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Abstract: In the field of intelligent vehicle technology, there is a high dependence on images captured
under challenging conditions to develop robust perception algorithms. However, acquiring these
images can be both time-consuming and dangerous. To address this issue, unpaired image-to-image
translation models offer a solution by synthesizing samples of the desired domain, thus eliminating
the reliance on ground truth supervision. However, the current methods predominantly focus on
single projections rather than multiple solutions, not to mention controlling the direction of generation,
which creates a scope for enhancement. In this study, we propose a generative adversarial network
(GAN)–based model, which incorporates both a style encoder and a content encoder, specifically
designed to extract relevant information from an image. Further, we employ a decoder to reconstruct
an image using these encoded features, while ensuring that the generated output remains within
a permissible range by applying a self-regression module to constrain the style latent space. By
modifying the hyperparameters, we can generate controllable outputs with specific style codes.
We evaluate the performance of our model by generating snow scenes on the Cityscapes and the
EuroCity Persons datasets. The results reveal the effectiveness of our proposed methodology, thereby
reinforcing the benefits of our approach in the ongoing evolution of intelligent vehicle technology.

Keywords: intelligent vehicles; snow scenes; unpaired image-to-image translation; diversity; style
latent space; Gaussian distribution

1. Introduction

Intelligent vehicles and other advanced mobile agents are engineered to navigate
through a spectrum of adverse weather conditions. This poses a formidable challenge
to perception algorithms [1]. To enhance the robustness of these algorithms, a prevalent
strategy involves augmenting the training dataset [2–4]. However, operating vehicles under
such severe conditions contravenes road safety regulations, and data acquisition, in this
case, becomes significantly time-consuming.

A viable alternative to traditional data collection is to synthesize weather effects on
existing public benchmarks [5–9]. Conventionally, this is accomplished by modeling the
impact of weather effects, such as fog, rain, and snow, as a function [10]. The derived
function is subsequently applied to images or videos, thus simulating the desired weather
conditions. This method facilitates the creation of diverse datasets, which serve as valuable
resources for training and testing various perception algorithms, encompassing object
detection, intention estimation, trajectory prediction, etc.

In light of the widespread adoption of deep learning methodologies, several re-
searchers have begun considering the use of physical synthesis datasets as sources to
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train more universally applicable convolutional neural networks (CNNs) or generative
adversarial networks (GANs) [11,12]. These datasets furnish diverse and realistic training
samples, without the need for actual data collection in perilous weather conditions. Still,
the efficacy of this approach highly depends on the accuracy of the weather effect model
and the quality of the synthesized images or videos.

A recently proposed concept involves utilizing unpaired image-to-image translation
models. This type of model is capable of learning how to map visual features from a source
domain to a target domain without one-to-one correspondence [13–15]. A prominent
example in this domain is the CycleGAN architecture [14], designed to generate images
based on GANs that are virtually indistinguishable from real photographs. The key
innovation introduced through CycleGAN is the implementation of a cycle consistency
loss. This feature encourages the mapping of an image from one domain to another
to be consistent and vice versa. Consequently, the model is able to learn a mapping
between two image collections, effectively capturing correspondences between higher-level
appearance structures.

In our previous research [16], we implemented a CycleGAN-based model to synthesize
realistic snow on driving scene images. We used the Cityscapes and EuroCity Persons
datasets as source domains, while a self-captured snow collection functioned as the target.
The image generation performance was assessed using a variety of image quality metrics.
Benefiting from semantic information, each sample was effectively transformed into con-
vincing snow scenes, while maintaining the integrity of the original image’s structure and
texture. However, the adopted method yielded a single output conditioned on the given
input image, which does not fully leverage the inherent multimodality of the mapping
between two visual domains. This limitation overlooks the potential diversity of snow
scenes that may be present.

In the present study, we present a novel framework, controllable unsupervised snow
synthesis (CUSS), devised to overcome the limitations inherent in existing snow synthesis
methodologies. The reason we focus on snow is that snow can drastically reduce visibility,
often more than rain or haze, and accumulating snow will cover the road surface and
points of interest. The novelty of this work stems from the presumption that the snow
representation can be decomposed into a texture-invariant content code and a snow-
specific style code. Further, in the middle of the training process, we explore the latent
space by a self-regression module. The module linearly interpolates the style code of the
clear domain and the snow domain. After training, we can twist the style code with a
hyperparameter that theoretically controls the size of the snow as shown in the Figure 1.
This strategy facilitates a more comprehensive capture of the full distribution of potential
outputs, marking a significant advancement within the domain. The key contributions of
our research are as follows:

• Content and style disentanglement. The CUSS model employs an architectural frame-
work comprising a content encoder and a style encoder. In order to separate the
content and style latent spaces, we introduce a supplementary content discriminator
that distinguishes the content codes of clear and snow images.

• Multimodal controllable output generation. The CUSS model allows for the generation
of multiple and diverse outputs based on a single input image through the sampling of
distinct style codes. Moreover, the incorporation of a self-regression module facilitates
the linear interpolation of the style code, thereby enabling manual adjustment of the
generated size of snow.

• Evaluations on public datasets. The model undergoes evaluation employing the
Cityscapes and EuroCity Persons datasets. Various image quality metrics, encom-
passing the traditional PSNR, SSIM, and perceptual loss VGG distance, are employed
to substantiate the effectiveness of the model. The source code will be available
on https://github.com/HantingYang/Controllable-Snow-Synthesize (accessed on
13 September 2023).

https://github.com/HantingYang/Controllable-Snow-Synthesize
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Figure 1. Examples of the output produced by the proposed snow synthesis model. In the upper
row, the dimensions of the snow are progressively enlarged, an effect accomplished through the
interpolation of style codes. Conversely, the images in the lower row are generated using randomly
sampled style codes that follow a Gaussian distribution.

2. Related Work
2.1. Weather Generation

Despite extensive research on improving visibility during inclement weather, there
has been limited attention given to incorporating artificial weather effects into existing
driving datasets. Our literature review delves into the current techniques for synthesizing
weather, particularly those leveraging deep learning. Utilizing a generative model for
weather simulation could offer a versatile instrument for generating authentic conditions
to evaluate and enhance AI-driven systems.

2.1.1. Fog and Rain

The fog generation process, as detailed in a study conducted by Christos et al. [6],
comprises two primary steps. It is initialized with the estimation of a transmission map
and atmospheric light based on a clear scene image. Following this, depth denoising and
completion techniques are implemented to enhance the accuracy of the depth map. This
refined depth map is subsequently employed to simulate fog, culminating in the generation
of synthetic fog images that closely resemble real-world foggy scenarios. Zhang et al. [17]
introduce a technique to generate haze images from clear ones, employing a network that
includes two encoders with shared feature extraction layers. The essence of their approach
lies in separating the style feature, used exclusively for haze synthesis, from the content
feature that conveys consistent semantic information. The authors control a parameter α to
synthesize multidensity haze images, with the networks learning to distinguish between
thick and thin haze.

For the rain generation, Garg and Nayar [7] propose an adaptive image-based ren-
dering technique that utilizes a database of rain streak appearances, requiring only the
positions and attributes of light sources and a rough depth map, to add photorealistic rain
to a single image or a recorded video with moving objects and sources. Venceslas et al. [18]
discuss a real-time rendering algorithm for the realistic representation of fog in animations.
The algorithm works by rendering fog for each pixel of the screen. The authors also intro-
duce the concept of equipotential functions, which allow for the creation of complex shapes
of fog.

2.1.2. Snow

Liu et al. [8] suggest a snow synthesis method that utilizes base masks representing
different snow particle sizes—small, medium, and large. The snow synthesis process
involves overlaying these base masks with images and introducing random factors such as
snow brightness and random cropping to increase variation.

Ohlsson et al. [19] present a real-time method for rendering accumulated snow, which
involves determining which regions should receive snow based on surface inclination
and exposure to the sky, and then rendering the snow convincingly at those locations.
The rendering process uses a Phong illumination model and a noise function to distort the
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surface normally, creating a realistic snow cover appearance and an illusion of snow depth
around occlusion boundaries. The exposure function is implemented using a depth buffer,
similar to shadow mapping, and the depth map is sampled multiple times to calculate
a fractional value for occlusion, creating a smooth transition between snow-covered and
non-snow-covered areas.

Alexey et al. [20] introduce an innovative approach for snow simulation through a
user-adjustable elastoplastic constitutive model paired with a hybrid material point method
(MPM). The MPM employs a consistent Cartesian grid to facilitate self-collision and fracture
automatically. Moreover, it utilizes a grid-centric semi-implicit integration scheme not
reliant on the count of Lagrangian particles. This technique adeptly simulates diverse
snow behaviors, especially the intricate dynamics of dense and wet snow, and incorporates
rendering methods for a true-to-life visual depiction of snow.

As an evaluation work, Thomas et al. [5] take multiple cutting-edge image-to -mage
(I2I) translation models for comparison and CycleGAN [14] as the baseline. The models
used include UNIT [21] and MUNIT [22]. This work attempts to generate all kinds of bad
weather images; the main focus is snow scenes. Authors believe that the identity loss that
is calculated by the Manhattan distance between input and reconstructed images plays an
essential role in the translation process. Therefore, they train the model several times and
each time specify a different weight for the loss. In addition, to make up for the shortness
of current datasets, images retrieved from the image engine Flickr are fed to their model.

Our previous work [16] presents a novel method for synthesizing realistic snow images
on driving datasets using cycle-consistent adversarial networks. We introduce a multi-
modality module that uses a segmentation map to accurately generate snow according
to different regions of an image. We also propose a deep supervision module that adds
extra side outputs to the discriminator, improving the network’s learning of discrimina-
tive features. The model is evaluated using the same loss functions as CycleGAN [14].
The evaluation results on the Cityscapes and EuroCity Persons datasets show that the
model outperforms other methods in generating realistic snow images.

From the above, generative models such as GANs are able to generate scenes under
a variety of challenging conditions and make the output convincible. Models based on
cycle consistency are able to generate images from the target domain without paired data.
However, these models can only produce one output based on one input, and the degree of
style transfer cannot be controlled. This work aims to further explore the latent space of
extracted features and make the model produce diverse results.

2.2. Unpaired Image-to-Image Translation

Image-to-image (I2I) translation focuses on learning the mapping between two do-
mains [23,24]. This involves capturing correspondences between higher-level appearance
structures. The goal is to transform an image from a source domain to a target domain
while preserving the underlying structure or context. Unpaired I2I translation further im-
proves the training process, and it does not require paired input–output examples [13–15].
Instead, it assumes that there is some underlying relationship between the two domains
and seeks to learn that relationship. This approach is particularly useful when image
pairs are unavailable or the sensing environment is dangerous like driving scenes under
challenging conditions.

Latent Space Constraint

With the success of unpaired I2I translation, researchers are now directing their
attention to generating a more diverse range of output. This is achieved by a latent
space constraint.

Zhu et al. [25] introduce the BicycleGAN model, designed to enhance image-to-image
translation by producing diverse and realistic outcomes using a concise latent vector,
and this model utilizes a combined technique that ensures a one-to-one consistency between
latent encoding and output modes to avoid mode collapse. In their research, they explored
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various methods of incorporating the latent code into the generator and observed similar
performance levels while also investigating the balance between result diversity and
sampling complexity by adjusting the latent code’s dimensionality.

Lee et al. [26] suggest a technique that projects input images into a joint content
space and domain-distinct attribute areas. The content encoders relay the mutual details
shared across domains to shared content space, and attribute encoders relay the domain-
unique data to specific attribute space. To handle datasets without pairs, they introduced a
cross-cycle consistency loss leveraging the separate representations.

Huang et al. [22] showcase the multimodal unsupervised image-to-image translation
(MUNIT) structure, which differentiates image representation into a universal content
code and a domain-centered style code, and incorporates two autoencoders, competitive
objectives, and two-way reconstruction objectives to produce a range of results from a
single source image. Furthermore, the model introduces the concept of style-enhanced
cycle consistency, ensuring that the original image is recovered when converted to a target
domain and reverted using its initial style.

Choi et al. [27] discuss a unified model called StarGAN that handles I2I translations
across multiple domains. The generator takes an input image and a target domain label
to generate a fake image. This target domain label is represented as a binary or one-
hot vector for categorical attributes. The generator focuses on the explicitly given label
and ignores unspecified labels by setting zero vectors, enabling the model to generate
high-quality images.

Liu et al. [28] introduce a technique named the unified feature disentanglement net-
work (UFDN) designed for self-supervised feature decomposition. They utilize a variational
autoencoder (VAE) structure to achieve disentangled representations across various data
domains. The encoder accepts an image, processes its representation, and then merges it
with the domain vector. These combined data are then used by the generator to recreate
the image.

Inspired by the above work, we introduce a content and style representation from our
previous snow synthesis framework [16]. For intuition, we divide the translation step into
three parts: encoding, translation, and decoding. The encoding network encodes the input
image into one style code and one content code. By swapping and twisting the style code
generated by the style encoder, we can obtain diverse but high-quality outputs. In addition,
we interpolate the style code between the clear and snow domains to obtain gradually
increasing snow effects. This is achieved by disentangling the latent space.

3. Controllable Unsupervised Snow Synthesis

To synthesize realistic snow on the driving datasets, we focus on the GAN with
cycle consistency. The goal is to learn the mapping between the snow domain and the
clear weather domain. In our previous unpaired I2I methods [29,30], two generators are
employed to transfer images into the expected domain. Two corresponding discriminators
are employed to differentiate real images and fake images. The cycle consistency ensures
that translated images can be reconstructed into original input images.

Recently, when researchers use similar methods for weather removal or synthesis, they
follow an assumption that weather images can be decomposed into a content partition and
a weather partition [17,31,32]. The partition could be any mathematical format, such as
vectors or tensors. In general image translation tasks, the weather partition refers to the
style representation. This technique will disentangle the translation process and preserve
the structural feature of the background. Therefore, we follow the assumption and split the
generator into three networks, which are a style encoder, a content encoder, and a decoder.

In the field of representation learning, incomplete disentanglement is often more
prevalent. This concept suggests that images from varying domains have a shared content
representation space, but the style representation space remains unique to each domain.
This idea is also known as the shared latent space assumption. In our task, the style is
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related to snow, and different classifications detail the attributes of weather events that
produce snow.

Intuitively, the content codes and style codes should be disjoint in the representation
space. To better achieve representation disentanglement, we apply a content discriminator
to distinguish the domain membership of the encoded content features. The goal is to force
content encoders to generate features that cannot be identified, which means the content
code does not contain style details.

Further, in order to make the size of synthesized snow controllable, we need to explore
the space of style partition S. Inspired by the work of Zhang et al. [17], we transform the
snow domain into a continuous space by associating the style code vectors with a linear
manipulation. With the help of the content discriminator, the style code will not contain
information on image attributes. Ideally, the interpolated style code should represent an
intermediate snow density.

3.1. Fundamental Basis

To illustrate the framework of controllable unsupervised snow synthesis (CUSS) in an
intuitive way, suppose that x1 ∈ X1 and x2 ∈ X2 are images from the clear domain and the
snow domain, respectively. In statistics, the images belong to two marginal distributions,
p(x1) and p(x2). The joint distribution p(x1, x2) is inaccessible due to a lack of paired data.
The goal is to learn an I2I translation model that can estimate two conditionals, p(x1→2|x1)
and p(x2→1|x2), where x1→2 is a sample of synthesized snow images and x2→1 is a sample
of synthesized clear images (recovered from real snow samples). In general, the synthesis
outputs do not fall into a single mode. There are multiple solutions corresponding to the
transform problem.

To obtain other possible solutions, we adopt the partially shared latent space assump-
tion from MUNIT [22] to produce diverse snow effects. This theory posits that each image
xi ∈ Xi originates from a content latent code ci, shared across both domains and a unique
style latent code si tied to its respective domain. For snow synthesis, a matching pair of
clear and snow images (x1, x2) from the combined distribution is created by x1 = F1(c1, s1)
and x2 = F2(c2, s2), with F1, F2 as the foundational generators with the inverse encoders E1
and E2, with E1 = (F1)

−1 and E2 = (F2)
−1.

The structure of the CUSS model is depicted in Figure 2. As displayed in Figure 2a,
our conversion model has an encoder E1 and a decoder F1 for the clear domain X1, and an
encoder E2 and a decoder F2 for the snow domain X2. Each image fed into the encoder
becomes converted into a content code c and a style code s, represented as (c, s) = E(x).
The translation between images occurs by interchanging encoder–decoder pairs, as depicted
in Figure 2b. For instance, to transform a clear image x1 ∈ X1 to X2, we first capture
its content latent code c1 = Ec

1(x1) and draw a style latent code s2 from the normal
distribution q(s2) ∼ N (0, I). Then, we employ F2 to generate the ultimate snow image
x1→2 = F2(c1, s2).

In earlier research [16], we harnessed the cycle consistency loss [14], measured by the
L1 norm of the input image. This aimed to deter the secondary generator from producing
arbitrary target domain images. However, Huang et al. [22] demonstrated that if cycle
consistency is imposed, the translation model becomes deterministic. As a result, we
integrated a style-enhanced cycle consistency in the image-style joint spaces, which aligns
better with multimodal image conversion. As illustrated in Figure 2c, we derive the
content code c1→2 and style code s1→2 from the synthetic snow image x1→2. We then
feed the content code c1→2 and the identical style latent code s2 to the clear decoder F1.
The result image is named cycle clear image x1→2→1. The idea behind style-enhanced
cycle consistency is that by translating an image to a target domain and then back with the
original style, we should retrieve the initial image. We do not apply explicit loss measures
to ensure this style-enhanced cycle consistency, but it is suggested by the bidirectional
reconstruction loss. We show the pseudo-code of CUSS in Algorithm 1.
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Algorithm 1 Controllable Unsupervised Snow Synthesis (CUSS)
Input: Training data pairs (X1, X2) . In order of clear and snow
Output: Encoders E1, E2, Decoders F1, F2 . F1 generate clear images, F2 generate

snow images
1: Initialize encoders, decoders, and discriminators
2: Define loss functions
3: Define optimizers for generator and discriminator
4: while epoch ≤ total_epoches do
5: for data pair (X1, X2) in data_loader do
6: Get content codes and style codes of input images: (c1, s1) = E1(x1), (c2, s2) =

E2(x2), (sn1, sn2) ∼ N (0, 1) . sni means style code sampled from normal distribution
7: Generate fake images: x1→2 = F2(c1, sn1), x2→1 = F1(c2, sn2)
8: Generate reconstruct images: x1→1 = F1(c1, s1), x2→2 = F1(c2, s2)
9: Get content codes and style codes of fake images: (c21, s21) = E1(x2→1),

(c12, s12) = E2(x1→2)
10: Generate cycle translation images: x1→2→1 = F1(c12, s1), x2→1→2 = F2(c21, s2)
11: Update Discriminator D1, D2, and Dc
12: Update Generator E1, E2, F1, and F2
13: end for
14: end while

Figure 2. The architectural design of the proposed controllable unsupervised snow synthesis (CUSS)
network is outlined as follows. The solid arrows show the forward process of the generators. The
dashed arrows show the input to the discriminators. CUSS comprises two encoders, which assume
the responsibility of encoding images from both the clear and snow domains, yielding a content code
and a style code, respectively. Additionally, CUSS incorporates two decoders, which accept a content
code and a style code as input, subsequently generating synthetic images pertaining to the target
domain. Moreover, there exist two discriminators, whose purpose is to discern images originating
from each domain, alongside a content discriminator, which endeavors to discriminate between
content codes. (a) illustrates the fundamental pipeline, wherein the encoded images ought to be
recoverable utilizing identical codes. Conversely, (b) portrays the process of translation accomplished
by substituting the style code with a randomly sampled one. Lastly, (c) exemplifies the translation
process’s cycle consistency, whereby the translated synthetic images ought to revert to the original
input, utilizing the initially extracted style code in conjunction with their own content code.

3.2. Disentanglement of Content and Style

A disentangled representation captures the underlying structure of the data so that
individual factors can be modified independently without affecting others. The goal is to
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achieve complete disentanglement, where both content and style features are extracted
independently. To achieve this, a content discriminator Dc is used to remove style infor-
mation from the content feature. At the same time, we use self-supervised style coding to
reduce content information from the style feature.

To enhance the content encoder, we employ the content feature discriminator proposed
by Lee et al. [26]. Initially, the content encoder extracts content codes, denoted as c1 and c2,
from the respective inputs x1 and x2. The content discriminator Dc takes input images and
classifies their source domain. Then one objective of the content encoder is to deceive Dc
with distinct features. As a result, the content encoder and discriminator refine each other
through adversarial training. Once equilibrium is reached, the content features extracted
no longer retain any stylistic information of the image.

When this game of generators and discriminators stabilizes at the Nash equilib-
rium [33], it becomes impossible for Dc to ascertain the image domain of the content
feature, implying an absence of snow details in the content feature. A successful separation
of style from content is achieved when the content encoder exclusively captures the image’s
content characteristics.

It is proved that utilizing the content discriminator can prevent content codes from
containing style details [26]. Naturally, the next step is to remove content details from style
codes. The purpose is to make the generation more stable without being affected by other
factors. Consequently, we implement the self-supervised style coding to remove any excess
content details from the style codes, illustrated in Figure 3.

Figure 3. Snow sizing through self-regression style coding. Our methodology involves extracting
style codes from two distinct domains. By using linear interpolation between these domains, guided
by the parameter k, we are able to generate a range of snow sizes. A higher value of k gives greater
significance to the snow dimensions. We then merge the content and interpolated style features to
create a snow scene image with a specific snow density determined by the aforementioned parameter
k. Throughout the training process, we use a randomly selected k value from the interval [0, 1] to
derive a novel style code that represents an intermediate level of snow density. This newly generated
style code serves as a self-supervised pseudo-label, effectively guiding the updating process of the
style encoder.

Using a nonlinear function f to denote the style encoder, we initially perform interpo-
lation on two style codes, one from the clear domain and the other from the snow domain
to acquire sk, as shown in Equation (1).

sk = f (kx1 + (1− k)x2) (1)

In the scope of our problem, the need to disentangle the style feature from the content
feature makes sure that the operation on the style code is consistent with those on the
input image.

According to the derivation of Zhang’s work [17], because sk is calculated by the linear
projection of s1 and s2, it should contain snow detail that is also a linear relation of x1
and x2. Use sk and a content code of a clear input c1 and a new snow image xk can be
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generated. We then encode sk again to obtain its style code, which will be supervised by sk
itself; the loss function is defined as Equation (2).

Ls(Ec
1, Es

2, F2) =

Ex1,x2

[
‖Es

2(F2(Ec
1(x1), sk))− sk‖1

(2)

Even though the function f is nonlinear, we continually generate xk and optimize the
encoder with sk in the training phase to maintain a consistent relationship between input
images and corresponding style codes linearly.

In the early stages, the style code will contain an extra content detail because of latent
space entanglement. At every forward iteration, the extra details become separated with
the style codes. Instinctively, the style encoder will identify content details and ignore them.

In the absence of manually assigned labels, the process relies on sk as a self-generated
label to guide the updates of networks. The desired situation is that the style code will
generate snow according to each object distribution at every distance and not decrease the
information density of traffic sign areas.

Due to the stochastic choice of k at each forward iteration, the encoder is compelled
to project the snow-related detail into a linear space. As a result, we engage in linear
adjustments to style codes to generate images with varying snow densities.

For example, we can specify the k value presenting the k× 100% snow density of the
input snow image. Then we extract the style code and content code of the input clear image.
After that, we feed the content code and interpolate the style code to the decoder to obtain
the output.

The factor k governs the snow density. Since s2 originates from the baseline snow, it
can be scaled up or down using k to yield a background invariant image featuring different
levels of snow density as depicted in Equation (3).

xk = F2(Ec
1(x1), kEs

1(x1) + (1− k)Es
2(x2)) (3)

3.3. Loss Function

The comprehensive loss function discussed in this paper comprises several compo-
nents: the adversarial loss Ladv, image reconstruction identity loss Lid, style reconstruction
loss Ls

recon, content reconstruction loss Lc
recon, style regression loss Lregre, cycle consistency

loss Lcc, and content loss Lcont. The overall objective function is formulated as the weighted
sum of these individual loss components:

L =λadvLadv + λidLid + λs
reconLs

recon + λc
reconLc

recon

+ λs
regreLs

regre + λccLcc + λcontLcont
(4)

Here, Ladv = LD1 + LD2 . LD represents the adversarial losses in the clear and snow
images. The various λ terms act as the model’s hyperparameters, modulating the signifi-
cance of each loss component.

3.3.1. Adversarial Loss

Adversarial loss is employed in both the clear and snow domains to enhance the
realism of the generated images. In the domain of clear images, the adversarial loss is
specified as follows:

LD1 = Ex1∼PX1
[log D1(x1)]

+Ex2∼PX2
[log(1− D1(F1(Ec(x2), s1)))]

(5)

D1 serves the purpose of differentiating real clear images from their synthesized
counterparts, striving to maximize the aforementioned loss function. On the other hand, F2
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aims to reduce the loss in order to make the generated clear images appear more authentic.
Likewise, LD2 for the snow domain is defined as

LD2 = Ex2∼PX2
[log D2(x2)]

+Ex1∼PX1
[log(1− D2(F2(Ec(x1), s2)))]

(6)

We consider both adversarial losses to have equal impact and straightforwardly sum
them up to compose the ultimate adversarial loss.

Ladv = LD1 + LD2 (7)

3.3.2. Identity Loss and Latent Space Reconstruction Loss

When provided with a snow image and a clear image, the encoders are required to
recreate the input image based on the same content code and style code. As such, the dis-
parity between the reassembled image and the initial image serves as the reconstruction
loss, adding additional constraints to the encoder:

Lid = Ex1∼PX1

[
‖F1(Ec

1(x1), Es
1(x1))− x1‖1

]
+Ex2∼PX2

[‖F2(Ec
2(x2), Es

2(x2))− x2‖1]
(8)

Additionally, we aim for the decoded images to have content and style features that
closely resemble those in the original images. As a result, we define the following losses for
the reconstruction of content code and style code:

Lc
recon = Ex1∼PX1

[‖Ec
1(x2→1)− Ec

1(x1)‖1]

+Ex2∼PX2
[‖Ec

2(x1→2)− Ec
2(x2)‖1]

(9)

Ls
recon = Ex1∼PX1

[‖Es
1(x2→1)− Es

1(x1)‖1]

+Ex2∼PX2
[‖Es

2(x1→2)− Es
2(x2)‖1]

(10)

It is important to note that we treat the reconstruction loss of a style code as falling
under the umbrella as the self-supervised style coding loss. We sum these two up, applying
the same weight to both, to arrive at the final style coding loss:

Ls
recon = Ls

recon + Ls (11)

3.4. Cross-Cycle Consistency Loss

Our model incorporates the cross-cycle consistency loss, as referenced in [26], to facili-
tate the learning of domain mappings. For the generated snow image x1→2, its correspond-
ing clear image x2 can be recovered through a desnowing transformation. The cross-cycle
consistency loss constrains the scope of the generated image while maintaining the back-
ground information of the input images. The Manhattan distance between the cyclically
reconstructed image and the original image serves as the measure for this cross-cycle
consistency loss. The image conversion process, which involves converting the clear image
to the snow image and the other way around, proceeds in Equation (12):

x1→2 = F2(Ec
1(x1), Es

2(x2))

x2→1 = F1(Ec
2(x2), Es

1(x1))
(12)

The reverse translation operation, which entails reconstructing the original input from
the generated image, is outlined in Equation (13):

x1→2→1 = F1(Ec
2(x1→2), Es

1(x2→1))

x2→1→2 = F2(Ec
1(x2→1), Es

2(x1→2))
(13)
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The formulation of the cross-cycle consistency loss for both the snow and clear image
domains is

Lcc = Ex1∼PX1
[‖x1 − x1→2→1‖1]

+Ex2∼PX2
[‖x2 − x2→1→2‖1]

(14)

4. Experiments

To validate the efficacy of the approach described in this paper, this section delves
into the influence of various modules and loss functions on the generated outcomes. It
also benchmarks these outcomes against existing methods through both quantitative and
qualitative metrics. Initially, we provide an overview of the datasets used and the imple-
mentation specifics of the approach. Subsequently, we offer an in-depth examination of
our model, comparing it with current methodologies in the field. We further support the
model’s effectiveness by showcasing visualizations of intermediate outcomes and conduct-
ing a generalization analysis. The final portion of this section focuses on ablation studies to
scrutinize the model’s components. All testing and experimentation are performed on an
NVIDIA RTX A6000 GPU equipped with 24 GB of memory.

4.1. Datasets
4.1.1. Urban Sceneries: Cityscapes

The Cityscapes collection [34] consists of 5000 detailed images showcasing urban
landscapes, predominantly captured in various German cities during daylight hours. This
dataset, which primarily focuses on street vistas, intersections, and vehicular scenes, has
gained significant popularity for training and evaluating machine vision systems. We use
all images as a clear source to train the model, as the number of images is close to our
snow set.

4.1.2. European Urban Scenes: EuroCity Persons

The EuroCity Persons collection [35] comprises a vast array of photographs depicting
pedestrians, cyclists, and other moving figures within city traffic scenarios. These images
were captured from a mobile vehicle across 31 cities in 12 European nations. Each image in
this collection is accompanied by a comprehensive set of precise annotations, including
bounding boxes around pedestrians and cyclists, as well as additional information, such as
direction, visibility, and potential obstructions. This extensive collection is further divided
into separate segments for daylight and nighttime scenes, encompassing a grand total
of over 47,300 images. To maintain consistency with the snow dataset, we handpicked
5921 snapshots from the daytime training segment.

4.1.3. Snow Condition Driving Dataset

In order to provide an authentic and realistic benchmark for learning, we recorded a
comprehensive video during adverse snowfall conditions. Employing a high-resolution
camera positioned behind the windshield of the vehicle, we captured footage at an im-
pressive frame rate of 120 frames per second. From this extensive collection, we carefully
selected the highest-quality images and resized them to a resolution of 960× 540. Some
of the examples are shown in the Figure 4. As a result, our curated snow dataset [30]
comprises a total of 6814 meticulously curated photographs. The number of intercepted
images we keep is the same as for cityscapes because GAN training is prone to problems
such as mode collapse, which leads to training failure.
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Figure 4. A collection of self-captured videos depicting urban driving amidst intense snowfall [30].
The images are carefully screened. The footage includes various road users, including cyclists,
automobiles, buses, and pedestrians.

4.2. Implementation Details

Our proposed model’s network comprises two encoders, two decoders, two discrimi-
nators, and a content encoder. Among the encoders, one is designed for style, and the other
for content. Their structure aligns with what is described in [26]. Breaking it down,

• The content encoder has five convolutional layers.
• The style encoder includes an initial residual layer, two downsampling layers, and one

adaptive average pooling layer.
• The content encoder features an initial residual layer, two downsampling layers,

and four residual blocks.
• Each decoder is made up of four residual blocks and two upsampling layers. It

employs adaptive instance normalization, while the encoders use standard instance
normalization.

• All the discriminators take specific image patches with the same resolution as input,
which is inspired by Demir’s work [36]. This structure includes five convolutional layers.

For training, we implement minibatch stochastic gradient descent with a batch size of
12, and the Adam optimization technique (parameters: β1 = 0.5, β2 = 0.999). We initiate
with a learning rate of 0.0001, reducing it linearly from the 100th epoch. In the training
phase, the input is cropped to a 256× 256 resolution for input. The weight of each loss
function is listed below: λadv = 1, λid = 10, λc

recon = 1, λs
recon = 1λs

regre = 1, λcc = 1.

4.3. Performance Assessment

In this section, we present a comprehensive analysis comparing the outputs CUSS
with the current state-of-the-art (SOTA) I2I transition methods. We delve deeply into the
impact of disentanglement and conclude with a meticulous examination of the uniqueness
and significance of each module based on ablation studies.

4.3.1. Assessment Criteria

Initially, we evaluate the quality of image synthesis using traditional computer vision
measures, namely, the peak signal-to-noise ratio (PSNR) and the structural similarity
index (SSIM). Additionally, we employ metrics that specifically focus on the depth and
the perception features of the images, including the Fréchet inception distance (FID) [33],
the LPIPS distance [37], and the VGG distance [38].

PSNR serves as a reliable objective measure for images, quantifying the discrepancy
between corresponding pixel values. Higher PSNR values indicate reduced distortion in
the generated images.

SSIM, on the other hand, assesses the similarity between two images by considering
their luminance, contrast, and structure. An SSIM value of 1 indicates that the two com-
pared images are identical in terms of structural information and quality, while a value of
0 indicates that the images are entirely different in these respects.



Sensors 2023, 23, 8398 13 of 19

FID calculates the Fréchet distance between two sets of images based on the features
extracted by the inception network [39]. It provides a measure of similarity between the
generated images and their respective benchmarks. A lower FID value suggests that the
generated images closely resemble the benchmark images.

LPIPS, or learned perceptual image patch similarity, is a metric used to evaluate
perceptual differences between images [25]. Unlike traditional metrics, such as mean
squared error (MSE), which measure pixel-level differences or structural similarities, LPIPS
employs deep learning to better align with human visual perception. In essence, LPIPS
offers a more perceptually meaningful measure of image similarity, especially useful in tasks
like image synthesis, where the objective is not just to reproduce pixel-accurate outputs but
to generate outputs that are perceptually indistinguishable or pleasing to humans.

VGG distance refers to a perceptual loss metric based on the VGG network that was
originally designed for image classification tasks [38]. Similar to LPIPS, it is used to measure
the difference between two images in a feature space. The activations from one or more
layers of the VGG network capture higher-level content and texture information about
the images.

4.3.2. Qualitative Results

We generate snow images in varying sizes by adjusting the previously discussed
parameters and contrast our proposed model against the leading state-of-the-art methods.

In our experimental setting, we take the Cityscapes dataset and the EuroCity Persons
dataset as the target set. These two datasets contain over 5000 thousand road scenarios
under different urban and weather conditions. There are also variations of road users, such
as pedestrians, cyclists, and moving vehicles.

Figure 5 displays images with varying amounts of snow. It is important to note that
we assume that the k value of the input clear image is 0, while the value of the input snow
image is 1. We then adjust the snow feature within the range of 0 to 1. The differences
in snow density across images with distinct parameter values demonstrate our success
in differentiating the generated snow through manipulation. As an illustration, as the
value increases, objects at the far end of the image become less distinguishable. Due to
the impact of the style feature coding, the style encoders can identify between large and
small snowflakes.

The results of the qualitative comparison are shown in Figure 6. This experiment com-
pares the generated snow images with mainstream I2I translation methods (CycleGAN [14],
CUT [40], MUNIT [40], and DRIT [26]). The first two models use single projections, while
the last two can produce diverse outcomes. For a more accurate comparison, we consis-
tently use ResNet [41] as the backbone for the generator in all methods. The training data
use Cityscapes [34] and EuroCity Persons [35] as clear sources and the self-captured snow
set as target sources. The methods used for comparison all require no paired data.

The qualitative comparison shows that models such as CUT [40], MUNIT [40], and
DRIT [26] mainly exhibit three primary defects. First, after translating images to represent
snowy scenes, the original colors are often distorted, diminishing the natural appearance
of the scene. Second, these models sometimes introduce artifacts that were not present
in the original image, leading to inconsistencies and jarring visual outcomes. Lastly, they
inadequately handle the far end and sky regions, resulting in uneven or unrealistic snow
representation in these areas. In contrast, the method proposed in this paper offers several
advantages. Our approach naturally integrates snow, ensuring that its boundaries fade out
seamlessly across the image, providing an authentic representation in both the foreground
and background. By distinguishing between snow style and actual image content, our
method is able to capture and reproduce the intrinsic properties of snow, resulting in
a synthesis that feels genuine and consistent throughout the image. Moreover, while
other models might render trees or other objects as if they were buried under un-natural
snow formations, our technique retains the original structure and detail, providing a more
balanced and realistic representation.
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Figure 5. Synthesis of multidensity results on the EuroCity Persons dataset by adjusting the parameter
k. From the left to the right column, objects such as vehicles, people, and trees are covered with
snowflakes and haze that gradually increase in size.

Figure 6. Comparisons between the synthesized snow images produced by our method and SOTA
unsupervised image translation methods. In particular, CUT deviates from the utilization of cycle
consistency and the associated loss, as observed in CycleGAN. Conversely, the remaining mod-
els, such as CUSS (controllable unsupervised snow synthesis), incorporate a form of partial style
cycle consistency.
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4.3.3. Qualitative Results

As reported in other I2I works, the constraint of cycle consistency is strong so that the
ability to generate diverse output is suppressed. However, the output image will retain a
high similarity of the original image, which explains why CycleGAN [14] achieves the best
SSIM value as shown in Tables 1 and 2. Compared with other methods, CUSS combines
the content discriminator and style code manipulation, and both turn out effective for
high-quality synthesizing. Therefore, CUSS achieves better results on those metrics. CUT is
the only method that does not employ any format of cycle generation pipeline, but instead
uses contrastive learning. The data used in our experiment cannot satisfy the requirement
of a large batch size, which cannot make full use of contrastive loss. The results of CUSS
prove that our method is available even when the data are not sufficient.

Table 1. A comparison on the Cityscapes dataset is made between SOTA image translation techniques
through numerical evaluation. We generate images with k = 1. The metrics used for evaluation are
dVGG and dLPIPS, which respectively represent the VGG and LPIPS distances. It should be noted that
down arrows mean lower values for dVGG and FID indicate more favorable experimental outcomes.
Conversely, up arrows mean that higher values for the other metrics suggest superior results. Optimal
values are denoted in bold.

Methods SSIM ↑ PSNR ↑ dVGG ↓ FID ↓ dLPIPS ↑
CUT 0.392 15.853 6.063 26.156 0.047
CycleGAN 0.471 16.072 5.892 26.342 0.048
MUNIT 0.452 16.118 5.923 25.447 0.049
DRIT 0.446 16.432 5.426 25.874 0.049
CUSS 0.465 16.912 5.122 25.103 0.047

Table 2. A comparison on the EuroCity Persons dataset is made between SOTA image translation
techniques through numerical evaluation. We generate images with k = 1. The same image quality
metrics are used. Down arrows mean lower metric values are better and up arrows mean higher
values are better. The best results are shown in bold.

Methods SSIM ↑ PSNR ↑ dVGG ↓ FID ↓ dLPIPS ↑
CUT 0.396 15.912 6.123 26.245 0.048
CycleGAN 0.501 16.233 5.927 26.581 0.049
MUNIT 0.479 16.483 6.012 25.847 0.048
DRIT 0.469 16.741 5.756 26.007 0.048
CUSS 0.494 16.983 5.386 25.402 0.051

To understand the individual contribution of different components of CUSS, we con-
duct an ablation study with respect to the loss functions. Since loss functions reflect the
direction of model optimization, we not only validate the new module of the content
discriminator and self-supervised style coding but also test the improvement from re-
constructing the image, style code, and content code. In Table 3, we observe that each
component is crucial to the CUSS model presented in the decrease of the metrics. We
generate images with three sets of k (0.3, 0.6, 1). Smaller k values indicate the small size of
the synthesized snow, i.e., closer to the input clear image. The results show that the model
produces the best quality output at the smallest k values.
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Table 3. Results from quantitative model comparisons after eliminating various loss factors are
presented. We generate images with three sets of k values. We examine the impact of the content
discriminator, cross-cycle consistency loss, reconstruction losses, and style regression loss. Down
arrows mean lower dVGG and FID values signify improved experimental performance, while up
arrows mean that higher values for the remaining metrics indicate better results. Figures in bold
highlight the best values.

Module SSIM ↑ PSNR ↑ dVGG ↓ FID ↓ dLPIPS ↑
w/o Lx

id 0.459 16.868 6.044 26.156 0.046
w/o Lc

recon 0.461 16.831 6.052 26.133 0.045
w/o Ls

recon 0.466 16.843 6.032 26.092 0.045
w/o Lcc 0.462 16.857 6.063 26.112 0.046
w/o Lcont 0.468 16.801 6.015 26.127 0.046
CUSS (k = 1) 0.471 16.912 6.003 26.089 0.047
CUSS (k = 0.6) 0.471 16.934 5.962 26.035 0.047
CUSS (k = 0.3) 0.472 16.967 5.925 25.983 0.048

4.3.4. Discussion

I2I translation methods such as CycleGAN, which uses the principle of cycle consis-
tency, produce deterministic outputs. For a given clear image, it will produce the same
translated snow image every time. To produce diverse outputs, researchers manipulate
the latent space of extracted image features by dividing them into style codes and content
codes. In our experiments, we found that latent space manipulation inevitably splits the
translation network into two or more parts. This leads to performance degradation. In this
work, the solution is to use a content discriminator to distinguish the content code from
different domains. With the requirement of generating an indistinguishable content code,
the encoder can achieve better disentangled representations.

When obtaining the disentangled style code, the operation on it will reflect on the
output snow images [42]. Therefore, we interpolate the style codes of the input clear image
and the snow image. Since the input snow image represents the maximum snow size, we
can control the degree of snow effects. Note that we cannot obtain snow effects larger than
the input image.

The controllable output is high quality and reasonable. The scenes are gradually
covered with stronger snow effects. However, the generated snow is not invariant to objects.
The snow covering the trees and the snow covering the building should be different; i.e., the
snow effects should change appearance according to scenario changes. However, it looks
similar in Figure 5. To improve CUSS, we need to consider the semantic information in the
latent space.

Our method basically belongs to domain translation, which learns knowledge from
the source domain and transfers it to the target domain. In the case of snow generation,
the output will only contain a similar snow effect with input snowy images. To obtain more
variety of snow like real snow scenes, we can add more snowy datasets that have different
snow shapes and sizes. However, it will lead to mode collapse if there are too many modes
in the GAN training process. In addition, the data should be collected in the same region to
avoid large domain gaps, such as Asian driving scenes and European driving scenes.

5. Conclusions

The study presents an innovative approach to unsupervised snow synthesis, wherein
a controllable method is introduced that incorporates latent space manipulation. To effec-
tively separate the features of snow style and content, an additional content discriminator
is incorporated along with a self-regression style coding module. To transition smoothly
from clear to snow-affected images, a partial style cycle consistency loss is employed to
refine the latent representation space. Furthermore, comparative analyses are conducted
to comprehend the impact of each loss component or module within the model on the
outcomes. When subjected to quantitative and qualitative evaluation, against various
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techniques using the Cityscapes and EuroCity Persons datasets, our approach consistently
produces diverse and high-quality traffic scenes under snowy conditions. Moving forward,
our future research endeavors can be classified into two distinct paths:

• Expanding the proposed technique to tackle generation tasks in more demanding
driving conditions, such as heavy rain, dense fog, nighttime, and strong light;

• Delving deeper into the relationship between generative methods and latent space ma-
nipulation for I2I translation tasks by integrating existing insights from self-supervised
and contrast learning methodologies.
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