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Abstract: Old plantations are iconic sites, and estimating stand parameters is crucial for valuation
and management. This study aimed to estimate stand parameters of a 115‑year‑old Japanese larch
(Larix kaempferi (Lamb.) Carrière) plantation at the University of Tokyo Hokkaido Forest (UTHF) in
central Hokkaido, northern Japan, using unmanned aerial vehicle (UAV) photogrammetry. High‑
resolution RGB imagery was collected using a DJI Matrice 300 real‑time kinematic (RTK) at altitudes
of 80 and 120 m. Structure from motion (SfM) technology was applied to generate 3D point clouds
and orthomosaics. We used different filtering methods, search radii, and window sizes for individ‑
ual tree detection (ITD), and tree height (TH) and crown area (CA) were estimated from a canopy
height model (CHM). Additionally, a freely available shiny R package (SRP) and manually digital‑
ized CA were used. A multiple linear regression (MLR) model was used to estimate the diameter
at breast height (DBH), stem volume (V), and carbon stock (CST). Higher accuracy was obtained for
ITD (F‑score: 0.8–0.87) and TH (R2: 0.76–0.77; RMSE: 1.45–1.55 m) than for other stand parameters.
Overall, the flying altitude of the UAV and selected filtering methods influenced the success of stand
parameter estimation in old‑aged plantations, with the UAV at 80 m generating more accurate re‑
sults for ITD, CA, and DBH, while the UAV at 120 m produced higher accuracy for TH, V, and CST
with Gaussian and mean filtering.

Keywords: old‑aged plantation; Japanese larch; UAV photogrammetry; stand parameters

1. Introduction
Old plantations are iconic sites that have great value. Assessing stand parameters at

old plantations is therefore extremely important [1]. The Japanese larch (Larix kaempferi
(Lamb.) Carrière) is an endemic coniferous species in Honshu Island, central Japan [2–5],
but it is a non‑native and key plantation species in Hokkaido, northern Japan [6]. It is an
economically important deciduous conifer species that grows in cool‑temperate forests [4].
Japanese larch has suitable characteristics for forestry, and plantations were introduced
to Hokkaido from the central mountainous region of Honshu in the early part of the last
century [3]. These plantations have succeeded due to their rapid growth and disease‑ and
cold‑resistance characteristics compared to other planting species. The Japanese larch was
therefore extensively used for reforestation in northern Japan from 1960 to the 1970s [7].
According to the Forestry Agency, in the National Forest Inventory of Japan, only 3% of the
total forest area consists of larch (including both natural and plantation forests), whereas
its proportion in Japan’s planted forests is 10% [8]. The recommended long‑cutting period
of Japanese larch is 40–60 years [9,10]. We considered our study site to be an old plantation
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because it was more than 100 years old, i.e., approximately double the age of the cutting
period. However, stand parameter data for old larch plantations are scarce in the region.

Forest inventory information is extremely important for forest management. The tree
height (TH) and diameter at breast height (DBH) provide useful information in the field of
forest research, allowing for the quantification of timber resources, evaluation of the ecolog‑
ical and economic value of the forest stand, computation of the number of individual trees,
stem volume (V), and carbon stock (CST), and understanding the rate and pattern of forest
regeneration [11–13]. In forest management, TH and crown area (CA) are used to develop
the allometric equations for CST calculation and a broad range of stand attributes [14,15].
For example, TH was used for both individual tree volume and stand volume estimation.
The estimated volume in the forest is important for the assessment of the hydrological cy‑
cle [16], and the production capacity of the site and a single tree [17]. Further, stand density,
competition, and survival are characterized by CA [18,19]. Stand density is a significant
parameter that explains the dimension and distribution of trees [20].

The collection of field data is laborious, time‑consuming, and only appropriate for
small forest stands. High accuracy in stand parameter estimation is difficult when using
remote sensing technology due to issues related to uncertainty, technology, the availabil‑
ity of high‑spatial‑resolution data, and cost. Light detection and ranging (LiDAR) pro‑
vides accurate data but is not suitable for large‑scale forest monitoring due to its high cost.
Satellite data can be very affordable; however, there are several limiting factors such as
a relatively low spatial resolution, occlusion by cloud cover, and difficulties in obtaining
them at specific times. Unmanned aerial vehicle (UAV) technology is a recent advance in
remote sensing that can be used to characterize plantation forest [21]. UAVs are the most
efficient platforms for obtaining remotely sensed data and can provide extremely high spa‑
tial resolution, low‑cost data, and cloud‑free images with high versatility, flexibility, and
adaptability [22]. The use of UAV photogrammetry provides high‑resolution images for
estimating individual tree position, and TH, and for crown delineation, with high accu‑
racy [14,23]. However, digital terrain models (DTMs) generated from UAV photogram‑
metry lack accuracy due to the occlusion effect [24–26]. It has been reported that UAV
photogrammetry during leaf‑off conditions is able to generate an accurate UAV DTM [27].
Moe et al. [28] achieved a high accuracy (63–73%) for forest canopy classification in a com‑
plex mixed conifer–broadleaf forest using the combination of a UAV digital surface model
(DSM) and airborne LiDAR DTM. Wang et al. [27] used a radial basis function neural net‑
work (RBFNN) with spatial interpolation to achieve high accuracy in a UAV DSM. Has‑
taoglu et al. [29] used an inverse distance weighted model (IDW) that took into account
field slope and directional distributions of reference points in IDW‑based interpolations
to increase the accuracy of DTM. However, in a dense forest, it is not possible to derive
an accurate DTM using photogrammetric methods, because insufficient ground surface is
visible in the aerial images [24–26]. Xu et al. [30] built a high‑precision DTM from the point
cloud generated by LiDAR and then subtracted the DTM from the DSM generated from
the photogrammetric point cloud to obtain the CHM.

Tree crowns and other structural variables are extracted either from canopy height
models (CHMs) or normalized point clouds for individual tree detection (ITD). Individ‑
ual tree metrics are extracted within the segmented tree crowns. However, tree density,
forest type, and tree species are the main factors influencing the accuracy of tree crown
detection [31,32]. Even though satisfactory results were obtained for conifer plantations
in many studies [33,34], stand parameter estimation in old Sugi (Cryptomeria japonica), Hi‑
noki (Chamaecyparis obtusa), and other conifer plantations was performed using UAV tech‑
nology [35–38]. However, there have been no studies of old larch plantations using UAV
technology. Many algorithms have been used to distinguish tree crowns, namely, inverse
watershed segmentation (IWS), watershed segmentation (WS), seed growing segmentation
(SG), and object‑based image segmentation (OBIA) [39,40]. In addition, various smoothing
techniques, such as lowpass, highpass, Gaussian, and mean filtering, at different kernel
sizes, have been used in many studies. Improvements in the quality of remote sensing data
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and processing workflows have recently enabled remote forest mapping to become more
analogous to field‑based approaches that involve detecting and characterizing individual
trees [41–43]. Nasiri et al. [44] found that lowpass filtering with a circular neighborhood at
a 25‑cell radius (kernel size; cell size with respect to the size of the largest area within the
scene) provided highly accurate ITD. Similarly, various software packages have been used
for crown segmentation, such as eCognition (Trimble Inc., Sunnyvale, CA, USA), Labkit (in
Fiji) [45], and ArcGIS (ESRI, Redlands, CA, USA). In QGIS (Open–Source Geospatial Foun‑
dation), the System for Automated Geoscientific Analyses (SAGA) software (version 2.1.4)
is used to conduct the segmentation process. The WS approach has been shown to have
an acceptable ability to delineate tree crowns using a CHM in a closed forest canopy struc‑
ture [14,46]. Moe et al. [28] studied crown segmentation using OBIA and a multiresolution
segmentation algorithm using the eCognition Developer, and accuracy was confirmed by
manual delineation of crown cover (CC). Different algorithms give different tree crown
diameters for different flight altitudes [40].

In this study, we examined the capabilities of high‑resolution UAV imagery to esti‑
mate ITD, TH, CA, DBH, V, and CST using various filtering methods, and flight altitudes
of 80 and 120 m, in an old larch plantation site. We considered the following questions:
Can a UAV generate an accurate CHM and high‑resolution orthomosaic in an old larch
plantation? How do different UAV flying altitudes and filtering methods improve ITD?
Can UAV photogrammetry estimate TH accurately in an old larch plantation? Can UAV
photogrammetry estimate the CA and CC? What are the most important UAV‑derived met‑
rics for estimating DBH, V, and CST? To estimate these stand parameters, we used various
filtering methods, i.e., lowpass, Gaussian, and mean, at different search radii and window
sizes using a combination of ArcGIS Pro and QGIS in the SAGA and the open‑source shiny
R package (SRP) [47,48].

2. Review of Literature
Photogrammetry is a technique that derives the required information by creating a

3D model from 2D images. Common points are matched from a series of overlapping 2D
images to create the 3D model through Structure‑from‑Motion (SfM) technology [49–51].
The photogrammetry technique has been applied in many fields such as surveying, civil
engineering, urban planning, gas detection, fire monitoring, archeology, mining, industry,
urban management, agriculture, and forest management [49,51,52].

In the sustainable forest management approach, the estimation of forest stand param‑
eters is extremely important. Gómez et al. [53] stated that age class, stem density, stem
frequency, DBH, CA, crown closure, mean crown size, crown width, circumference, TH,
mean stand height, maximum height, basal area, biomass, and stand V are forest struc‑
tural parameters estimated in many studies using high spatial resolution (HSR) satellite
imagery (IKONOS, Pan, Pan‑sharpened, QuickBird, and SPOT). Gómez et al. [53] extracted
quadratic mean diameter, basal area, and tree density as forest structural parameters to
assess wood volume and biomass using QuickBird‑2 imagery. Spatial resolution is an
important consideration when using remote sensing for forest characterization [54]. In
addition to the use of HSR satellite imagery, recent advances in UAVs have provided high‑
resolution imagery, enabling more reliable forest structure estimates with high accuracy.
Jayathunga et al. [55] estimated the standard deviation of height, percentile height, coeffi‑
cient of variation in height, skewness, and kurtosis, and canopy cover above mean height
using Fixed‑Wing UAV. Gao et al. [56] combined UAV laser scanning and ground back‑
pack laser sacking to extract individual tree structural parameters and fit volume models
in subtropical planted forests in southeastern China.

Belmonte et al. [57] found that estimates of individual tree height and crown diame‑
ter were most accurate at low stand density, with significantly reduced accuracy at high
stand density using UAV photogrammetry. Individual DBH and stand‑level estimates
of basal area, stand density, and canopy cover (CC) are commonly used as forest men‑
suration metrics. Kameyama and Sugiura [58] estimated the CA and TH using different
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SfM software such as Terra Mapper (version 2.5.1), PhotoScan (version 1.3.2.4205), and
Pix4Dmapper (version 4.5.6) on aerial image processing by UAV at different altitudes. The
UAV has been used successfully in several recent studies to predict the DBH distribution
of trees [59], mean TH [60], and aboveground CST [10]. In addition, the high point den‑
sity of UAV data allows the crowns of individual trees to be delineated. This improves
the accuracy of the ITD [61]. The SRP is a freely available application developed with
a LiDAR analysis tool and a standalone R package called treetop. The treetop package
is publicly available on the SRP, which is a service platform for hosting shiny web apps
(https://carlosasilva.shinyapps.io/weblidar‑treetop/, accessed on 10 February 2023). De‑
tailed methods for its application are provided by Silva et al. [47,62]. The treetop package
is capable of fast and effective ITD and crown delineation and is also applicable to UAV‑
derived CHM [47]. The local maximum (LM) is an algorithm that finds a maximum height
in the CHM that indicates treetops [63]. The treetops and CA were extracted automati‑
cally by adjusting the two types of window sizes, referred to as a smoothing window size
(SWS), and a fixed window size (FWS). The spurious local maxima detected in the CHM
are eliminated by the application of a smoothing filter, which will increase tree detection
accuracy [64]. Voronoi tessellation‑based algorithm is particularly suitable for dense areas
of conifer [65] and broadleaf forests [66]. The Voronoi tessellation algorithm was consid‑
ered suitable for our study area due to the dense canopy of the old larch plantation. Moe
et al. [28] visually interpreted the orthomosaic to digitize the conifer tree crown due to the
absence of field data for CA and reported that the manual CA had high accuracy compared
with the field CA. Mohan et al. [67] visually interpreted high‑resolution imagery.

DBH measurement in the field gives an accurate estimation and it is highly correlated
with other tree parameters [68]. DBH is used as a predictor variable to develop the stem
V equations, tree growth model, and biomass equations. LiDAR data have been used in
many studies for the estimation of individual tree DBH [60,68,69]. Liang et al. [70] stated
that trunk position and DBH accuracy of individual trees were 88.2% and 90.4%, respec‑
tively, using the SfM point cloud. Piermattei et al. [71] found that the tree detection rate
and bias of the extracted DBH were 69–98% and 1.13 cm, respectively, using SfM point
clouds. Sun et al. [72] applied different methods such as the linear regression model, a
linear model with ridge regularization, support vector regression, random forest, artificial
neural network, and k‑nearest neighbors to predict the individual DBH of Larch (Larix ol‑
gensis) using UAV‑LiDAR. They reported that all methods improved the accuracy of the
predictions except linear regression.

In old‑growth forests, stand parameters are applied on a local to regional scale us‑
ing detailed data, often from airborne laser scanning [73]. ITD, TH, CA, lying deadwood,
standing deadwood, canopy cover, stand height, stand density, dominant height, height
distribution, gap detection, aboveground biomass, timber V, and tree species were esti‑
mated using airborne laser scanning, optical very high‑resolution, and synthetic aperture
radar in old‑growth forest. Qiu et al. [74] estimated the TH, DBH, crown width, and age
in an old pear orchard using UAV photogrammetry and obtained an RMSE of 0.1814 m,
3.0039 cm, 0.3292 m, and 4.3753 years, respectively. Holiakaa et al. [75] used UAV pho‑
togrammetry to estimate ITD, TH, and biomass in different ages of a Scots pine forest,
including a 115‑year‑old stand. Zhou and Zhang [76] estimated TH, CA, and biomass
of larch (Larix gmelinii) and Chinese pine (Pinus tabuliformis) plantations of different ages
using UAV oblique photogrammetry. Although many previous studies have also demon‑
strated the great potential of UAVs for estimating forest structural parameters and their
advantages over airborne LiDAR, the use of UAV photogrammetry with RGB imagery in
old larch plantations has not been fully explored.

3. Materials and Methods
3.1. Study Site

Figure 1 is a map of the study area. A 115‑year‑old Japanese larch plantation site was
selected (43◦12′55′′ N, 142◦23′7′′ E, 43◦13′8′′ N, 142◦23′31′′ E) at the University of Tokyo
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Hokkaido Forest (UTHF) in Furano City, on Hokkaido Island in northern Japan [77]. The
site was planted in 1908 with a seedling density of 3000 stem ha−1. The larch plantation
is located in sub‑compartment 87B of UTHF. The study area extends for 0.93 ha with a
mean temperature: 6.6 ◦C and precipitation of 1196 mm/year at the arboretum (230 m).
Snow covers the ground from late November to early April, with a maximum depth of
approximately 1 m. The elevation is 250–300 m above sea level and the slope is 18–20◦.
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Figure 1. The study area map (Coordinate system: JGD2000 Japan–19 zone XII/GSIGEO 2000
geoid): Study locations (43◦13′ N, 142◦23′ E) of the larch plantation in the forest management sub‑
compartment 87B in the University of Tokyo Hokkaido Forest (UTHF) in Japan. The red dot with
value represents the spatial position of a larch tree with tree number. Green, pink and yellow areas
represent compartment 87, sub compartment 87B and larch stand area, respectively.

3.2. Field Data
A field survey was conducted in November 2022. A total of 136 individual larch trees

were measured. Seven other individual trees of other species were identified in the forest
but were not sampled. Tree spatial position, TH, and DBH (1.3 m above ground) were
measured. The TH was measured using a Vertex III hypsometer and transponder (Haglöf
Sweden AB, Långsele, Sweden). Tree DBH was measured using diameter tape. The tree
spatial locations were measured in 2007 using an Impulse laser rangefinder with a Map‑
star electronic compass module (Laser Technology, Inc., Centennial, CO, USA). The ITD,
basal area (BA), V, and CST were calculated from these field‑measured parameters. We
used a species‑specific volume table provided by UTHF. The CST was calculated using the
following allometric Equation (1) [78]:

CST = ∑
j

{[
Vj ×Dj × BEFj

]
×

(
1 + Rj

)
×CF

}
(1)

where CST is the carbon stock in living biomass (MgC ha–1); V is the merchantable volume
(m3 ha–1), it is a volume estimated for each tree species based on the yield table developed
for a given region, site class, and stand age; D is the wood density (t–d.m. m–3); BEF is
the biomass expansion factor for the conversion of volume; R is the root‑to‑shoot ratio;
CF is the carbon fraction of dry matter (MgC t–d.m.–1); and j is the tree species [78]. For
species larch, the value of D, BEF, R, and CF was 0.404, 1.15, 0.29, and 0.51, respectively,
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as suggested by Greenhouse Gas Inventory Office of Japan and Ministry of Environment,
Japan [78].

The summary statistics of the field data are given in Table 1. The tree density, stand
volume, and CST of the larch trees in the stand were 147 stems ha–1, 543 m3 ha−1, and
168 MgC ha−1, respectively.

Table 1. Summary statistics of the field data.

Field Parameter Unit Mean SD * Range

Tree height (TH) m tree−1 35.20 3.27 25.80–42.90
Tree diameter (DBH) cm tree−1 60.94 7.14 45.45–79.93

Basal area (BA) m2 tree−1 0.30 0.07 0.16–0.50
Stem volume (V) m3 tree−1 3.76 1.10 1.84–7.42

Carbon stock (CST) MgC tree−1 1.15 0.34 0.56–2.27
Tree density stems ha–1 147

* SD—standard deviation.

3.3. UAV Data
The UAV image collection process and the parameter settings in the field are given

in Figure 2 and Table 2, respectively. The UAV imagery was acquired using a Matrice
300 real‑time kinematic (RTK) drone with a Zenmuse P1 sensor (DJI, Shenzhen, China) on
13 October 2022. The front and side overlap were both 90%. Flight planning was performed
using DJI Pilot2 software (version 6.1.2), and the location details were sent to the UAV
drone in the field. Two ground control points (GCPs) were used (Figure A1). The GCPs,
take‑off, and landing points were set in available open areas before the flight missions [77].
The xyz coordinates of the GCPs were recorded with an RTK global satellite navigation
system (GNSS) receiver (DG‑PRO1RWS, BizStation Corp., Tokyo, Japan), with a positional
accuracy of <0.02 m. Two batteries were required for a one‑time flight of approximately 30
min, which was less than the theoretical time (55 min) due to the environmental conditions
and time allocation for a flight return to the station. The flight missions proceeded at flight
heights of 80 m (UAV 80 m) and 120 m (UAV 120 m). The terrain following mode was
selected in the settings of the UAV flight missions.
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Table 2. Specifications and parameter setting of the UAV for imagery collection.

UAV Parameter Setting

Model DJI Matrice 300 RTK
(Da‑Jiang Innovations, Shenzhen, China)

Camera model DJI Zenmuse P1 RGB
(Da‑Jiang Innovations, Shenzhen, China)

Lens specifications *

Sensor Dimensions: 35.000 mm × 23.328 mm
Resolution: 8192 × 5460

Focal Length: 35 mm
Pixel Size: 4.39 × 4.39 µm

Flight altitude 80 m and 120 m
Front overlap 90%
Side overlap 90%
Flight time 30 min

Flight take‑off speed 15 m/s
Average Flight speed—80 m 5 m/s
Average Flight speed—120 m 7 m/s

Ground Sampling Distance—80 m 1.00 cm/pixel
Ground Sampling Distance—120 m 1.51 cm/pixel

* Processing report of Agisoft Metashape.

3.4. Data Analysis
3.4.1. UAV Image Processing

The overall workflow of the study is shown in Figure 3. The professional photogram‑
metric processing software Agisoft Metashape 1.8.4 (Agisoft LLC, St. Petersburg, Russia)
was used for UAV image processing. The parameter settings for UAV image processing
are given in Table A1. Image alignment, building a dense point cloud, building a digi‑
tal elevation model (DEM), and building an orthomosaic were processed. Medium accu‑
racy was set to optimize the camera location, orientation, and other internal parameters
during the image alignment and building of dense point cloud stages, to reduce the pro‑
cessing time (Table A2). Image processing was performed separately for UAV 80 m and
UAV 120 m.
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The GCPs were added to each corresponding image for optimization of the camera
locations and orientations, as well as other internal camera parameters. The depth filter‑
ing mode during the photogrammetric process is considered to remove noticeable out‑
liers while preserving as much as possible the detailed elements of the three‑dimensional
model [79]. Tavasci et al. [79], Moe et al. [77], and Jayathunga et al. [15] used mild depth
filtering for the automated removal of outliers. We also used mild depth filtering, which
was set to remove outliers. The Tokyo Japan plane rectangular CS XII (ESPG: 2454) coor‑
dinate system was used for georeferencing. We followed the Agisoft Metashape default
setting for the DEM building stage and orthomosaic building stage. Orthomosaics were
exported in GeoTiff format, and dense point clouds were exported in LAS format.

3.4.2. Generation of the CHM
The LAS files of the 3D point clouds generated by Agisoft Metashape were used to

generate the DSM. The LAS files were input to ArcGIS Pro (version 2.8) for DSM gener‑
ation. First, an LAS dataset was used as input to ArcGIS. Then, a raster was created us‑
ing the LAS dataset [80], with the file value set to elevation. For DSM generation, the
LAS file was filtered to the first return, and the value was set to maximum. A binning
approach was adopted, with values assigned to the nearest cell using the void fill func‑
tion as a natural neighbor technique. The UAV DTM was not accurate due to the occlu‑
sion effect of the top canopy. LiDAR can penetrate the forest canopy to the interior and
the ground through laser echoes, thereby obtaining vertical forest structure information
and enabling the generation of a high‑precision DTM. Therefore, we generated the CHMs
for respective UAV flights using each pixel value of the UAV DSM by subtracting the Li‑
DAR DTM from the UAV DSM. We used the LiDAR DTM generated in 2018 by UTHF
using an Optech Airborne Laser Terrain Mapper (ALTM) Orion M300 sensor (Teledyne
Technologies, Thousand Oaks, CA, USA) mounted on a helicopter that flew 600 m above‑
ground at a speed of 140.4 km h–1. The course overlap, pulse rate, scan angle, beam di‑
vergence, and point density of LiDAR data were 50%, 100 kHz, ±20◦, 0.16 mrad, and
11.6 points per m2, respectively. The flight was designed to optimize image overlap and
distribution, using high‑resolution imagery across the survey area to generate a dense and
accurate point cloud. The GCPs were measured using RTK GNSS for precise measurement
and the coordinates (latitude, longitude, and elevation) were recorded. Classified LiDAR
point data, e.g., ground, non‑ground, first, second, third, and last returns, were delivered
by the data provider (Hokkaido Aero Asahi, Hokkaido, Japan) and data were stored in
LAS format. The DTM was generated from LiDAR point clouds using well‑distributed
GCPs (seven checkpoints) spatially and covered a representative portion of the terrain all
over the UTHF. The LiDAR ground returns were used to develop a digital terrain model
(LiDAR‑DTM) [77]. Minimum height, maximum height, average height, RMSE, and stan‑
dard deviation of the derived LiDAR DTM were 0.02 m, 0.14 m, 0.00 m, 0.061 m, and 0.061
m, respectively. Both average height and standard deviation were below the limit of 0.25
m (Work Regulations Article 326‑3, Hokkaido Aero Asahi, Hokkaido, Japan), confirming
that the local elevation and laser elevation were consistent. In our study, the stand area of
the LiDAR DTM was clipped to generate the CHM.

3.4.3. Individual Tree Detection
The UAV ITD approach used a combination of filtering, search radius, and window

sizes, as shown in Table 3. The CHM was used as the input for ITD. Various filtering
methods were used, such as lowpass, Gaussian, and mean. Different search radii/sigma,
window sizes, and circular searches were used to achieve highly accurate tree detection.
A local minima and maxima algorithm in QGIS SAGA was used to identify individual
treetops in the filtered CHM. We also used an SRP for treetop detection, TH, and crown
delineation [47,62]. In our study, we performed the ITD with the SRP using two window
sizes, FWS = 3 × 3 and 5 × 5 and SWS = 3 × 3 and 5 × 5, where the maximum crown factor
and exclusion parameters were set to 0.4 and 0.7, respectively. The TH threshold used
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was 1.37 with 0.5 m resolution in the CHM as a default setting (see the shiny web apps for
more detail).

Table 3. Individual tree detection (ITD) by a combination of filtering, search radius, and window
sizes at two flight altitudes of UAV 80 m and UAV 120 m.

UAV Altitude Filtering Method * Search Radius/Sigma
(m)

Window Size
(m)/Search Method UAV Treetop **

UAV 80 m

LML
1 circle 304
2 circle 182
3 circle 135

LMG

1 circle 316
2 circle 224
3 circle 184
4 circle 182
5 circle 182

SM
FWS: 3 × 3, SWS: 3 × 3 242
FWS: 5 × 5, SWS: 3 × 3 151

SG

1 FWS: 3 × 3 258
2 FWS: 3 × 3 245
3 FWS: 3 × 3 244
1 FWS: 5 × 5 154
2 FWS: 5 × 5 152
3 FWS: 5 × 5 153

UAV 120 m

LML
1 circle 300
2 circle 182
3 circle 131

LMG

1 circle 317
2 circle 226
3 circle 190
4 circle 187
5 circle 187

SM
FWS: 3 × 3, SWS: 3 × 3 243
FWS: 5 × 5, SWS: 3 × 3 149

SG

1 FWS: 3 × 3 249
2 FWS: 3 × 3 244
1 FWS: 5 × 5 150
2 FWS: 5 × 5 149

* LML—local maxima lowpass filtering; LMG—local maxima Gaussian filtering; SM—shiny mean filtering;
SG—shiny Gaussian filtering; ** UAV treetop—detected number of treetops.

The LM algorithm identified the field treetop as the UAV treetop when their loca‑
tions were similar or identical. These cases were taken to indicate correctly detected trees
(true positive; TP). When the field treetop and UAV treetop were found in the CHM of a
respective tree crown, it was classified as TP. We also validated the detected trees when
the location of the field treetop matched the UAV treetop in the CHM. When there was
no UAV treetop close to the field treetop in the CHM of a tree crown, it was taken to in‑
dicate incorrectly undetected trees (false negative; FN). Sometimes, the UAV treetop was
close to the field treetop of another tree but not close to the CHM of the respective field
tree, which was considered to represent an incorrectly undetected tree. Cases where there
was no field treetop, but the UAV treetop was found in the CHM, were taken to indicate
incorrectly detected trees (false positive; FP). Cases where there was no field treetop and
no UAV treetop in the CHM were classified as correctly undetected (true negative; TN).
The distance threshold for searching field treetops neighboring the UAV treetops was the
search radius or sigma, based on the window sizes in the filtered or smoothed CHM.
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3.4.4. Tree Height Estimation
The generated CHM was used to extract the TH using different filtering methods. The

CHM was clipped within the stand area using the Extract by Mask function [81] in ArcGIS
Pro to extract the individual TH using different algorithms. The UAV tree locations were
identified by the LM algorithm with lowpass, mean, and Gaussian filtering. First, UAV
treetops were converted to raster data using the point‑to‑raster function to make them
compatible for extraction. Then, they were input to the CHM, and the spatial location UAV
treetops were used as input raster or feature mask data. Then, the extracted raster data of
UAV treetops were converted from raster to point data to obtain the TH attribute table. The
summary statistics function was used to derive the mean, minimum, maximum, standard
deviation, and variance for the respective UAV TH. We also derived the TH information
from the SRP, which automatically generated the TH [47].

3.4.5. Tree Crown Delineation
The UAV orthomosaic was used to manually digitalize the CA because of its high res‑

olution. First, a new shape file was created, and the respective tree crown was then man‑
ually delineated using a freehand tool on the newly created shape file while viewing the
orthomosaic in ArcGIS Pro. Then, CA was determined using a geometric calculation. We
also used the SRP to derive the CA. We set the parameters by adjusting the window sizes
(Table 3). As FWS increased, the number of trees detected decreased [47,82]. Once indi‑
vidual treetops were detected, their crown boundaries were delineated using the Voronoi
tessellation‑based algorithm developed by Silva et al. [62]. This algorithm was operated
with the LM algorithm and used the maximum crown factor and exclusion parameters,
both ranging from 0 to 1, to define the crown boundaries on the UAV CHM, delimiting the
boundary of the grid cells belonging to each tree. In this study, we used the CA derived
from manual digitalization and the SRP.

3.4.6. Tree DBH, V, and CST Estimation
Individual tree parameters were estimated between segmented tree crowns and man‑

ually digitized polygons using one‑to‑one relationships in previous studies [37]. Moe
et al. [28] extracted individual tree parameters from the manually delineated tree crowns
using LiDAR and UAV‑DAP‑normalized point clouds in fusion software. In this study,
we used the RGB imagery generated from UAV point clouds in the ArcGIS Pro software
(version 2.8) package and SRP to derive the structural variables. The dependent variables
of tree DBH, V, and CST were modeled with independent variables such as the manual
CA, tree crown perimeter (C_peri), near distance (ND), SRP CA, and UAV flight height
derived from the lowpass, mean, and Gaussian filtering methods.

3.4.7. Accuracy Assessment and Validation
For accuracy assessment and validation, the parameters extracted from the UVA were

compared with the field‑measured parameters of the larch trees. The seven trees of other
species found in the larch plantation were excluded from the analysis.

The F‑score was calculated for ITD. The F‑score is based on the harmonic mean of pre‑
cision and recall. The evaluation produced three types of segmentation results. If a tree
existed and was identified successfully, it was labeled TP, representing correct segmen‑
tation. Under‑segmentation is represented; if a tree existed but was not detected, it was
labeled FN [83]. Similarly, over‑segmentation is represented; if a tree was detected, but
did not exist on the ground, it was labeled FP. The overall accuracy of the individual tree
detection is calculated using F‑score based on precision and accuracy [84,85]:

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)
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F‑score = 2 × Precision× Recall
Precision+ Recall

(4)

where precision represents detection accuracy (commission) (2); recall represents detection
rate (omission) (3); and the F‑score is the weighted average taking both detection rate and
detection accuracy into consideration (4).

For the regression of TH and CA, a simple linear regression model was used. The
most common methods used for statistical analysis and validation of ground data are the
root mean square error (RMSE) (5) and coefficient of determination (R2) (6) [11].

RMSE =

√√√√ 1
N

N

∑
i=1

(y i − ŷ
)2 (5)

R2 = 1 −
∑
(

yi − ŷ
)2

∑ (y i − y
)2 (6)

where ŷ= predicted value of y; y = mean value of y.
For tree DBH, V, and CST, a multiple linear regression (MLR) model was used (7) us‑

ing R studio version 4.22. The final models were selected based on Akaike’s information
criterion (AIC) and stepwise variable selection for UAV‑derived stand parameters [86] in
which the variables with a variance inflation factor (VIF) > 5 were removed to avoid mul‑
ticollinearity [87]. The leave‑one‑out‑cross‑validation method was used to validate the ac‑
curacy of the selected models.

y = β0 + β1X1 + β2X2 + . . . . . . + βnXn + ϵ (7)

where y = the predicted value of the dependent variable (DBH, V or CST); β0 = the y‑
intercept; independent variables were UAV TH, manual CA, UAV CA, tree crown perime‑
ter (C_peri), and near distance (ND) at respective UAV flight altitude. β1 = the regression
coefficient (β1) of the first independent variable (X1); β2X2 = the regression coefficient (β2)
of the second independent variable (X2); βn = the regression coefficient of the last inde‑
pendent variable; and ϵ = model error.

4. Results
4.1. The CHM and Orthomosaic

The CHM was generated at two flight altitudes from the respective UAV DSM and
LiDAR DTM (Figure 4), and orthomosaics were created in which tree locations and the
stand area were represented (Figure A1). The maximum TH in the CHMs was 40.77 m for
UAV 80 m (Figure 4c) and 42.07 m for UAV 120 m (Figure 4e), whereas the field maximum
TH was 42.90 m (Table 1). The maximum TH in both CHMs was lower than the field tree
maximum. We generated a high‑resolution orthomosaic with a pixel value of 3.25 cm/pix
for UAV 80 m and 5.39 cm/pix for UAV 120 m, in which the tree crowns were clearly visible.
The total number of images was 1257 and 342 for UAV 80 m and UAV 120 m, respectively.
All images had a resolution of 8192 × 5460 pixels (Table A3).
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Figure 4. The illustration of CHM derivation from UAV DSM and LiDAR DTM at two flight altitudes,
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4.2. Individual Tree Detection and Tree Density
The ITD results are given in Table 4, and representations of UAV treetops and field

treetops for part of the stand are shown in Figure A2. A total of 143 individual trees were
identified in the field, including 136 larch trees and seven other trees within the stand
area. Five Pinus nigra Arnold, one Kalopanax septemlobus (Thunb.) Koidz, and one Abies
sachalinensis (F. Schmidt) Mast. were identified as the other species in the stand. We only
considered larch trees for the ITD and other stand parameter estimations. For ITD, more
UAV treetops were identified by LM lowpass (LML) filtering than LM Gaussian (LMG)
filtering. For both methods, UAV treetops were significantly (p < 0.0001) higher than field
treetops. The number of UAV treetops was reduced when the search radius was increased.
The LM algorithm detected field treetops at a threshold search radius of 2 m in the LML
filtering. The optimum number of UAV treetops in LML filtering was 176 at UAV 80 m
and 178 at UAV 120 m. We also compared these results with those of treetop detection
with the SRP. The SRP treetop detection performance was higher at the combination of
5 × 5 FWS and 3 × 3 SWS than at the combination of 3 × 3 FWS and 3 × 3 SWS, for mean
and Gaussian filtering at threshold search radii of 5 and 2 m, respectively. When the FWS
or SMS decreased, SRP detected more treetops than field treetops. For the UAV 80 m flight,
ITD was 144 by shiny mean (SM) filtering and 145 by shiny Gaussian (SG) filtering. For
the UAV 120 m flight, ITD was 142 by both the SM and SG filtering methods.
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Table 4. The results of ITD (UAV treetop) with tree density, precision, recall, and F‑score (TP, FP,
and FN) by different filtering methods at two UAV flying altitudes.

UAV Altitude Filtering
Method *

UAV
Treetop

Tree
Density TP FP FN Precision Recall F‑Score

UAV 80 m
LML2 176 189.09 124 52 12 0.91 0.70 0.79
SM5 144 154.71 122 22 14 0.90 0.85 0.87
SG2 145 155.78 122 23 14 0.90 0.84 0.87

UAV 120 m
LML2 178 191.24 119 59 17 0.88 0.67 0.76
SM5 142 152.56 116 26 20 0.85 0.82 0.83
SG2 142 152.56 115 27 21 0.85 0.81 0.83

* LML2—local maxima lowpass filtering at search radius 2 m; SM5—shiny mean filtering at search radius 5 m;
SG2—shiny Gaussian filtering at search radius 2 m.

The F‑score for ITD ranged from 0.76 to 0.87. This indicated that both LML filtering
and the SRP performed well in detecting the treetop. However, the F‑score was higher
for the SRP (0.87 at UAV 80 m and 0.83 at UAV 120 m) than LML filtering (0.79 at UAV
80 m and 0.76 at UAV 120 m). The UAV treetops detected by LM filtering were higher
than those detected with SRP filtering. Therefore, FPs were high with LM filtering. The
precision value was higher than the recall value using all methods, while ITD was higher
at UAV 80 m than at UAV 120 m. Tree density was calculated based on ITD. The UAV
tree density was higher than the field tree density (147 stems ha−1) at both flight altitudes
due to the higher number of UAV treetop detections. Tree density was in the range of
155–190 stems ha−1 at UAV 80 m and 153–192 stems ha−1 at UAV 120 m.

4.3. Tree Height
Table 5 shows the TH estimated from the LM algorithm and SRP. The LM and SRP

results indicated that TH was slightly higher than the field TH at both flight altitudes. The
maximum and minimum TH were slightly lower than the field TH minimum and maxi‑
mum. Figure 5 shows the results of a simple linear regression of field TH with UAV TH.
The R2 value for TH was slightly higher and had a lower RMSE at UAV 120 m than at UAV
80 m. Similarly, for the different filtering methods, the R2 value of LM filtering was lower
than with SRP filtering, with a higher RMSE. At UAV 80 m, the R2 and RMSE values were
0.71 and 1.73 m, 0.75 and 1.55 m, and 0.75 and 1.54 m for LML filtering, SM filtering, and SG
filtering, respectively. At UAV 120 m, the R2 and RMSE values were 0.76 and 1.59, 0.76 and
1.45 m, and 0.77 and 1.45 m for LML filtering, SM filtering, and SG filtering, respectively.

Table 5. The results of mean TH with maximum and minimum values for different filtering methods
at two UAV flying altitudes with field TH.

Field and UAV
Altitude Filtering Method * Mean TH ± SD

(m) Maximum Minimum

Field Field TH (n = 136) 35.23 ± 3.27 42.90 25.80

UAV 80 m
LML2 (n = 136) 35.49 ± 2.81 40.62 26.71
SM5 (n = 123) 35.63 ± 2.55 40.62 27.40
SG2 (n = 122) 35.65 ± 2.52 40.62 27.40

UAV 120 m
LML2 (n = 125) 35.76 ± 2.89 41.97 27.18
SM5 (n = 123) 35.08 ± 2.63 40.85 27.37
SG2 (n = 122) 35.81 ± 2.62 40.86 27.15

* LML2—local maxima lowpass filtering at search radius 2 m; SM5—shiny mean filtering at search radius 5 m;
SG2—shiny Gaussian filtering at search radius 2 m; n—number of trees.
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Figure 5. The scatter plots of field TH with UAV TH: (a) Field TH with LM lowpass filtering at
UAV 80 m; (b) Field TH with SM filtering at UAV 80 m; (c) Field TH with SG filtering at UAV 80 m;
(d) Field TH with LML filtering at UAV 120 m; (e) Field TH with SG filtering at UAV 120 m; (f) Field
TH with SG filtering at UAV 120 m. Black lines represent the zero intercept of the trend line. Red
lines represent the regression line of the data (black dots).

4.4. CA and CC Percentages
Tree crowns, delineated manually and from the SRP, are presented in Figure 6. We

manually delineated the tree crown of 136 larch (yellow) and seven other trees (orange)
(Figure 6a,b). The SRP delineated the tree crowns automatically (Figure 6c,d). The man‑
ual CA (56.65 m2) of larch trees was lower than both the SRP mean (63.72 m2) and that
obtained with Gaussian (63.83 m2) filtering at UAV 80 m. However, the SRP mean CA
(56.44 m2) was slightly lower than the mean filtering CA (55.57 m2) and slightly higher
than the Gaussian filtering CA (56.64 m2) at UAV 120 m. The maximum CA was higher
with manual crown delineation than with the SRP at both UAV altitudes (Table 6). The man‑
ual CA delineation was more accurate than the SRP crown delineation due to the use of a
high‑resolution orthomosaic where the larch crown is easily visible. The CC percentage of
larch with manual crown delineation (74.7%) was lower than that with SRP (92.0−92.7% at
UAV 80 m and 78.2% at UAV 120 m). The total CC (including other species_estimated via
manual crown delineation was 77.4% at both UAV altitudes, whereas the total CC obtained
by SRP was 96% at UAV 80 m and 82.3% at UAV 120 m.
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Figure 6. The results of the delineation of individual tree crowns: (a) Manual crown delineation at
UAV 80 m with spatial positions of filed trees; (b) Manual crown delineation at UAV 120 m with
spatial positions of filed trees; (c) SRP crown delineation at UAV 80 m with UAV treetops; (d) SRP
crown delineation at UAV 120 m with UAV treetops. Yellow and orange lines in (a) and (b) represent
the manual crown delineation of larch and other trees, respectively and red dots represent the spatial
location of trees in the field. Black lines in (c) and (d) represent the SRP crown delineation of all trees
and white dots represent the SRP detected UAV treetops.

Table 6. The results of CA with maximum and minimum values and CC for different filtering meth‑
ods at two UAV flying altitudes.

UAV Altitude Filtering Method * Mean TH ± SD (m) Maximum Minimum CC Larch
(%)

CC All
(%)

UAV 80 m
Manual CA (n = 136) 56.65 ± 21.27 144.76 23.89 74.74 77.44

SM5 (n = 98) 63.72 ± 18.73 106.00 31.25 92.02 96.05
SG2 (n = 98) 63.83 ± 18.65 106.00 31.25 92.77 96.06

UAV 120 m
Manual CA (n = 136) 56.44 ± 21.24 144.76 23.89 74.74 77.44

SM5 (n = 106) 55.57 ± 14.33 100.50 19.50 78.72 82.29
SG2 (n = 95) 56.64 ± 14.29 100.50 19.50 78.72 82.29

* LML2—local maxima lowpass filtering at search radius 2 m; SM5—shiny mean filtering at search radius 5 m;
SG2—shiny Gaussian filtering at search radius 2 m.

The results of a simple linear regression analysis are given in Figure 7. The R2 value
for crown delineation was lower than that of the TH regression. The R2 value was higher
at UAV 80 m than at UAV 120 m. At UAV 80 m, the R2 and RMSE values were 0.3 and
20.85 m2, and 0.30 and 20.76 m2 for mean and Gaussian filtering, respectively. At UAV
120 m, the R2 and RMSE values were 0.21 and 20.02 m2 and 0.21 and 19.96 m2 for mean
and Gaussian filtering, respectively.
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Figure 7. The scatter plots of manual CA with SRP CA: (a) Manual CA with SRP mean CA at UAV
80 m; (b) Manual CA with SG CA at UAV 80 m; (c) Manual CA with SM CA at UAV 120 m;
(d) Manual CA with SG CA at UAV 120 m. Black lines represent the zero intercept of the trend
line. Red lines represent the regression line of the data (black dots).

4.5. DBH, V, and CST
The results of the MLR model for tree DBH, V, and CST are given in Table 7. Figure 8

shows scatter plots of the predicted variables with field‑estimated values. In the model, TH
values derived from Gaussian filtering and manually digitalized CA were more accurate
than those obtained using other filtering methods. DBH model had a lower R2 value (0.27)
than the V and CST models, with an RMSE of 5.64 cm. Model R2 values for V and CST
were 0.30 and 0.29, with an RMSE of 0.87 m3 tree−1 and 0.24 MgC tree−1, respectively.
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Table 7. The results of the MLR model for tree DBH, V, and CST for two flight altitudes.

UAV Altitude Dependent Variable
(Unit)

Independent
Variables **

Selected
Model

Parameter
Estimates R2 RMSE

UAV 80 m DBH (cm) SG_TH, ND,
M_CA, C_peri

Intercept 45.02948 *** 0.27 5.64
SG_TH 0.20821 *
M_CA 0.16068 ***

UAV 120 m

V (m3 tree−1) SG_TH, M_CA,
ND, SG_CA

Intercept −0.773327 *** 0.30 0.87
SG_TH 0.086222 *
M_CA 0.025442 ***

C (MgC tree−1) SG_TH, M_CA,
ND, SG_CA

Intercept −0.229230 *** 0.29 0.24
SG_TH 0.026223 *
M_CA 0.007716 ***

** M_CA—manual crown area; F_TH—field tree height; C_peri—the perimeter of a tree crown in m; ND—near
distance, is the shortest distance of a tree that is near to the target tree or Euclidean distance from each cell in the
raster to the closest source in m; SM_TH—SRP mean tree height; SG_TH—SRP Gaussian tree height; significance
code—*** p < 0.001, * p < 0.05.
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et al. [82] showed that the F-score of the ITD in the canopy of a mixed conifer forest was 
0.87. The ITD was higher in a conifer plantation than in a mixed broadleaf forest due to its 
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plantation with a canopy overlapping. Young et al. [48] reported that the accuracy of ITD 
and the resulting tree maps was generally maximized by collecting imagery at high alti-
tude (120 m) with at least 90% image-to-image overlap in structurally complex mixed co-
nifer forests where ITD ranged from 0.67 to 0.87, but the TH accuracy (R2 = 0.95) in their 
study was higher than in our study. In this study, when the tree density increased, the F-
score decreased. We estimated tree density based on the ITD results. We tested the ap-
plicability of the SRP, an open-source application with a limited input size (30 megabytes) 
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range of resolutions, ITD was more accurate. A detailed analysis is required to further 
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Figure 8. The scatter plots of DBH, V, and CST prediction with field estimated values: (a) Field
DBH with Gaussian DBH at UAV 80 m; (b) Prediction of field V with SG volume at UAV 120 m;
(c) Prediction of field CST with SG CST at UAV 120 m. Black lines represent the zero intercept of the
trend line. Red lines represent the regression line of the data (black dots).

5. Discussion
5.1. Individual Tree Detection and Tree Density

For ITD, the careful selection of algorithms with suitable filtering/smoothing methods
and window sizes influenced the accuracy of treetop detection [67,88]. The LM algorithm
has strong potential to detect treetops [67], mainly in conifer plantations. We used the LM
algorithm with different CHM filtering methods, radii, and window sizes. The F‑score
showed that the ITD was higher at UAV 80 m (0.87) than at UAV 120 m (0.83). Mohan
et al. [82] showed that the F‑score of the ITD in the canopy of a mixed conifer forest was
0.87. The ITD was higher in a conifer plantation than in a mixed broadleaf forest due to
its homogenous structure. Our stand area was also a conifer plantation, but it was an old
plantation with a canopy overlapping. Young et al. [48] reported that the accuracy of ITD
and the resulting tree maps was generally maximized by collecting imagery at high altitude
(120 m) with at least 90% image‑to‑image overlap in structurally complex mixed conifer
forests where ITD ranged from 0.67 to 0.87, but the TH accuracy (R2 = 0.95) in their study
was higher than in our study. In this study, when the tree density increased, the F‑score
decreased. We estimated tree density based on the ITD results. We tested the applicability
of the SRP, an open‑source application with a limited input size (30 megabytes) and a
resolution of 0.5 m in the CHM [47]. When this model was larger and had a wider range
of resolutions, ITD was more accurate. A detailed analysis is required to further increase
the accuracy of the ITD. Using UAVs with hyperspectral images will increase the accuracy
of ITD. Nevalainen et al. [89] obtained a high F‑score of 0.93 with hyperspectral imagery
for ITD in boreal forest.
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5.2. Tree Height
In our study, TH accuracy was high, with a higher R2 and a lower RMSE for the UAV

120 m flight compared to the UAV 80 m flight. Pourreza et al. [81] reported that UAV data
acquisition was not significantly different among three altitudes (25, 50, and 100 m) using
a local network RTK system (NRTK), except for the mean values calculated at 100 m. They
also obtained a positive and strong relationship between the measured and estimated TH
(R2 > 0.99) at all three flight altitudes. The RMSE values for estimated TH at flight altitudes
of 25, 50, and 100 m were 0.9%, 4.3%, and 10.2%, respectively, and the respective mean
absolute error (MAE) values were 0.04, 0.21, and 0.52. Additionally, the findings indicated
an underestimation of TH, which increased with increasing UAV flight altitude. Islami
et al. [90] reported a high R2 value of 0.935 at a flight height of 100 m; this was higher than
the values for the 80 m and 120 m flight altitudes in the present study, whereas the RMSE
was lower at 100 m than at the other altitudes. Nasiri et al. [44] reported that the R2 and
RMSE for TH, using a UAV and the LM algorithm, were 0.808 and 3.22 m, respectively.
This RMSE was higher than our value (1.45–1.73 m), although it was calculated using a
different method, while we obtained a lower R2 value (0.71–0.77). In a study of a cashew
plantation, Mot et al. [80] reported that the highest R2 (0.60) was derived from a 50 m UAV
flight, whereas the 200 m UAV flight only achieved an R2 of 0.50. They also revealed that
their proposed method was only applicable to open terrain where the TH was <12 m due
to a design limitation of the pipe meters (i.e., a straight tube to measure height). Because
the cashew tree has a complex leaf, identifying the treetop was a challenge.

The TH accuracy of conifer plantations in other studies was higher than in the present
study due to the younger ages of their stands. Ota et al. [38] found that R2 and RMSE values
for the mean TH from a CHM were in the ranges of 0.89–0.92 and 1.24–1.31, respectively, in
an area dominated by 62‑year‑old plantations of evergreen conifer trees including Sugi and
Hinoki. Krause et al. [11] reported a treetop detection rate > 80% using the LM algorithm
in a 40‑year‑old conifer plantation, where the TH R2 value was 0.97–0.99 with an RMSE of
0.3–0.48 m. In general, our R2 value was low compared to studies in other conifer planta‑
tions. This may be due to the old‑growth condition of the larch plantation in the present
study, which had reached the stage of canopy overlapping. We extracted the TH based
on the spatial position of the UAV tree location; hence, the TH accuracy depended on the
accuracy of ITD. The accuracy of canopy detection was low due to the loss of apical domi‑
nance in old trees [91,92]. We found that some of the larch trees had a higher field TH than
UAV TH. This was due to the edge effect of some trees in the field, which resulted in them
being distributed in the high‑height range of the CHM. Similarly, some trees had a lower
field TH than UAV TH. This was due to some field trees being located outside of the high
height range of the CHM, and there was no suitable height range in the CHM to match
with the field TH. This may be due to the overlapping of lower trees by the treetop crown.
For these reasons, the TH accuracy of the old larch plantation was lower than for other
conifer plantations studied elsewhere. Therefore, the application of suitable algorithms
and technologies that could penetrate or scan the vertical distribution of the tree canopy;
for example, UAV LiDAR technology [93,94] in old plantations should be considered in
future analyses.

5.3. Crown Delineation and CC Percentage
In our study, the mean manual CA SRP CA values were not statistically significantly

different. The R2 value was higher at a lower altitude (UAV 80 m), with a slight change
in the RMSE. Pourreza et al. [81] found that the mean crown diameter based on field mea‑
surements and UAV estimations at all flight altitudes were not statistically significantly
different. The RMSEs for the estimated tree crown diameter at flight altitudes of 25, 50,
and 100 m were 2.2%, 4.6%, and 10.7%, respectively. Additionally, Pourreza et al. [81]
reported an underestimation of the crown diameter, which increased as the UAV flight
altitude increased and also tended to increase with tree size. In our study, CA was over‑
estimated by the SRP, and it decreased at higher altitudes due to the low pixel resolution
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and point density. Nasiri et al. [44] reported that the R2 and RMSE for crown diameter us‑
ing the LM algorithm were 0.923 and 0.81 m (7.02%), respectively. The correlations for CA
(0.45–0.55) were consistent with those of Moe et al. [28] who reported that the correlation
between the UAV and manual CA values ranged from 0.45 to 0.57 in broadleaf tree species.
He also reported low correlations between UAV and field‑measured CA (0.23–0.44) values,
but higher correlations were obtained for manual and field‑measured CA (0.63–0.72) val‑
ues. We analyzed the relationship between the manual and SRP CA values. The manual
CA was lower than the SRP CA in many larch trees, resulting in an overestimation. This
was because the SRP delineated a tree crown CHM that included the shadow area (i.e.,
the extended lower canopy of the tree crown) in the tree CA; however, CA was manually
delineated based on the visual appearance of larch in the orthomosaic. Similarly, the man‑
ual CA had a higher value than the SRP CA in some trees, resulting in underestimation.
This was because the SRP delineated the larch tree crown into two or more crowns. This
explained the low accuracy of CA in our study. Manual crown delineation was more accu‑
rate in delineating multiple tree crowns due to the high‑resolution orthomosaic. Therefore,
various robust delineation approaches are needed to derive the CA of old larch plantations
when the tree canopy contains multiple overlapping crowns.

5.4. Tree DBH, V, and CST
The values of our field stand parameters were high due to the plantation being 115

years old; plantations in other areas were much younger. The DBH of larch ranged from
10.9 to 23.7 cm at a 60‑year‑old Japanese larch plantation in central Japan [95]. Kita et al. [96]
reported that TH, DBH, V, stand density, stand volume, and CST were in the ranges of
20.8–21.6 m, 21.4–27.7 cm, 0.393–0.587 m3 tree−1, 460–896 stem ha−1, 276–353 m3 ha−1, and
84.6–106.1 MgC ha−1, respectively, in a 31‑year‑old larch plantation. For the management
of a single tree, the individual tree DBH is an important variable. However, the estimation
of individual tree DBH from point‑density‑related remote sensing metrics is not significant.
In this study, we developed a model using UAV‑derived image metrics [28,97,98]. Yu
et al. [97] stated that individual tree DBH estimated using the tree crown and height metrics
was the best model. Chen et al. [98] reported that an individual tree V, estimated using
LiDAR height and crown metrics, was the best model. Tree crown and TH measured in
the field were used to develop the DBH models in previous studies [99,100]. In our study,
we used UAV TH and CA metrics, as well as various filtering methods and the manual
CA, to develop DBH, V, and CST models. The results of the DBH, V, and CST models also
revealed that manual CA values, together with UAV TH values, could better estimate the
DBH, V, and CST. Moe et al. [28] obtained R2 values of 0.32−0.47 using field CA and TH,
while they were in the range of 0.4−0.56 using the manual CA and 99th percentile of TH
in a conifer mixed broadleaf forest. Our R2 values (0.27−0.32) for the DBH, V, and CST
models were closer to those of Moe et al. [28]. This may be due to the complexity of the old
stand. However, a high R2 value could be obtained using LIDAR point clouds and other
structural and textural UAV metrics.

5.5. Parameter Setting during the Photogrammetric Process
SfM and Multi‑View Stereo (MVS) techniques were used in the UAV photogrammetry

pipeline and these were processed in a fully automated way [101]. A 3D model of an object
is built from the different positions of 2D photographs using the SfM technique [102]. The
3D model is created from the common features that were identified as matching points
or key points in the 2D images through the SIFT (Scale Invariant Feature Transform) al‑
gorithms of SfM [103]. We used the same setting of Agisoft Metashape software (version
2.8) during the image alignment and other processes for both UAV altitudes of 80 m and
120 m to maintain consistency. Mousavi et al. [101] reported that tie point setting during
the photogrammetric process will affect the accuracy of image orientation and outcome.
Barazzetti [104] found that the improvement of precision is significant for a small number
of points, whereas a huge number of 3D points does not provide significant improvement.
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Reprojection error, multiplicity, intersection angle, and a posteriori standard deviation are
considered quality parameters during the point cloud extraction [105]. The aggregation of
these quality metrics allows for the removal of low‑quality tie points before refining the
orientation results in a new adjustment. The lowest values for re‑projection error and pos‑
teriori standard deviation, while the highest values for multiplicity and intersection angle
showed high accuracy during the image alignment process. In this study, the mean re‑
projection error was higher for UAV 120 m (3.41 pix) than for UAV 80 m (2.84 pix). The
authors will consider the algorithm of multi‑criteria decision‑making (MCDM) developed
by Mousavi et al. [106] for future analysis to reduce the reprojection error.

However, our RMSE was 0.000553 m and 0.331 pix for UAV 80 m, and 0.000481 m and
0.367 pix for UAV 120 m, during image alignment when two GCPs were added in Agisoft
Metashape, confirming the accuracy of the measurements. Tavasci et al. [79] obtained an
RMSE of 0.06 m with seven GCPs and a GSD of 0.03 m using RTK GNSS, and they con‑
firmed the good quality of the measurement. Izere [107] stated that UAV Phantom 4 RTK
M300 with RTK GNSS enabled high accuracy on plant height estimation without GCPs.
As a result, it has been suggested that this accurate positioning information can serve as a
viable alternative to the traditional use of GCPs for georeferencing photogrammetric mod‑
els [108–110]. Tahar [111] found that the error range was decreased after using seven or
more GCPs in 150 ha. Kalacska et al. [112] concluded that where repeatability and adher‑
ence to a high level of accuracy are needed, only RTK and PPK systems should be used
without GCPs. Stott et al. [113] stated that using no GCPs and 5 GCPs with 3300 indepen‑
dent spatially distributed RTK‑GNSS surveyed checkpoints gave an RMSE of 0.066 and
0.072 m, respectively. Štroner et al. [114] combined DJI Phantom 4 RTK with RTK‑GNSS
methods, giving the best results for both the vertical and horizontal components, but using
a small number of GCPs (at least one) or quality camera pre‑calibration is applicable where
the terrain is difficult for SfM evaluation. Martínez‑Carricondo et al. [115] minimized the
altimetry errors by placing 1.7 GCPs around the edge of the study area. Yu et al. [116]
reported that 12 GCPs and 18 GCPs were optimal for 7–39 ha and 342 ha, respectively.

GCPs rigorously incorporated in the adjustment remain mandatory to control net‑
work deformation. Accuracy is also dependent on the software [58]. We therefore used
two highly accurate GCPs using RTK GNSS and calibrated images for the photogrammet‑
ric process using Agisoft Metashape. Additionally, Swayze et al. [43] stated that Agisoft
Metashape‑estimated horizontal alignment error was not significantly different with the
acquisition altitude of UAV flight. We also found that the image resolution was reduced
when the altitude increased (3.25 cm/pix at UAV 80 m and 5.39 cm/pix at UAV 120 m),
this also played the accuracy of the outcome. Frey et al. [117] stated that the influence of
flight parameters on TH and crown diameter was studied; however, there was a knowl‑
edge gap on other stand parameters. They also reported that the accuracy of TH was high
for all UAV flight parameters; however, the accuracy of DBH was high for lower altitudes.
Image alignment and positional accuracy of the point clouds are the sources of error in
extracting individual tree locations and DBH. However, they used a 4 m buffer during the
tree‑matching process to reduce spatial positional errors [43]. In this study, the accuracy
of ITD and TH was obtained without buffer.

6. Conclusions
Many studies have been conducted in old‑growth forests and plantations using vari‑

ous remote sensing technologies, but to the best of our knowledge, stand parameters have
not been estimated using UAV technology in an old Japanese larch plantation. The old
larch plantation in this study had mean TH, DBH, BA, V, and CST values of 35.2 m tree−1,
60.9 cm tree−1, 0.3 m2 tree−1, 3.76 m3 tree−1, and 1.15 MgC tree−1, respectively, while tree
density, stand V, and stand CST were 154 stem ha−1, 543 m3 ha−1, and 168 MgC ha−1,
respectively. The CHM was generated using UAV DSM and LiDAR DTM to ensure the
accuracy of the extracted stand parameters. From the UAV photogrammetry results, the
accuracy of ITD and TH was higher than that of the CA, DBH, V, and CST. For the dif‑
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ferent UAV flying altitudes, the accuracy of ITD, CA, and DBH was highest at UAV 80 m,
whereas the accuracy of TH, V, and CST was highest at UAV 120 m.

Increasing the search radius and window size improved the ITD rate. When compar‑
ing the different filtering methods, the accuracy of TH was highest for both mean and Gaus‑
sian filtering, while for CA it was highest for Gaussian filtering. Comparatively, higher
accuracy was obtained with Gaussian and mean filtering. Only the high‑resolution UAV
orthomosaic enabled highly accurate manual crown delineation. For DBH, V, and CST es‑
timation, the best model was obtained after fitting with the metrics of manually digitalized
CA and UAV TH. We found that the accuracy of the stand parameters depended on the
altitude of the UAV and the filtering method used. Therefore, forest managers should be
aware that the estimation of stand parameters depends on the UAV’s flight altitude and
filtering methods. In general, varying the flying altitude and related algorithms, together
with the use of various filtering methods in old Japanese larch plantations, may improve
stand parameter estimation. Therefore, as in other conifer plantations, we speculate that
there will be variations in the estimated value. However, a detailed investigation is needed
for other old conifer plantations that are distributed with different formats of stand struc‑
ture such as shape of the tree crown, distribution of crown area, acuteness of canopy top,
and number of branches. Future studies should focus on refining these methods, exploring
the potential of other algorithms and techniques, using high‑resolution hyperspectral im‑
agery for more accurate and efficient tree detection, and stand parameter estimation using
UAV photogrammetry.
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Appendix A

Table A1. Parameter setting of UAV image processing.

Photogrammetric Process Parameters

Image alignment

Accuracy: medium
Pair selection: Reference

Key points: 40,000
Tie points: 1000

Guided marker positioning 4
Camera optimization parameters F, b1, b2, cx, cy, k1–k4, p1, p2
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Table A1. Cont.

Photogrammetric Process Parameters

Building dense cloud

Quality: medium
Depth filtering: Mild

Quality: medium
Depth filtering: mild

Building mesh

Surface type: medium
Source data: Dense cloud
Interpolation: Disabled

Face count: high

Building DEM
Type: Geographic

Source data: Dense cloud
Interpolation: enabled

Building orthomosaic

Type: Geographic
Surface: DEM

Blending mode: Mosaic
Enable hole filling

Table A2. Processing time of UAV imagery in Agisoft Metashape (version 1.8.4.)

Photogrammetric Process Setting UAV 80 m UAV 120 m

Image alignment Matching time 15 min 34 s 4 min 9 s
Alignment time 25 min 55 s 3 min 34 s

Camera optimization Optimization time 1 min 13 s 13 s

Building dense cloud
Processing time 1 h 1 min 18 min 5 s
Generation time 2 h 7 min 18 min 5 s
Depth map and reconstruct 1 h 30 min 1 h 7 min

Building DEM Processing time 2 min 6 s 15 s
Building Orthomosaic Processing time 1 h 28 min 1 h 5 min

Systems used

Software: Agsoft Metashape Professional
Software version: 1.8.4 build 14856
OS: Windows 64 bit
RAM: 31.71 GB
CPU: 11th Gen Inter(R) Core (TM) i7‑11800H @2.30 GHz
GPU: NVIDIA GeForce RTX 3050 Ti Laptop GPU

Table A3. Results of drone‑image processing.

UAV Attribute UAV 80 m UAV 120 m

Acquired images 1257 372
Flying altitude 80 m 120 m
Point density 931 points/m2 328 points/m2

Pixel resolution 3.25 cm/pix 5.39 cm/pix
Image resolution 8192 × 5460 pix 8192 × 5460 pix

Ground resolution 0.813 cm/pix 1.35 cm/pix
Tie points 1,109,968 483,325
Projections 3,707,621 1,030,596

Mean reprojection error (pixel) 2.84 pix 3.04 pix
Total error with GCPs 0.331 pix 0.367 pix

Dense clouds 136,581,158 74,639,588
Coordinate system JGD2000 Japan–19 zone XII/GSIGEO 2000 geoid
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Figure A2. Representation of UAV treetop and field treetop for part of the stand, in which illustra-
tion of TP, FN, and FP: (a) LM treetop (b) SRP treetop. Where TP—is the number of correctly de-
tected trees; FP—is the number of incorrectly detected trees; FN—is the number of incorrectly un-
detected trees; TN—not applicable, is denoted as those places where no tree exists and the model 
finds no trees. 

  

Figure A1. Representation of the field tree location in the respective orthomosaics: (a) Field tree
location and stand area in derived orthomosaic at UAV 80 m; (b) Field tree location and stand area in
derived orthomosaic at UAV 120 m. Red dots indicate the spatial location of the trees while numbers
(yellow color) represent the respective tree number labeled in the field. Two orange dots represent
the distribution of the ground control points, GCP 1 and GCP 2.



Sensors 2023, 23, 9907 24 of 29

Sensors 2023, 23, x FOR PEER REVIEW 25 of 31 
 

 

(b) 

Figure A1. Representation of the field tree location in the respective orthomosaics: (a) Field tree 
location and stand area in derived orthomosaic at UAV 80 m; (b) Field tree location and stand area 
in derived orthomosaic at UAV 120 m. Red dots indicate the spatial location of the trees while num-
bers (yellow color) represent the respective tree number labeled in the field. Two orange dots rep-
resent the distribution of the ground control points, GCP 1 and GCP 2. 

  
(a) (b) 

Figure A2. Representation of UAV treetop and field treetop for part of the stand, in which illustra-
tion of TP, FN, and FP: (a) LM treetop (b) SRP treetop. Where TP—is the number of correctly de-
tected trees; FP—is the number of incorrectly detected trees; FN—is the number of incorrectly un-
detected trees; TN—not applicable, is denoted as those places where no tree exists and the model 
finds no trees. 

  

Figure A2. Representation of UAV treetop and field treetop for part of the stand, in which illustra‑
tion of TP, FN, and FP: (a) LM treetop (b) SRP treetop. Where TP—is the number of correctly de‑
tected trees; FP—is the number of incorrectly detected trees; FN—is the number of incorrectly unde‑
tected trees; TN—not applicable, is denoted as those places where no tree exists and the model finds
no trees.
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