD can effectively realize the early fault warning of
rolling bearings.
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To further prove the superiority of the DIDAD, S4, RMS1, kurtosis, RMS_d1, and
RMS_d2 are also selected for comparison verification. The comparison results are shown in
Figure 6.
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kurtosis, (c) The S4 and RMS_d1, RMS_d2. 
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kurtosis, (c) The S4 and RMS_d1, RMS_d2.

The results show that S4, RMS1, kurtosis, RMS_d1, and RMS_d2 are stable before the
failure (533th sample). However, after the failure, the values of RMS1, kurtosis, RMS_d1
and RMS_d2 increase slowly, while S4 is steeper and the growth trend is more significant.
Therefore, it can be seen intuitively that the features extracted by DIDAD are relatively
more sensitive to normal and abnormal states, and the abnormal states of bearings can be
identified earlier and clearer through it.

4. Discussion

The purpose of this paper is to propose a new fault detection method for rolling
bearings. Starting from the data input of different frequency bands, we adopted a double-
input anomaly detection method to verify the model on the rolling bearing life data set to
demonstrate the effectiveness of the proposed method.

Compared with traditional methods, our proposed method has more advantages in
anomaly detection, as shown in Tables 2 and 3. We find that the trend of fault evolution of
rolling bearings can be automatically extracted by using the double-input method, which
is the same as the description of the trend of fault evolution of rolling bearings in the last
section of the first section. There is little difference between a common IMS data set and
traditional RMS and other feature values. However, in our experiments, the proposed
method shows strong feature extraction capability. Compared with traditional eigenvalues
such as RMS, the features extracted by this method have a more significant change trend.

In the future, it is still necessary to further verify the loss function and model structure
of the model. The data of different frequency bands can be extracted directly from the
spectrum as input, rather than the data obtained through the wavelet decomposition.

Finally, the proposed method can be further verified in practical work to verify its
practicability in practical engineering problems.

5. Conclusions

A Dual-Input Deep Anomaly Detection (DIDAD) method is proposed in this paper.
The loss function and structure of this method are introduced in detail. The whole life cycle
tests of four rolling bearings are used for verification. The results show that compared with
the traditional features such as RMS and kurtosis, the features obtained in DIDAD are more
stable, and the differences between normal and abnormal stages are larger, which can be
used to identify the early faults of rolling bearings more easily.
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