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Abstract: Various types of displacement sensors, which measure position changes of object, have
been developed depending on the type and shape of the object under measurement, measurement
range of the amount of displacement, required accuracy, and application. We are developing a new
type of displacement sensor that is image-based, capable of measuring changes in 6DOF (3D position
and orientation) of an object simultaneously, and is compact and low-cost. This displacement sensor
measures the 6DOF of an object using images obtained by a monocular vision system. To confirm the
usefulness of the proposed method, experimental measurements were conducted using a simple and
inexpensive optical system. In this experiment, we were able to accurately measure changes of about
0.25 mm in displacement and 0.1 deg in inclination of the object at a distance of a few centimeters,
and thus confirming the usefulness of the proposed method.

Keywords: displacement sensor; 6DOF; monocular vision system

1. Introduction

Displacement sensors that measure changes in the position of an object are widely
used in various fields, such as positioning of machine tools and semiconductor devices [1],
vibration control of large structures [2], disaster prevention [3], structural health monitoring,
etc. Various types of sensors have been developed according to the type and condition
of the object under measurement, required range and accuracy of measurement, and
response speed.

The methods of displacement sensors can be broadly classified into two types: contact
and non-contact.

The contact type is that a sense terminal is in contact with the object. This type includes
electric micrometers, which convert minute displacement of the terminal into an electrical
quantity for measurement, and linear scales (also called linear encoders), which use light or
magnetism to read a scale (scale position) on a straight line.

Contact sensors have the advantages of easy installation, high accuracy, and almost no
influence from external disturbances, while they have the disadvantages of being limited
to rigid objects, sometimes damaging objects, having a narrow measurement range, and
being unsuitable for dynamic measurement while moving at high speed.

The non-contact type uses magnetism or lasers to measure without touching the object.
This type includes optical sensors based on triangulation, linear encoders that optically
or magnetically detect the displacement of a scale attached to an object, and laser length
measuring machines based on Michelson-type interferometers.

Non-contact sensors have the advantages of not damaging objects, dynamic mea-
surement, and a wide measurement range, but they also have the disadvantages of being
affected by external disturbances, being restricted by the environment in which they are
used, and requiring precision in installation and handling.

Most displacement sensors measure the distance in z-axis direction (out-of-plane
displacement) based on the assumption that the object’s surface is directly facing the sensor,
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as shown in Figure 1a. On the other hand, sensors that can also measure displacement
in the x-y plane of the object (in-plane displacement), as shown in Figure 1b, are almost
exclusively image-based systems, as described below.

(a) (b)

Figure 1. (a) Displacement in the direction of z-axis, and (b) 2D displacement in x-y plane.

Information on the inclination of the object is also important, for example, in the
measurement of slopes for the purpose of preventing landslides [4] and in the measurement
of structures in structural health monitoring. As shown in Figure 2a, the inclination of an
object is expressed in two angles: direction and degree. One method for estimating these
angles is to calculate them from the displacement of three points forming a triangle on the
surface of the object, but this method requires multiple sensors in case using contact-type
displacement sensors.

(a) (b)

Figure 2. (a) Inclination of the object surface due to rotation around x-axis. The direction of the
rotation axis is also one of the degrees of freedom. (b) In-plane rotation.

When the displacement of an object is generalized to a 3D position and orientation,
it is expressed in terms of six parameters: the amount of parallel displacement (position
parameter), which is represented by the three components x, y, and z, and three angles
(orientation parameter), which are the direction and degree of inclination, and rotation
in the plane. They are called 6DOF parameters for short. There are few contact-type
sensors that can measure 6DOF [5]. Most sensors that can measure 6DOF are image-based
non-contact sensors [6].

The concept of image-based displacement sensor is shown in Figure 3. A pattern of
known shape and precise dimension is placed on the target plane, and its image is captured
by an image sensor (small camera) to measure the distance to the target plane (Method 1).
Instead of setting a known pattern, feature points are extracted from the texture on the
target plane, and the change of distance is estimated from the change in image at two
different times (Method 2). This paper describes detailed algorithms for Method 1 and
Method 2.

Image-based methods for measuring the 6DOF of an object can be further divided into
two main categories, depending on whether the imaging system used is stereo vision or
monocular vision.
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Figure 3. Conceptual diagram of an image-based displacement sensor. For example, it is installed in
the gap between two structures and monitor changes in the distance between them. An image sensor
is fixed on one side (fixed plane), and an image of the other side (object plane) is acquired to measure
the displacement.

In the method using stereo vision, the object is imaged by two cameras and the 6DOF
is estimated based on the principle of binocular stereo vision [7].

The method using monocular vision, it estimates the position and the orientation
of object from its images captured by a single camera [8–10]. In [8], a sampling moiré
method is used to measure the displacement in the z-direction with 30 µm error for 20 cm
distance, but it assumes that the displacement in the x-y direction is negligibly small. In [9],
the displacement is estimated with an error of about 0.4 mm for a target with a distance
of 1000 mm. However, the results of the posture measurements are not shown. In [10],
6DOF measurements were made on a ring-shaped object with a radius of 80 mm, with a
displacement error of 0.05 mm and an angular error of 0.004 rad (0.23 deg) estimated at a
distance of 40–50 cm. These studies evaluated errors in a few measurements and did not
examine whether linearity was valid across the measurement range.

Our final goal is to develop a new compact and low-cost 6DOF displacement sensor.
Image-based methods are the most promising for measuring 6DOF, and they also have the
advantage of being non-contact. To meet the requirements of compactness and low cost, a
monocular vision system with only one fixed camera is advantageous.

The measurement range and accuracy of our sensor are targeted to be equivalent to
those of conventional contact-type displacement sensors, assuming that the new sensor
may replace conventional sensors. Specifically, assuming a distance to the object of a few
centimeters to a few dozen centimeters, the final target is a measurement accuracy of 2.5 µm
error for a displacement measurement range of 5 mm, and an error of about 0.001 deg error
for a tilt measurement range of ±1 deg. These measurement accuracy targets are high and
challenging compared to previous studies, although the distances are closer.

When measuring displacement using images, displacement in the z-direction is in
principle detected from the change in magnification of the object projected onto the image
sensor. For an image point formed at a distance x from the optical axis on the image sensor,
suppose that x changes by δx when the distance z changes slightly by δz. In this case,
xz/ f = (x + δx)(z− δz)/ f holds where f is the focal length, from which δz ' z(δx/x)
is obtained [11].

Based on the target specification, assuming that z = 20 cm, δz = 2.5 µm, and δx = 1 pixel
is the limit of detection, then x = 80,000 pixels, indicating that an image sensor with very
high resolution is required. Therefore, we first used an affordable image sensor to confirm
the principle of the proposed method. 3280 × 2464 pixel image sensor with x = 1000 pixel
and z = 25 cm would give δz = 0.25 mm. Since the accuracy in the z-direction is 100 times
greater than the final target, we set 0.1 deg as the target for this study, assuming that the
accuracy in the angle measurement is similar.

This paper first explains the principle of measuring the 6DOF of an object using images
obtained with a monocular vision system. To experimentally confirm the usefulness of the
proposed method, we first conducted a experimental measurement using a simple and
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inexpensive optical system. In this experiment, although the final target measurement
accuracy was not reached due to the limitation of the optical system, changes of about
0.25 mm in displacement and 0.1 deg in inclination could be measured with high accuracy,
which we regard confirming the usefulness of the proposed method.

2. Related Works

The method of measuring the 6DOF of a target from an image has been the subject
of much research in the field of computer vision because of its wide range of applications,
including robot manipulation, SLAM (Simultaneous Localization and Mapping), and auto-
mated vehicle assistance. In these studies, the measurement items that are of importance
depend on the application. For example, in robot manipulation, posture and accuracy in
the X and Y directions are required to grasp the object, while the Z direction is relatively
unimportant [12].

In contrast, obstacle detection in automatic driving does not require accuracy in
orientation, but does require accuracy in the Z direction, which fluctuates greatly [13].

In [11], an error of 0.02 mm in the Z direction and an attitude angle of 15” at a distance
of 10 m are achieved by supplementing the accuracy in the Z direction with a range finder,
but the cost of the sensor increases.

In many studies, posture is estimated based on feature points extracted from images
of the target object; in the case of 3D objects, the feature points that can be extracted vary
depending on the viewing direction, and when multiple objects are present, feature point
occlusion may occur. When extracting feature points from an image, anomalous points
are often extracted. Therefore, assuming that a 3D shape model of the object is given in
advance, the state-of-the-art issue is which of the extracted feature points should be selected
and mapped to the model, and many methods using RANSAC [14] and deep learning have
been developed.

Methods using deep learning require a large amount of training data, so methods
using synthesized 3D data are also being studied [15]. For these method, changes in
position and orientation between two points in time are learned from point cloud data.
In [16], point clouds are extracted and mapped to obtain an accuracy of 0.816 degrees of
rotation and 0.033 (relative value) of translation. Additionally, Ref. [17] also evaluates
measurement accuracy using synthesized images and shows that it is possible to measure
with an angular error of about 0.05 degrees. However, this was not evaluated using real
images.

In contrast, in this study, the measurement target is always a single object, a surface of
the object that is almost directly opposite to the sensor, and there is no problem of obscuring
feature points or anomalous data. Correspondence of feature points extracted from images
is straightforward because displacement and posture changes are slight. On the other
hand, to the best of the author’s knowledge, no study has confirmed the accuracy within
the measurement range for each of the 6DOF quantities from the images. Therefore, the
contribution of this study is as follows.
• The algorithm for estimating the 6DOF of a target based on a point cloud extracted from

an image is presented in detail.
• The algorithm is based on solving a nonlinear optimization problem, and we show how

to solve it using the L-BFGS method.
• The algorithm is applied to real images to measure the 6DOF, and the accuracy of each

measurement quantity is examined separately.
• We will establish a method to measure 6DOF simultaneously and show the feasibility of

a new 6DOF sensor using images.

3. Measuring Principle

First, the perspective projection transformation is described as an imaging model used
in the proposed method. In this model, the object under measurement is represented as a
point cloud, and the model shows the geometric relationship among the 3D coordinates of
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the relative positions of the point cloud, the 6DOF of the object, and the image coordinates
of the point cloud in the captured image. Then, the algorithm for estimating the 6DOF of
the object from the image coordinates of the point cloud will be presented.

In this study, we propose two measurement methods using images obtained by a
monocular vision system.

In the first method (we call it Method 1), a pattern with a known arrangement of
point clouds (a grid pattern is used in the experiment described below) is attached to an
object, a group of points is extracted as feature points from a single image captured by a
camera, then the 6DOF is estimated from the image coordinates. This method is known
as a Perspective-n-Point problem in computer vision, and various solutions have been
studied [18]. Most of these studies are based on parallel projection transform, which is linear
and relatively easy to analyze as the imaging model. However, using this model makes it
essentially impossible to obtain the distance to the object along the z-axis. Therefore, we use
perspective projection transform, in which the problem leads to a multivariate nonlinear
optimization and estimate numerically the 6DOF as the optimal solution of the problem.

In the second method (Method 2), in addition to 6DOF, the 3D coordinates of the
relative arrangement of the point cloud of the object under measurement is also unknown
to estimate. Each set of feature points corresponding to the point cloud is extracted from
each of the images captured by a fixed camera at different time. After mapping the
feature points corresponding between two images, the change in 6DOF between the two
images will be estimated. This method is essentially equivalent to SfM (Structure from
Motion) in computer vision [19], which simultaneously estimates the 6DOF of the camera
and the 3D coordinates of the point cloud from multiple viewpoint images. To solve
this problem, Tomasi–Kanade factorization method [20] and its extension to perspective
projection transformation [21] are known. However, the main objective of SfM is to obtain
the 3D shape of the object and does not focus on the measurement accuracy of 6DOF, while
the main objective of our study is to obtain the 3DOF of the object with high accuracy, and
the estimation algorithm has been improved.

3.1. Perspective Projection Transformation

As shown in Figure 4, set up an X-Y-Z axis (world coordinate system) with the center
of the camera lens as the origin O and the optical axis as the Z axis (positive in the direction
of the object being imaged). The X and Y axes should coincide with the column and row
directions of the camera image, respectively. Note that this coordinate system is right-
handed. Denote the focal length OC of the camera as f . Let (u, v) denote the position of
a point on the image captured by the camera (image coordinates: unit is pixel) and a× a
denote the pixel pitch. A point at position (X, Y, Z) in world coordinates is projected to
position (u, v) in image coordinates. In the perspective projection model, the relationship
between world coordinates and image coordinates is expressed as{

a(u− cu) = f X/Z
a(v− cv) = f Y/Z

(1)

where (cu, cv) is the image coordinates of the point C (usually the center of the image) where
the optical axis passes through the camera image. The above equation can be rewritten as{

u = κX/Z + cu

v = κY/Z + cv
(2)

where κ = f /a.



Sensors 2023, 23, 851 6 of 19

Y

row

O

C

u
col

X

Z

p

r

v

Figure 4. Perspective projection transformation.

Normally, internal parameters κ, cu, cv of camera need to be experimentally determined
using camera calibration. Currently, we simply used the catalog values of the camera used
in the experiment (Raspberry Pi Camera Module V2 (Raspberry Pi Foundation, Cambridge,
UK), Sony IMX219 image sensor (Sony Corporation, Tokyo, Japan), 3280× 2464 pixels)
with a = 1.12 µm, f = 3.04 mm, κ = 3.04/1.12× 103, and (cu, cv) = (1647.5, 1255.5) (center
of image).

A Cartesian coordinate system fixed to the object under measurement is called an
object coordinate system. The basis vectors in the X-, Y-, and Z-axis of the object system
are written as XB, Y B, ZB. A position coordinate of a certain point is expressed as rB in the
object system and r I in the world coordinate (Figure 5). The relationship between the two
coordinates is expressed by the following equation.

r I = (XBY BZB)rB + r I
0 (3)

where r I
0 = (cx, cy, cz) are the world coordinates of the object system origin, representing

the translation of the object system. Additionally, (XBY BZB) is a rotation matrix with XB,
Y B, and ZB as column vectors, representing the rotation of the object system. This rotation
matrix is obtained by using the rotation matrix Rz(ψ) of the angle ψ around the Z axis, the
rotation matrix Ry(θ) of the angle θ around the Y axis, and the rotation matrix Rx(φ) of the
angle φ around the X axis, and can be written as (rotated in the order of Z-axis, Y-axis, and
X-axis)

(XBY BZB) = Rz(ψ)Ry(θ)Rx(φ) (4)

where

Rx(φ) =

1 0 0
0 cos φ − sin φ
0 sin φ cos φ

, (5)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

, (6)

Rz(ψ) =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

. (7)
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Figure 5. Rotation and translation of coordinate systems.

3.2. 6DOF Estimation Algorithm
3.2.1. Method 1: In Case of Imaging Pattern with Known Geometric Shape

The position coordinate of the point cloud in the object system is known, and ex-
pressed as ri = (xi, yi, zi)

T (i = 1, 2, · · · , m), where m is the number of points and the
superscript T represents the transpose of the matrix/vector. Let pi = (ui, vi)

T be the
measured coordinates of the projection of point cloud onto the image. The coordinates
p̂i = (ûi, v̂i)

T on the image can be computed by the coordinate system rotation, translation
and perspective projection model, and determined by φ, θ, ψ, cx, cy, cz, ri. Thus, it can be
expressed in function p as p̂i = p(φ, θ, ψ, cx, cy, cz; ri). The concrete computation procedure
for the function p is expressed as follows:Xi

Yi
Zi

 = Rz(ψ)Ry(θ)Rx(φ)

xi
yi
zi

+

cx
cy
cz

, (8)

(
ûi
v̂i

)
=

κ

Zi

(
Xi
Yi

)
+

(
cu
cv

)
. (9)

Since the number of unknowns is six while the number of equations is 2m, it may be
solved in case m ≥ 3. In Method 1, the 3D coordinates ri of the point cloud and the image
coordinates pi is given. Let ei residual

ei = p̂i − pi = p(φ, θ, ψ, cx, cy, cz; ri)− pi (10)

and L the square mean of the residuals

L =
1

2m

m

∑
i=1
||ei||2. (11)

Then the parameters phi, θ, ψ, cx, cy, and cz are estimated as the optimal solution
that minimizes L. Since this minimization problem is nonlinear, iterative calculations
are required to find the solution. Here, we use the limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) method, which is a type of quasi-Newton method and can be
used for large-scale problems with high computational speed [22].
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The calculation of the L-BFGS method requires computation of gradients of L, but not
a Jacobian matrix. The gradient can be derived as follows. First, the partial derivative by φ
is obtained by partial differentiation of Equation (11) as follows.

∂L
∂φ

=
1
m

m

∑
i=1

eT
i

∂ei
∂φ

(12)

∂ei
∂φ

=
∂p̂i
∂φ

= − κ

Zi
2

∂Zi
∂φ

(
Xi
Yi

)
+

κ

Zi

∂

∂φ

(
Xi
Yi

)
(13)

∂

∂φ

Xi
Yi
Zi

 = Rz(ψ)Ry(θ)
∂Rx(φ)

∂φ

xi
yi
zi

 (14)

The same calculation is performed for partial derivation by θ and ψ. The partial
derivatives by cx are as follows.

∂L
∂cx

=
1
m

m

∑
i=1

eT
i

∂ei
∂cx

(15)

∂ei
∂cx

=
∂p̂i
∂cx

= − κ

Zi
2

∂Zi
∂cx

(
Xi
Yi

)
+

κ

Zi

∂

∂cx

(
Xi
Yi

)
(16)

∂

∂cx

Xi
Yi
Zi

 =

1
0
0

 (17)

and thus the following equation is obtained.

∂p̂i
∂cx

=
κ

Zi

(
1
0

)
(18)

Similarly for cy, cz, the following equations are obtained.

∂p̂i
∂cy

=
κ

Zi

(
0
1

)
,

∂p̂i
∂cz

= − κ

Zi
2

(
Xi
Yi

)
(19)

3.2.2. Method 2: In Case of Imaging Pattern with Unknown Geometry

Coordinates of the object system ri (i = 1, 2, · · · , m) are unknown and n images are
taken while the position and orientation of the object changes. In this case, the following
equation holds at j = 1, 2, · · · , n.Xi,j

Yi,j
Zi,j

 = Rz(ψj)Ry(θj)Rx(φj)

xi
yi
zi

+

cx,j
cy,j
cz,j

 (20)

(
ûi,j
v̂i,j

)
=

κ

Zi,j

(
Xi,j
Yi,j

)
+

(
cu
cv

)
(21)

The first imaging (j = 1) can be treated as the reference, in which the object system
equals the reference system. Thus, φ1, θ1, ψ1, cx,1, cy,1, cz,1 are all zero and known.

Denoting the number of unknowns as U and the number of expressions as C, we have
U = 3m + 6(n− 1), C = 2mn. In case n = 1, we have U = 3m, C = 2m, which cannot be
solved since U > C for any m. However, for n = 2, U = 3m + 6, C = 4m, so U ≤ C for
m ≥ 6 and may be solved.
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As in Method 1, consider the problem of minimizing the mean of squares L of the
residuals ei,j = p̂i,j − pi,j

L =
1

2mn

m

∑
i=1

n

∑
j=1
||ei,j||2 (22)

The gradient of L can be computed as follows (only the index j is included). First, the
partial derivative by φj is as follows.

∂L
∂φj

=
1

mn

m

∑
i=1

eT
i,j

∂ei,j

∂φj
(j = 2, . . . , n) (23)

∂ei,j

∂φj
=

∂p̂i,j

∂φj
= − κ

Zi,j
2

∂Zi,j

∂φj

(
Xi,j
Yi,j

)
+

κ

Zi,j

∂

∂φj

(
Xi,j
Yi,j

)
(24)

∂

∂φj

Xi,j
Yi,j
Zi,j

 = Rz(ψj)Ry(θj)
∂Rx(φj)

∂φj

xi
yi
zi

 (25)

The same calculation is performed for partial derivation by θj, ψj. In addition, the
partial derivative by cx,j is obtained as follows.

∂L
∂cx,j

=
1

mn

m

∑
i=1

eT
i,j

∂ei,j

∂cx,j
(26)

∂ei,j

∂cx,j
=

∂p̂i,j

∂cx,j
= − κ

Zi,j
2

∂Zi,j

∂cx,j

(
Xi,j
Yi,j

)
+

κ

Zi,j

∂

∂cx,j

(
Xi,j
Yi,j

)
(27)

∂

∂cx,j

Xi,j
Yi,j
Zi,j

 =

1
0
0

 (28)

From the last equation,
∂ei,j

∂cx,j
=

κ

Zi,j

(
1
0

)
(29)

The same calculation is performed for partial derivation of cy,j, cz,j, and the following
equation is obtained.

∂ei,j

∂cy,j
=

κ

Zi,j

(
0
1

)
,

∂ei,j

∂cz,j
= − κ

Zi,j
2

(
Xi,j
Yi,j

)
(30)

In Method 2, partial differentiation with respect to xi is also required, using the fact
that the only terms involving xi are p̂i,j.

∂L
∂xi

=
n

∑
j=1

eT
i,j

∂ei,j

∂xi
(31)

∂ei,j

∂xi
=

∂p̂i,j

∂xi
= − κ

Zi,j
2

∂Zi,j

∂xi

(
Xi,j
Yi,j

)
+

κ

Zi,j

∂

∂xi

(
Xi,j
Yi,j

)
(32)

∂

∂xi

Xi,j
Yi,j
Zi,j

 = Rz(ψj)Ry(θj)Rx(φj)

1
0
0

 (33)

3.2.3. Improvement of Method 2

In the first stage of Method 2, the origin of the world coordinate system is used as the
center point of the posture change. Therefore, if the posture changes slightly, the angular
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change when centered at the origin is minuscule, making estimation difficult. Additionally,
the convergence of the iterative calculation becomes slow.

To solve this problem, we modified Method 2 so that the origin of the posture change
is the center of gravity of the point cloud g.

g =
1
m

m

∑
i=1

ri (34)Xi,j
Yi,j
Zi,j

 = Rz(ψj)Ry(θj)Rx(φj)(ri − g) + g +

cx,j
cy,j
cz,j

 (35)

Note that the calculation of the center of gravity also includes unknowns. The calcula-
tion of the gradient in Method 2 changes only in the following parts.

∂

∂φj

Xi,j
Yi,j
Zi,j

 = Rz(ψj)Ry(θj)
∂Rx(φj)

∂φj
(ri − g) (36)

∂

∂xi

Xi,j
Yi,j
Zi,j

 = Rz(ψj)Ry(θj)Rx(φj)

1− 1/m
0
0

+

1/m
0
0

 (37)

4. Experiment

The proposed methods utilize images to measure the displacement, and orientation
of the object. To obtain these information from images, we search for feature points of the
object in the image and use their image coordinates.

4.1. Experimental Equipment

Figure 6 shows the appearance of the experimental setup. A grid pattern (CBBG01-
150T manufactured by Shibuya Optical, Wako-shi, Japan) was used as the object under
measurement. This is a quartz glass plate with a square grid of 30 × 30 squares with a grid
spacing of 5 mm.

In this experiment, Raspberry Pi Camera Module V2 was used. A z-axis stage (Chuo
Precision Industrial LV-6042-8; Tokyo, Japan) and a tilt stage (TS-613) were used to capture
images by applying minute and precise displacement and tilt to the object. The resolution
of the setting is 0.22 mm on a single scale for the z-axis stage and approximately 1°1′22′′ on
a single knob turn for the tilt stage.

The grid patter was placed at a distance of approximately 70 mm from the camera,
almost directly opposite each other. Precise displacements of −2, −1, −0.5, −0.25, −0.1,
+0.1, +0.25, +0.5, +1, +2 mm in the Z axis direction was applied by using the z-axis stage.
For each image, the grid points of the grid pattern were detected, and the displacement
was estimated by using Method 1 and 2.

Among the detected feature points in the obtained images, 9 × 9 grid points near the
center of the image were used for estimation, to avoid image distortion at the edges of
the image.
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Figure 6. Appearance of the experimental setup. An optical stage is fixed on an optical surface
plate, and a glass grid pattern placed on the optical stage is used as the object under measurement.
The camera is fixed above the grid pattern. Images are acquired while the grid pattern is precisely
displaced by the optical stage.

4.2. Feature Extraction

Harris corner detection in OpenCV (version 2.4.9.1) was used to detect grid points.
The principle of the algorithm is briefly described below. To detect corners, the first step is
to find the difference in pixel values for a given pixel position (u, v) shift in all directions.
This can be expressed by the following equation.

E(u, v) = ∑
x,y

w(x, y)[I(x + u, y + v)− I(x, y)]2 (38)

where w(x, y) is a window function representing the weight on each pixel.
For corner detection, the coordinates (u, v) that maximize E(u, v) are obtained. Specifi-

cally, maximize I(x, y) in Equation (38). The following equation is derived from Equation (38).

E(u, v) ' [uv]M
[

u
v

]
(39)

where M is a matrix defined as follows.

M = ∑
x,y

w(x, y)
[

Ix Ix Ix Iy
Ix Iy Iy Iy

]
(40)

In addition, Ix and Iy represent the gradient in the x and y directions, respectively, and
are computed with Sobel filters using the following weighting factors.

Ix :

−1 0 1
−2 0 2
−1 0 1

, Iy :

−1 −2 −1
0 0 0
1 2 1

 (41)

Note that these are the weight coefficients for an 8-neighborhood case. Sobel filters
with 11× 11 size weight coefficients were used in this study.

After the above process, the score R defined by the following equation is calculated to
determine whether the corners are included in the search window.

R = det(M)− k(trace(M))2 (42)
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where det(M) = λ1λ2 and trace(M) = λ1 + λ2, λ1 and λ2 are eigenvalues of M.
These eigenvalues determine whether the region of interest is a corner, an edge, or a

flat region; if R is large, i.e., both λ1 and λ2 are large, the region is considered a corner. In
this study, taking into account the performance of the optical system, image information
other than the grid pattern due to the shooting environment, and the line thickness of the
grid pattern, the arguments of the OpenCV cornerHarris function were set to blocksize = 10,
ksize = 11, and k = 0.08. Here, blocksize is the size of the adjacent regions considered in
corner detection, ksize is the kernel size of the gradient operator given to the Sobel function
that calculates the gradients Ix and Iy, and k is the thresholds for corner detection. Since the
size of the adjacent region considered for corner detection is set to 10, multiple points per
grid point are detected as corners when detecting grid points. Therefore, in this study, the
average pixel coordinates of a group of pixels close to a grid point are calculated, rounded
to the nearest whole number, and used as the pixel coordinates of the grid point.

4.3. Experimental Results

Figures 7 and 8 show the results of distance estimation by Methods 1 and 2, respectively.
The horizontal and vertical axis represent the true and the estimated displacement along the
z-axis, respectively. Straight lines were determined by applying the least-squares method
to the data.

Figure 7. Result of estimation for z-axis displacement by method 1.
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Figure 8. Result of estimation for z-axis displacement by method 2.

For Method 1, the horizontal axis represents the displacement in the z-axis from
the reference position, whereas the vertical axis directly represents the distance from the
camera to the grid pattern. Although it is difficult to determine the true value, the estimated
distances show reasonable values.

For Method 2, both the horizontal and vertical axes represent the displacement in the
z-axis direction between the two images acquired, thus the origin indicates that both the
true and estimated values are undisplaced. The fitted line should pass through the origin,
and indeed it does.

For both Methods 1 and 2, the data fit the straight line well and the slope is close to 1,
indicating that the estimation is accurate.

Next, Figures 9 and 10 show the results of the angle estimation for each methods when
a change in inclination is given. In the figures, ’theta’ indicates the angle of inclination θ.

One possible cause of this is the effect of geometric distortion of the imaging system.
When tilted, the grid pattern image is deformed from the orthogonal grid, and the degree of
deformation represents the tilt. Therefore, the effect of image distortion is likely to appear.
If image distortion is reduced by camera calibration, the slope of the fitted line will also
approach 1.

Figures 11 and 12 show the change in the estimated values of the iterations for Method
1 and 2, respectively. Each of the plots represents the results for the different displacements
±1.0 and 0.0 mm, respectively.

Method 1 converges quickly to a constant value after about 30 iterations because it
uses accurate information on the geometry of the object being measured. On the other hand,
Method 2 does not use shape information, thus convergence is slow, requiring about 600
iterations. In any case, it can be seen that the convergence to a constant value is achieved
after repeated iterations.
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Figure 9. Result of tilt angle estimation by Method 1.

Figure 10. Result of tilt angle estimation by Method 2.
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Figure 11. Convergence of iterative calculation of z-axis displacement in Method 1.

Figure 12. Convergence of iterative calculation of z-axis displacement in Method 2.

Table 1 shows the summary of the experimental results obtained by fitting the straight
line y = ax + b to the true value x and the measured value y, measured with the proposed
methods by varying x, y, z, ψ and θ among 6DOF. For φ, experiments are in progress. The
closer the slope a of the straight line is to 1 and the closer the coefficient of determination r2

is to 1, the higher the measurement accuracy. For Method 2, the closer the intercept b is to 0,
the higher the measurement accuracy.

The table of experimental results shows that the coefficients of determination r2 are all
close to 1, indicating that a linear relationship is well-established between the estimated
and true values. For Method 1, the slope of the line a is also close to 1. In contrast, the slope
of Method 2 is slightly different from 1. The reason is considered to be that Method 1 uses
a precise shape pattern of the object to be measured, whereas Method 2 does not, and thus
the distortion of the imaging system has a significant effect on the results.
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Comparing the maximum error of the experimental results with the targeted values
(0.25 mm for displacement and 0.1 deg for angle), the target is achieved except for the last
item (measurement of tilt angle θ using Method 2). Additionally, the measurement of the
tilt angle by Method 2 is only slightly worse than the target accuracy.

Table 1. Summary of experimental results: The x-, y-, z-direction, rotation angle ψ, and tilt angle θ

were each varied by the optical stage, and a straight line y = ax + b was fitted to the value y estimated
from the image by the proposed methods for the actual amount of change x. r2 represents the
coefficient of determination. In addition, Each straight line was used as a test line, and x̂ = (y− b)/a
was calculated from the estimated value y, then the absolute maximum value of |x̂− x|was calculated
as the maximum absolute error (max.error).

Measurement Item Method Slope a Intercept b r2 Max. Error

displacement x 1 1.00 4.23 1.00 0.00550 [mm]
2 1.14 −0.0229 0.999 0.106 [mm]

displacement y 1 1.06 −11.0 1.00 0.0480 [mm]
2 1.08 0.0297 1.00 0.0289 [mm]

displacement z 1 0.974 53.5 1.00 0.0117 [mm]
2 1.27 0.0317 1.00 0.0680 [mm]

rotation angle ψ 1 0.968 0.201 1.00 0.0235 [deg]
2 0.981 0.00183 1.00 0.0264 [deg]

tilt angle θ 1 0.931 2.18 0.999 0.0696 [deg]
2 1.19 0.0703 0.998 0.121 [deg]

Since no camera calibration has been applied in the above experiments, the re-
projection errors are not very small due to the effect of lens distortion in the acquired
images. Therefore, it is expected that camera calibration will improve the measurement
accuracy.

To confirm this expectation, we performed a camera calibration and compared the
measurement accuracy before and after calibration. OpenCV was used for camera calibra-
tion, and a checkerboard pattern was used instead of a grid pattern as the target, which
was then used as the object under measurement.

Figures 13 and 14 show the results. After camera calibration, the slope a was close to
1, confirming the effectiveness of the calibration. The maximum errors were 0.0693 mm
and 0.0905 mm, respectively. In both cases, the targets were achieved. The reason that the
maximum error became smaller even without camera calibration is considered to be that
the positional accuracy of feature point extraction becomes higher when the measurement
target is changed to a checkerboard pattern.
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Figure 13. Result of estimation for tilt angle θ by method 2 without camera calibration.

Figure 14. Result of estimation for tilt angle θ by method 2 with camera calibration.

5. Discussion

The results of the displacement along the z-axis were close to the actual displacement
and agree with the estimated distance. In addition, displacements as small as 0.1 mm could
be measured.

For angle measurement, the results are a little less accurate than the change in the z-
axis. This is due to the fact that optical distortion correction and optical axis alignment were
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not performed. Although the experimental results are still limited to a few measurement
items, they show that camera calibration improves measurement accuracy, especially the
slope of the linear relationship between the true value and the estimated value approaches
well to 1. In terms of accuracy, the results of this experiment are better than the initially
set goal.

6. Conclusions

In this study, we proposed an algorithm to estimate the minute displacement and incli-
nation of an object using images, and developed a prototype system to measure the minute
displacement. As a result, highly accurate results were obtained for the measurement of
displacement. The measurement experiment after camera calibration confirmed that the
initial target values of measurement error of 0.25 mm or less for displacement and 0.1 deg
or less for angle were achieved for the 6DOF measurement items except for the angle φ.

Experiments are currently underway to confirm the measurement accuracy of the
other parameters of 6DOF.

Further, designing a dedicated optical system for higher resolution and accuracy,
implementing as a sensor device, and conducting experimental measurement under various
type of objects and environments are subjects for future study.
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