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Abstract: In this paper, we propose a novel method for 2D pattern recognition by extracting fea-
tures with the log-polar transform, the dual-tree complex wavelet transform (DTCWT), and the 2D
fast Fourier transform (FFT2). Our new method is invariant to translation, rotation, and scaling
of the input 2D pattern images in a multiresolution way, which is very important for invariant
pattern recognition. We know that very low-resolution sub-bands lose important features in the
pattern images, and very high-resolution sub-bands contain significant amounts of noise. Therefore,
intermediate-resolution sub-bands are good for invariant pattern recognition. Experiments on one
printed Chinese character dataset and one 2D aircraft dataset show that our new method is better
than two existing methods for a combination of rotation angles, scaling factors, and different noise
levels in the input pattern images in most testing cases.

Keywords: log-polar transform; dual-tree complex wavelet transform (DTCWT); fast Fourier
transform (FFT); discrete wavelet transform (DWT); pattern recognition

1. Introduction

Pattern recognition is a very important topic in computer vision. It is extremely
useful in optical character recognition (OCR), face recognition, iris recognition, fingerprint
recognition, palmprint recognition, etc. Furthermore, feature extraction from 2D pattern
images is a crucial step in invariant pattern recognition [1]. Most existing methods lack the
invariant property, which is undesirable in real-life applications. For example, translation
invariance, rotation invariance, and scaling invariance are very important in invariant
pattern recognition. Pattern recognition can automatically recognize patterns in data,
which can be anything from text and images to sounds or other definable qualities. It can
recognize 2D pattern images quickly and precisely.

In this paper, we propose to extract invariant features by the log-polar transform [2],
the dual-tree complex transform (DTCWT [3]), and the 2D fast Fourier transform (FFT2 [4]).
The DTCWT transform decomposes the pattern image in a multiresolution way, and it
is invariant to spatial shift, which is very important in pattern recognition. We know
that very low-resolution sub-bands lose fine features in the pattern images, and very
high-resolution sub-bands contain a significant amount of noise [5]. Hence, intermediate-
resolution sub-bands are extremely good for invariant pattern recognition. Our extracted
features are invariant to translation, rotation, and scaling. Experiments show that our
new method is better than the log-polar-FFT2 method, and the log-polar discrete wavelet
transform (DWT [6])-FFT2 method for recognizing printed Chinese characters and 2D
aircraft in most testing cases. This demonstrates that our new method is very useful in
many real-life applications.

The organization of this paper is as follows. Section 2 proposes a novel method for
invariant pattern recognition. Section 3 describes an experiment conducted to test the
effectiveness of our proposed method. Finally, Section 4 draws the conclusion of the paper
and introduces future research directions.
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2. Proposed Method

The log-polar transform converts rotation and scaling into spatial shifts. Mathemat-
ically speaking, it is a coordinate system in two dimensions, where a point is identified
by two numbers, one for the logarithm of the distance to a certain point, and one for an
angle. Let image F, be the translated, rotated, and scaled version of image Fy; then they are
correlated as

r
B(r,0) =F (5,9 - 90)
F,(logr,0) = Fi(logr —loga, 0 — 6))

PZ((:/Q) = Fl(gfdfefeo)

where
¢ =logr

d =loga.

As a result, their Fourier spectra will be invariant to translation, rotation, and scaling
of the input pattern images. This is because the magnitudes of the Fourier coefficients are
invariant to spatial shifts.

The DTCWT can decompose the image into multiresolution scales in a translation-
invariant way. It computes the complex transform of an image by using two separate
DWT decompositions, namely, tree a and tree b. If the filters used in one are specifically
designed differently from those in the other, it is possible for one DWT to produce the
real coefficients and the other the imaginary. Taking the FFT2 transform of each DTCWT
sub-band coefficient will result in translation-invariant sub-band coefficients, so that we
can recognize each pattern image effectively. In this paper, we use the 3rd, 4th, and 5th
sub-band coefficients of the DTCWT transform for the recognition of printed Chinese
characters and 2D aircraft. It is clear thar very low-resolution sub-bands lose important
features in the pattern images and very high-resolution sub-bands contain a lot of noise. As
a result, intermediate-resolution sub-bands are desirable for invariant pattern recognition.

Our newly proposed method in this paper can be summarized as follows:

Translate the input pattern image to the centroid of the pattern.

Convert the pattern from cartesian coordinates to log-polar coordinates of 128 x 128 pixels
in size. Let us denote it as LP.

Perform DTCWT transform on the log-polar image LP for K = 5 decomposition scales.
Construct complex sub-bands: COMPLEX (k) = Tree a (k) + i x Tree b (k), ke[1,K].
Conduct FFT2 transform for each COMPLEX sub-band, and take their spectra.
Recognize the pattern image to one known class by using the 3rd, 4th, and 5th sub-
bands of the computed transform coefficients.

Compute the correct recognition rate for the testing dataset by using the nearest
neighbor (NN) classifier.

The FFT2 [3] converts an image from its original domain in space to a representation
in the frequency domain. It can reduce the complexity of computing the discrete Fourier
transform (DFT) of an image from O((M x N)?) to OM x N log (M x N)), where M and N
are the row and column numbers of the pattern image. The Fourier spectra are invariant to
spatial shifts, which is very important for invariant pattern recognition.

We also compare our new method with two existing methods: log-polar FFT2 and
log-polar DWT-FFT2. The first method computes the log-polar transform and then takes
the FFT2 to obtain invariant features. The second method performs the log-polar transform,
the DWT transform [4], and the FFT2 transform to obtain invariant features.

Our invariant pattern recognition method is still useful and competitive when compared
to convolutional neural networks (CNN). It can extract invariant features from pattern images
quickly, instead of training a CNN for many hours. Our new method achieves very high
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classification accuracies for two datasets and for different combinations of deformations in the
input pattern images, as demonstrated in the experimental section in the paper.

The computational complexity of this paper can be given as follows. Let the pattern
image be of size M x N. The log-polar transform is a linear operation with complexity
OM x N). The DTCWT transform is a linear operation with complexity O(M x N). The
FFT2 is in the complexity of O(M x N log(M X N)). As a result, the total complexity of our
new method is O(M x N log(M x N)).

The major contribution of this paper is that we have successfully extracted very stable
features in multiresolution from the pattern images, which are invariant to translation, rota-
tion, and scaling. It is not common to see published papers that achieve all three invariant
properties in a multiresolution way. It is well-known that very low-resolution sub-bands lose
important features in the pattern images, and very high-resolution sub-bands contain a lot of
noise. Consequently, intermediate-resolution sub-bands are very good for invariant pattern
recognition. Experimental results demonstrate that our new method proposed in this paper is
better than the log-polar FFT2 method and the log-polar DWT-FFT2 method in most testing
cases for recognizing printed Chinese characters and 2D aircraft.

3. Experiments

We conducted experiments with one printed Chinese character dataset (Figure 1)
and one 2D aircraft dataset (Figure 2), where 85 characters and 20 aircraft exist in each
dataset, respectively. Both datasets are in binary format. We performed experiments with
the proposed method in this paper, the log-polar-FFT2 method, and the log-polar DWT-
FFT2 method. We deformed the input pattern images with scaling factors 0.2, 0.3, 0.4,
0.5,0.6,0.7,0.8, 0.9, and 1.0. We rotated the input pattern images with 30°, 60°, 90°, 120°,
150°, 180°, 210°, 240° and 270°. We also added noise to the input pattern images with
signal-to-noise-ratio (SNR) = 20, 15, 10, 5, 4, 3, 2, 1 and 0.5 (Figure 3). The SNR is defined as:

VE(E(G,j) — avg(F))?
VEn(i,f) — avg(n))?

where F is the noise-free image, n is the added Gaussian white noise, and avg(F) and avg(n)
are the average values of the image F and image 7, respectively. A combination of rotation
angles and scaling factors for an aircraft is shown in Figure 4.

Our experimental results are demonstrated as follows. Table 1 tabulates the correct
recognition rates for a combination of rotation angles and scaling factors for the proposed
method for the printed Chinese character dataset. Table 2 displays the correct recognition
rates for a combination of rotation angles and scaling factors for the log-polar-FFT2 method
for the printed Chinese character dataset. Table 3 shows the correct recognition rates for a
combination of rotation angles and scaling factors for the log-polar DWT-FFT2 method for
the printed Chinese character dataset. Table 4 tabulates the correct recognition rates for
a combination of rotation angles and scaling factors for the proposed method for the 2D
aircraft dataset. Table 5 shows the correct recognition rates for a combination of rotation
angles and scaling factors for the log-polar-FFT2 method for the 2D aircraft dataset. Table 6
shows the correct recognition rates for a combination of rotation angles and scaling factors
for the log-polar DWT-FFT2 method for the 2D aircraft dataset. Table 7 tabulates the correct
recognition rates for a combination of rotation angles and noise levels for the proposed
method for the printed Chinese character dataset. Table 8 shows the correct recognition
rates for a combination of rotation angles and noise levels for the log-polar-FFT2 method
for the printed Chinese character dataset. Table 9 lists the correct recognition rates for a
combination of rotation angles and noise levels for the log-polar DWT-FFI2 method for
the printed Chinese character dataset. Table 10 shows the correct recognition rates for a
combination of rotation angles and noise levels for the proposed method for the 2D aircraft
dataset. Table 11 tabulates the correct recognition rates for a combination of rotation angles
and noise levels for the log-polar-FFT2 method for the 2D aircraft dataset. Table 12 shows
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Figure 3. The noisy images with SNR = 20, 15, 10, 5, 4, 3, 2, 1, and 0.5, respectively.
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Figure 4. A combination of scaling factors (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0) and rotation
angles (30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, and 270°) for an aircraft image.
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Table 1. The correct recognition rates for a combination of rotation angles and scaling factors for the

proposed method for the printed Chinese character dataset.

Scaling Rotation

Factor 30° 60° 90° 120° 150° 180° 210° 240° 270°
0.2 7.06 10.59 9.41 7.06 11.76 9.41 7.06 11.76 9.41
0.3 27.06 23.93 50.59 24.71 22.35 42.35 23.53 22.35 40.00
0.4 57.65 60.00 88.24 57.65 60.00 88.24 57.65 60.00 88.24
0.5 76.47 84.71 88.24 80.00 81.18 94.12 83.53 82.35 95.29
0.6 97.65 96.47 97.65 97.65 96.47 97.65 97.65 96.47 97.65
0.7 100 100 100 100 98.82 100 100 98.82 100
0.8 100 100 100 100 100 100 100 100 100
0.9 100 100 100 100 100 100 100 100 100
1.0 100 100 100 100 100 100 100 100 100

Table 2. The correct recognition rates for a combination of rotation angles and scaling factors for the
log-polar-FFT2 method for the printed Chinese character dataset.

Scaling Rotation

Factor 30° 60° 90° 120° 150° 180° 210° 240° 270°
0.2 5.88 5.88 8.24 5.88 5.88 8.24 7.06 7.09 8.24
0.3 24.71 21.18 35.29 25.88 18.82 30.59 25.88 20.00 27.06
0.4 43.53 47.06 64.71 43.53 48.24 64.71 43.53 47.06 64.71
0.5 64.71 71.76 76.47 72.94 75.29 76.47 70.59 67.06 78.82
0.6 97.65 98.82 95.29 97.65 98.82 95.29 97.65 98.82 95.29
0.7 100 100 100 100 100 100 100 100 100
0.8 100 100 100 100 100 100 100 100 100
0.9 100 100 100 100 100 100 100 100 100
1.0 100 100 100 100 100 100 100 100 100

Table 3. The correct recognition rates for a combination of rotation angles and scaling factors for the

log-polar DWT-FFT2 method for the printed Chinese character dataset.

Scaling Rotation

Factor 30° 60° 90° 120° 150° 180° 210° 240° 270°
0.2 4.71 9.41 5.88 4.71 9.41 5.88 4.71 9.41 5.88
0.3 21.18 18.82 48.24 20.00 20.00 45.88 20.00 20.00 37.65
0.4 40.00 44.71 84.71 40.00 44.71 84.71 40.00 44.71 84.71
0.5 58.82 70.59 88.24 69.41 62.35 92.94 62.35 55.29 95.29
0.6 85.88 88.24 98.82 87.06 87.06 98.82 85.88 87.06 98.82
0.7 96.47 94.12 98.82 94.12 92.94 98.82 96.47 91.76 100
0.8 98.82 95.29 100 98.82 95.29 100 98.82 95.29 100
0.9 98.82 100 100 98.82 100 100 100 100 100
1.0 100 100 100 100 100 100 100 100 100
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Table 4. The correct recognition rates for a combination of rotation angles and scaling factors for the
proposed method for the 2D aircraft dataset.

Scaling Rotation

Factor 30° 60° 90° 120° 150° 180° 210° 240° 270°
0.2 65 55 70 65 55 70 65 55 70
0.3 90 95 100 90 95 95 95 90 100
0.4 100 100 100 100 100 100 100 100 100
0.5 100 100 100 100 100 100 100 100 100
0.6 100 100 100 100 100 100 100 100 100
0.7 100 100 100 100 100 100 100 100 100
0.8 100 100 100 100 100 100 100 100 100
0.9 100 100 100 100 100 100 100 100 100
1.0 100 100 100 100 100 100 100 100 100

Table 5. The correct recognition rates for a combination of rotation angles and scaling factors for the
log-polar-FFT2 method for the 2D aircraft dataset.

Scaling Rotation

Factor 30° 60° 90° 120° 150° 180° 210° 240° 270°
0.2 65 60 65 65 60 65 65 60 65
0.3 95 100 100 100 100 95 100 100 100
0.4 100 100 100 100 100 100 100 100 100
0.5 100 100 100 100 100 100 100 100 100
0.6 100 100 100 100 100 100 100 100 100
0.7 100 100 100 100 100 100 100 100 100
0.8 100 100 100 100 100 100 100 100 100
0.9 100 100 100 100 100 100 100 100 100
1.0 100 100 100 100 100 100 100 100 100

Table 6. The correct recognition rates for a combination of rotation angles and scaling factors for the
log-polar DWT-FFT2 method for the 2D aircraft dataset.

Scaling Rotation

Factor 30° 60° 90° 120° 150° 180° 210° 240° 270°
0.2 30 30 60 30 30 60 30 30 60
0.3 80 75 100 60 75 95 70 75 100
0.4 90 95 100 90 95 100 20 95 100
0.5 95 100 100 95 95 100 100 95 100
0.6 100 100 100 100 100 100 100 100 100
0.7 100 100 100 100 100 100 100 100 100
0.8 100 100 100 100 100 100 100 100 100
0.9 100 100 100 100 100 100 100 100 100

1.0 100 100 100 100 100 100 100 100 100
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Table 7. The correct recognition rates for a combination of rotation angles and noise levels for the

proposed method for the printed Chinese character dataset.

Rotation
SNR

30° 60° 90° 120° 150° 180° 210° 240° 270°

20 100 100 100 100 100 100 100 100 100

15 100 100 100 100 100 100 100 100 100

10 100 100 100 100 100 100 100 100 100

5 100 100 100 100 100 100 100 100 100

4 100 100 100 100 100 100 100 100 100

3 100 100 100 100 100 100 100 100 100

2 100 100 100 100 100 100 100 100 100
1 96.47 97.65 100 94.12 96.47 98.82 98.82 94.12 98.82
0.5 14.12 17.65 34.12 10.59 14.12 34.12 20.00 10.59 40.00

Table 8. The correct recognition rates for a combination of rotation angles and noise levels for the

log-polar-FFT2 method for the printed Chinese character dataset.

Rotation
SNR

30° 60° 90° 120° 150° 180° 210° 240° 270°

20 100 100 100 100 100 100 100 100 100

15 100 100 100 100 100 100 100 100 100

10 100 100 100 100 100 100 100 100 100

5 100 100 100 100 100 100 100 100 100

4 100 100 100 100 100 100 100 100 100

3 100 100 100 100 100 100 100 100 100

2 100 100 100 100 100 100 100 100 100
1 84.71 80.00 91.76 83.53 81.18 92.94 84.71 75.29 95.29
0.5 7.06 4.71 9.41 1.18 4.71 7.06 4.71 4.71 10.59

Table 9. The correct recognition rates for a combination of rotation angles and noise levels for the

log-polar DWT-FFT2 method for the printed Chinese character dataset.

Rotation
SNR

30° 60° 90° 120° 150° 180° 210° 240° 270°

20 100 100 100 100 100 100 100 100 100

15 100 100 100 100 100 100 100 100 100

10 100 100 100 100 100 100 100 100 100

5 100 100 100 100 100 100 100 100 100

4 100 100 100 98.82 100 100 100 100 100

3 100 100 100 100 100 100 98.82 100 100

2 98.82 100 100 98.82 100 100 97.65 100 100

1 84.71 84.71 100 82.35 87.06 100 82.35 85.88 100
0.5 11.76 11.76 32.94 11.76 10.59 40.00 7.06 12.94 32.94
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Table 10. The correct recognition rates for a combination of rotation angles and noise levels for the
proposed method for the 2D aircraft dataset.

Rotation
SNR

30° 60° 90° 120° 150° 180° 210° 240° 270°
20 100 100 100 100 100 100 100 100 100
15 100 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100 100 100
4 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100 100
2 100 100 100 100 100 100 100 100 100
1 90 95 100 95 100 100 80 90 100

0.5 15 10 10 15 10 20 5 10 20

Table 11. The correct recognition rates for a combination of rotation angles and noise levels for the

log-polar-FFT2 method for the 2D aircraft dataset.

Rotation
SNR

30° 60° 90° 120° 150° 180° 210° 240° 270°
20 100 100 100 100 100 100 100 100 100
15 100 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100 100 100
4 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100 100
2 100 100 100 100 100 100 100 100 100

1 70 65 60 55 45 45 50 50 70

0.5 15 15 15 15 10 10 15 15 15

Table 12. The correct recognition rates for a combination of rotation angles and noise levels for the
log-polar DWT-FFT2 method for the 2D aircraft dataset.

Rotation
SNR

30° 60° 90° 120° 150° 180° 210° 240° 270°
20 100 100 100 100 100 100 100 100 100
15 100 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100 100 100
4 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100 100
2 100 100 100 95 100 100 95 100 100
1 60 80 100 55 75 95 65 80 100

0.5 10 5 20 5 10 25 5 5 20

From Tables 1-12, we can see that our proposed method in this paper performs the
best in most testing cases. Our new method is better than both the log-polar-FFT2 method
and the log-polar DWT-FFT2 method for a combination of rotation and scaling factors and
different noise levels in most testing cases. Our new method is not as good as existing
methods in rare cases in our experiments. Furthermore, our new method is fast as well, in
terms of CPU computational time for invariant pattern recognition.

4. Conclusions

Invariant pattern recognition is an extremely important topic in today’s computer
vision applications. For example, it is very useful in OCR and biometrics such as face
recognition, iris recognition, palmprint recognition, fingerprint recognition, and so forth.
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Furthermore, extracting invariant features from 2D pattern images is very useful for many
real-life applications.

In this paper, we have proposed a novel method for pattern recognition by using the
log-polar transform, the DTCWT transform, and the FFT2 transform. Our extracted features
are invariant to translation, rotation, and scaling in a multiresolution way. It is well-known
that very low-resolution sub-bands lose fine features in the pattern images, and very high-
resolution sub-bands contain significant amounts of noise. Hence, intermediate-resolution
sub-bands are very good for invariant pattern recognition. Experiments demonstrate that
our new method is better than the log-polar-FFT2 method and the log-polar DWT-FFT2
method for recognizing printed Chinese characters and 2D aircraft in most testing cases.

Future research will be conducted by introducing denoising to the pattern images so
that better recognition results can be obtained. For instance, we can use our previously
published image denoising methods [7-10] to preprocess the input pattern images. We will
also study deep convolutional neural networks (DNN) for invariant pattern recognition,
which have achieved amazing results in recent years in real-life applications.
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