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Abstract: Improving the accuracy of DEMs is a critical goal in digital terrain analysis. The combination
of multi-source data can be used to increase DEM accuracy. Five typical geomorphic study areas in
the Loess Plateau in Shaanxi were selected for a case study and a 5 m DEM unit was used as the basic
data input. Data from three open-source databases of DEM images, the ALOS, SRTM and ASTER,
were obtained and processed uniformly through a previously geographical registration process.
Three methods, Gram–Schmidt pan sharpening (GS), weighted fusion and feature-point-embedding
fusion, were used for mutual enhancement of the three kinds of data. We combined the effect of these
three fusion methods in the five sample areas and compared the eigenvalues taken before and after
the fusion. The main conclusions are as follows: (1) The GS fusion method is convenient and simple,
and the three combined fusion methods can be improved. Generally speaking, the fusion of ALOS
and SRTM data led to the best performance, but was greatly affected by the original data. (2) By
embedding feature points into three publicly available types of DEM data, the errors and extreme
error value of the data obtained through fusion were significantly improved. Overall, ALOS fusion
resulted in the best performance because it had the best raw data quality. The original eigenvalues
of the ASTER were all inferior and the improvement in the error and the error extreme value after
fusion was evident. (3) By dividing the sample area into different areas and fusing them separately
according to the weights of each area, the accuracy of the data obtained was significantly improved.
In comparing the improvement in accuracy in each region, it was observed that the fusion of ALOS
and SRTM data relies on a gentle area. A high accuracy of these two data will lead to a better fusion.
Merging ALOS and ASTER data led to the greatest increase in accuracy, especially in the areas with a
steep slope. Additionally, when SRTM and ASTER data were merged, the observed improvement
was relatively stable with little difference.

Keywords: elevation RMSE; Gram–Schmidt pan sharpening; feature points embedding; weight
fusion; DEM

1. Introduction

The Loess Plateau is the largest loess area in the world. The Loess Plateau is an
active area of neotectonic movement, which is mainly characterized by the intermittent
uplift of large areas in the plateau and the continuous subsidence of the surrounding
down-depression area. It is generally believed that the Loess Plateau is formed on the
basis of loess underlying the bedrock. The primary loess is the aeolian dust accumulation
under the dry and cold climate of quaternary glaciation and the secondary loess is the
primary loess transformed by diluvial and alluvial processes. During the quaternary loess
accumulation period, the loess stratum showed the alternations of loess and paleosol with
the climatic cycles of glacial and interglacial periods. This unique landform developed
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under the action of internal and external forces such as water and heat, making it one of
the most valuable regions for geosensitive research in the world. With the continuous
improvement in the methods of digital terrain technology, the complex and unique terrain
of the Loess Plateau also provides a unique sample for the in-depth study of digital terrain
analysis [1]. The publicly available digital elevation model (DEM) provides the necessary
data basis for digital topography research of the Loess Plateau. However, the quality and
accuracy of publicly available DEM data are limited to a certain extent due to the influence
of their imaging principles and production technologies. The development of digital
terrain research depends on the continuous improvement in DEM accuracy. Although
evolving observational techniques offer the possibility of acquiring high-accuracy DEM
data products, new data acquisition is costly, time-consuming and still inevitably limited
by observational techniques and surface environments. Multi-source data fusion is another
effective way to improve data quality. Therefore, it is of great significance to explore higher-
precision DEM data based on publicly available DEM data for digital terrain research on
the Loess Plateau [2].

Scholars at home and abroad have conducted various experiments to improve the
accuracy of DEM. Bandara, Yue et al. filled the SRTM gap via the DSF filling method and
optimized the TIN filling method, using this method to integrate various data to improve
accuracy [3,4]. Gallant and O’Loughlin et al. aimed to improve DEM accuracy by removing
vegetation errors [5,6]. From the perspective of mathematical analysis, Karakasis et al. used
binary function to expand DEM data and carried out weighted fusion processing on the
coefficient matrix obtained from the expansion [7]. Siart, Yamazaki and Kaab attempted
to integrate a global DEM with a high-precision DEM [8,9]. Podobnikar and Papasaika
proposed weight fusion and DEM sparse point general fusion methods [10,11]. Hung T. et al.
used a weighted linear combination method to fuse data to improve DEM accuracy [12].
Sun Liang et al. proposed adopting an algorithm for calculating the optimal weighted
fusion DEM in the spatial domain through experiments [13]. Huang Changjun introduced
Shepard’s weighted model to improve the fitting of moving surfaces. Zhao Mingwei
optimized the directionality and distribution of sampling points from the perspective
of original data by locally calculating the coordinate rotation of the region and adding
constraint conditions and calculated the relationship between grid dots and elevation
to reduce errors [14,15]. Fan Jieming proposed a new interpolation model based on an
irregular grid, Wang Ketao proposed a weighted average combination method of double
higher-order polynomials and Du Manfei et al. proposed a variety of methods, such as
interpolation, weighted average and combination, to study combination possibilities and
find a method suitable for this region [16,17].

Based on research results at home and abroad, a multi-source data fusion algorithm
has been proved to be able to improve the accuracy of the DEM. The acquisition of multi-
source data is simple and the DEM can update quickly. Through the mutual enhancement
of publicly available data, the demand for high precision and timeliness can be taken into
account at the same time. However, although multi-source DEM data allow for a rich
and diverse fusion method, the combination of different types of data for different fusion
methods needed to obtain specific results may vary; using the same combination of data in
the same fusion method corresponding to different types of topography effects will lead to
different results. However, no domestic or foreign scholars have carried out an analysis
of this. Therefore, based on three publicly available data sources, the ALOS, SRTM and
ASTER, this study adopted three methods, namely, GS fusion, feature-point-embedding
fusion and regional weight fusion. Taking typical geomorphic regions of the Loess Plateau
in northern Shaanxi as samples, the mutual enhancement of fusion was conducted to reduce
DEM errors and improve accuracy. We explored the accuracy improvement effect of the
three research methods, including which data combination has the best accuracy effect and
the best degree of improvement, and which combinations and methods are suitable for each
landform. The research results provide a reference for algorithms and strategies aiming to
improve the accuracy of DEM on the Loess Plateau and their regional applicability.
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2. Materials and Methods
2.1. Study Areas

The Loess Plateau water system with the Yellow River as the backbone. There are
about 200 rivers that originated in the Loess Plateau, including the larger rivers: Taohe
River, Zuli River, Qingshui River, Huangfu River, Kuye River, Wuding River, Beiluo River,
Wei River, Qin River, Fen River; i.e., the gullies are widely distributed on the loess hilly and
gully region with a gully density of 4~8 km/km2. Due to the cutting and erosion of gullies
and rivers, the Loess Plateau is characterized by numerous gullies and ravines.

The sample area in this article was selected from the Loess Plateau area in Shaanxi
Province, specifically northern Shaanxi Province, which is at the center of the Loess Plateau.
The geomorphologic landforms here are rich and diverse, with a vast area of approximately
12.4 square kilometers. The terrain is generally high in the northwest and low in the
southeast. From the southern Weihe terraces to the north, there are beam-like hills, hilly
hills and sandy loess landforms in the far north. In this study, five typical sample areas,
Shenmu, Suide, Yanchuan, Ganquan and Chunhua, were selected from north to south to
represent the topographic and geomorphic characteristics of different areas in the typical
gully region of the Loess Plateau in northern Shaanxi. Among them, the Shenmu and
Chunhua sample areas had sparse gully density, while the other three sample areas had
dense gully distribution and complex topographic fluctuation. The distribution of the
sample areas and their locations are shown in Figure 1 and the topographic and geomorphic
features of the five sample areas are shown in Table 1.
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Table 1. The terrain of the study area.

Gully
Density

(km/km2)

Slope
(◦)

Average
Slope

(◦)

Elevation
(m)

Relative
Difference

(m)

Shenmu 3.40 0–61.11 8.75 1197.84 286.50
Suide 6.52 0–79.46 28.55 997.44 373.66

Yanchuan 6.78 0–83.05 30.80 1090.28 327.24
Ganquan 5.60 0–76.16 26.47 1300.56 311.18
Chunhua 3.13 0–72.62 11.96 1045.79 388.86

2.2. Datasets

The experimental data in this research area are based on 1:10,000 (5 m resolution) basic
data standardized by the national surveying and mapping department and three types of
multi-source DEM data, SRTM, ASTER and ALOS data, which were publicly downloaded.

The full name of the ALOS is the advanced land observing satellite, an earth observa-
tion satellite launched by Japan in January 2006. It is equipped with an optical sensor, the
panchromatic remote-sensing stereo mapping instrument (PRISM). PRISM takes observa-
tions between 82◦ N and 82◦ S latitude with a resolution of approximately 2.5 m; and, thus,
has obvious advantages in digital elevation surveying and mapping.

The full name of the SRTM is the Shuttle Radar Topography Mission. In February
2000, this joint survey was completed by NASA and NIMA, as well as the German and
Italian space agencies. The image data range includes 60◦ N–60◦ S, with a total area of over
119 million square kilometers, covering more than 80% of the Earth’s surface. The data are
referenced by the WGS84 (World Geodetic System 1984), and the absolute plane accuracy
and elevation accuracy are approximately ±20 m and ±16 m. These data types have a wide
range of applications [18,19]. This study used SRTM1 data.

The full name of the ASTER is the advanced spaceborne thermal emission and reflected
radiation imager. Data from ASTER were obtained from the TERRA Earth observation
satellite launched by Japan and the United States (NASA) in December 1999. It uses stereo
pair processing, and the spatial reference is consistent with SRTM, with a resolution of 30 m
and an elevation accuracy of approximately ±20 m, covering 83◦ north–south latitude and
up to 99% of the global land area [20].

The 5 m DEM data were converted into the WGS84 (World Geodetic System 1984)
coordinate system. The data were matched with SRTM data and other data, and the
elevation was corrected by referencing the 0.35 m applicable value of elevation datum
deviation correction in the research area. Then, the global fitting method was used to align
the basic data with three grids to the east and two grids to the south. Finally, the spatial
position and coordinate reference system of basic data and other data in the research area
were unified [21]. The data characteristics are shown in Table 2 and a comparison of four
kinds of DEM data is shown in Figure 2.

Table 2. ALOS, SRTM and ASTER data characteristics.

Data Type ALOS SRTM ASTER

Plane precision 2.5 m 20 m 30 m
Elevation accuracy 12.5 m 16 m 20 m
Spatial resolution 12.5 m 30 m 30 m

Data sources
http://www.eorc.jaxa.jp/ALOS/
en/aw3d30/index.htm (accessed

on 10 April 2020)

http://srtm.csi.cgiar.org
(accessed on 10 April 2020)

http://www.gscloud.cn
(accessed on 10 April 2020)

http://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm
http://srtm.csi.cgiar.org
http://www.gscloud.cn
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(d) ASTER DEM.

2.3. Methodology

This study selected five typical geomorphic sample regions in the Loess Plateau area
as the research samples, including 5 m DEM data as basic data and the ALOS, SRTM and
ASTER as three different data sources. Premenstrual registration processing, GS fusion,
feature-point-embedding fusion and partition-weighted fusion were used for mutual en-
hancement. Using the three fusion methods for the five sample areas, the root mean squared
error (RMSE) of elevation and the extreme RMSE before and after the fusion was carried
out were compared to determine the optimal algorithm for improving DEM accuracy. The
technical route is shown in Figure 3. AS represents the fusion result of ALOS and SRTM
data, AA represents the fusion result of ALOS and ASTER data, and SA represents the
fusion result of SRTM and ASTER data.
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Figure 3. The flowchart of the research process.

2.3.1. Multi-Source Data Fusion Based on GS Transform

The GS transform fusion method can efficiently fuse and maximize the high-spatial-
resolution image information contained in the fusion data, so that multi-source data can be
efficiently and quickly fused. Firstly, the low-resolution image data were used to simulate
the high-resolution image and this was used as the first component of GS fusion in GS
fusion transformation with the low-resolution image. The formula for this process is
as follows:

GST(i, j) = (BT(i, j)− µT)− ∑T−1
l=1 (ϕ(BT , GSl)× GSl(i, j)) (1)

µT = (∑C
j=1 ∑R

i=1(BT(i, j))/C × R (2)

ϕ(BT , GSl) =

[
σ(BT , GSl)

σ(GSl , GSl)
2

]
(3)

σT =

√
∑cC

j=1 ∑R
i=1(BT(i, j)− µT)

C × R
(4)

In the above formula, GST represents the t-th component generated by GS transforma-
tion, and BT and µT represent the t-band image of the original image and the average gray
value of the image (Equation (1)). ϕ(BT , GSl) represents the covariance between the T-band
and GSl of the low-resolution image and σT is used to calculate the standard deviation of
GS1 after the first transformation. i, j and C, R represent the number of rows and columns
of low-resolution images and the whole remote sensing image, respectively.

According to the results of Equations (2)–(4), the high-resolution image was matched
and optimized with the transformed results to obtain the optimized high-resolution image
and the first component GS1 was replaced. Then, the obtained data were changed using
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inverse GS to obtain the spatial-resolution-enhanced image results. Inverse transformation
is represented by Equation (5):

B̂T(i, j) = GST(i, j) + µT +
T−1

∑
l=1

ϕ(BT , GSl)× GSl i, j (5)

2.3.2. Embedding Fusion Based on Feature Points

Ridges and valleys form the dividing lines (skeleton lines) of the topographic relief;
so, they are of great importance for the study of topography and geomorphology. Ridges
and valleys may be affected by factors such as shading and vegetation, which may lead to
relatively large error values. In this case, the 5 m DEM basic high-precision data were used
to extract the basic high-precision topographic feature points such as ridge and valley lines,
which can be embedded into different data sources to improve the data accuracy.

The ridges and valleys represent water separation and catchment respectively. The
extraction of ridge and valley lines is essentially the extraction of water-separation lines
and catchment lines, so the extraction can be performed by using hydrological analysis.

For ridge lines, since it is also a water separation, the essence of the water separation is
the origin of the flow. After the surface runoff simulation, the flow direction of these grids
should only have the outflow direction, but not the flow direction; i.e., the accumulation of
confluence in the DEM grids is zero. Therefore, by extracting the zero value, the divergence
lines, i.e., the ridge lines, can be obtained. For valley lines, a reverse terrain calculation
can be used. That is, a larger value is used to subtract the original DEM data to obtain the
topographic data, which is opposite to the original DEM topography, so that the ridges in
the original DEM become valleys in the reverse topography and the valleys in the original
DEM become ridges in the reverse topography. Then, the extraction of valley lines can
be achieved by using the ridge lines extraction method. The extraction method of feature
points is shown in Figure 4.
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2.3.3. Multi-Source Data Fusion Based on Weight

The weight of image fusion was calculated according to the error of the original data,
and then the original data were fused according to the weight. When the topography of
the study area is complex and the data differ greatly, the error will be increased to some
extent due to the influence of topography. Therefore, the samples were divided into gentle
areas between gullies, gentle areas at the bottom of gullies and steep areas on gully slopes;
and their weights were calculated for fusion. Figure 5 shows the extraction process of the
research region.
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Figure 5. The study area division extraction flowchart.

The slope was calculated based on the basic data of 5 m DEM to obtain the gentle
area at the bottom of the gully and the gentle area between the gullies in this area [22].
The elevation RMSE and positive and negative deviation of each sample area were calcu-
lated. Equation (6) was used to calculate the weight of different data in each area during
data fusion. Finally, data from different sources were fused according to weight fusion
Equation (7):

w =
σ2

2 − ρσ1σ2

σ1
2 + σ22 − 2ρσ1σ2

(6)

yc = w f1 + (1 − w) f2 (7)

In the above formula, w represents the weight of fusion, which is generally between 0
and 1. σ1 and σ2 are the standard deviations of the fusion images, and ρ is the correlation
coefficient between the image errors. f1 and f2 represent the original data before fusion.

Table 3 shows the best fusion weight of different partitions in various zones. The
weights of AS, AA and SA in the table represent the weights of the ALOS, ALOS and SRTM,
respectively, which are the first data sources used in the fusion process. The proportion
of SRTM, ASTER and ASTER data in the second step is the difference between 1 and the
proportion of the previous data. In some data, the error is obviously dominant and the
fusion ratio is particularly close to 1; thus, it is represented by 1.

Table 3. The partition fusion weight table of various areas.

Area Proportion AS AA SA

Shenmu
Flat area at the gully bottom 19% 0.552 0.806 0.759

Flat area between gullies 37% 0.791 0.979 0.800
Gully slope steep area 44% 0.217 0.484 0.692

Yanchuan
Flat area at the gully bottom 28% 0.553 0.584 0.573

Flat area between gullies 15% 0.533 0.544 0.546
Gully slope steep area 57% 0.233 0.471 0.618

Chunhua
Flat area at the gully bottom 14% 0.706 0.886 0.927

Flat area between gullies 25% 1.000 0.875 0.840
Gully slope steep area 61% 0.422 0.722 0.808

Ganquan
Flat area at the gully bottom 11% 1.000 1.000 0.699

Flat area between gullies 24% 0.966 0.888 0.491
Gully slope steep area 65% 0.919 0.889 0.614

Suide
Flat area at the gully bottom 12% 1.000 0.904 0.473

Flat area between gullies 18% 1.000 0.890 0.599
Gully slope steep area 70% 0.966 0.788 0.526
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3. Results

Compared with the original data, the three fusion methods led to a certain improve-
ment in data accuracy and they were able to better maintain the original advantages of
the data and further optimize them to obtain the best results. This study was based on
the 1:50,000 DEM accuracy standard of the National Bureau of Surveying and Mapping
(Table 4) to analyze the degree of accuracy improvement of various fusion methods.

Table 4. 1:50,000 DEM accuracy standard.

Terrain Category Ground Slope (Unit: ◦) Grid Point Elevation Error
(Unit: m)

Flat ground <2 4
Hilly 2–6 7

Mountain 6–25 11
Alpine mountain >25 19

3.1. Multi-Source Data Fusion Based on GS Transform

The ALOS, SRTM and ASTER data of the Shenmu, Chunhua, Suide, Yanchuan and
Suide plots were fused via GS transformation to obtain the error characteristic value results,
as shown in Table 5.

Table 5. Error statistic parameters in different study areas obtained via ENVI GS fusion (unit: m).

ALOS SRTM ASTER AS AA SA

Shenmu
R 7.683 6.924 8.804 6.830 8.278 7.592

Rmax 33.000 29.000 46.000 27.000 38.000 32.000
Rmin −32.000 −24.000 −35.000 −25.000 −28.000 −21.000

Chunhua
R 12.117 12.257 19.947 12.062 13.570 13.699

Rmax 44.000 45.000 110.000 44.000 50.000 50.000
Rmin −56.000 −57.000 −90.000 −56.000 −50.000 −49.000

Ganquan
R 8.123 13.625 15.456 8.137 9.775 14.965

Rmax 33.000 48.000 77.000 32.000 28.000 45.000
Rmin −42.000 −50.000 −90.000 −42.000 −46.000 −54.000

Suide
R 9.958 15.523 16.238 9.849 10.808 15.858

Rmax 33.000 29.000 46.000 27.000 38.000 32.000
Rmin −36.000 −57.000 −86.000 −25.000 −28.000 −21.000

Yanchuan
R 17.225 15.764 17.559 16.006 17.107 15.888

Rmax 78.000 80.000 88.000 80.000 78.000 81.000
Rmin −62.000 −62.000 −93.000 −63.000 −62.000 −62.000

Note: AS indicates the ALOS and SRTM data fusion result, AA indicates the ALOS and ASTER data fusion result,
SA indicates the SRTM and ASTER data fusion result, R indicates RMSE (root mean square error), Rmax indicates
the maximum value of the error and Rmin indicates the minimum value of the error. The same below.

According to the 1:50,000 accuracy standard of the National Bureau of Surveying and
Mapping, the average slope of the Shenmu sample area before fusion is 8.75◦, the error
value in the SRTM data is between the reference value of the error in the flat and hilly land,
and ALOS and ASTER data values fall between the hilly and mountain values. After the
fusion, the AS data were improved by one level relative to the ALOS data and the accuracy
of the AA and SA results did not improve by a whole level, but there was a significant
improvement. The average slope of the Chunhua sample area was 11.96◦. The first fusion
combination of three kinds of data had values falling between the mountain and alpine
mountain error reference values, though the latter were slightly larger. The accuracy level
was not significantly improved by fusion, but the relative data effect was relatively poor.
The maximum accuracy was increased by approximately 6.300 m, which is approaching the
critical value of high accuracy. The average slopes of Ganquan, Suide and Yanchuan were
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all greater than 25◦. The ALOS effect of Ganquan and Suide was relatively good (8.123,
9.958), falling within the error reference value range of 7 m–11 m in hilly and mountain.
The error in SRTM and ASTER data fell between the value obtained for mountain and
alpine mountain. After the fusion, the AS and AA results of these two plots were within
the error reference value interval in the hilly and mountain. Compared with the SRTM
and ASTER data, the accuracy level was improved and the error in the SA data was not
significantly improved. The Yanchuan area has an average slope of 30.8◦ and the errors in
the first combination of three kinds of data fell between the mountain and alpine mountain
values. The accuracy improved significantly after the fusion process, but none of them
improved by a whole level.

3.2. Embedding Fusion Based on Feature Points

The results of feature point extraction are shown in Figure 6.
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The feature points were embedded in different data and the results of the extreme
error before and after fusion were tested and compared, as shown in Table 6.

Table 6. Error statistical values before and after embedding feature points (unit: m).

ALOS (Before/After Fusion) SRTM (Before/After Fusion) ASTER (Before/After Fusion)

Shenmu
R 7.683 5.135 6.924 5.216 8.804 5.950

Rmax 33.000 30.230 29.000 28.810 46.000 37.830
Rmin −32.000 −23.560 −24.000 −25.220 −35.000 −20.180

Suide
R 9.958 8.550 15.523 9.299 16.238 9.507

Rmax 71.000 53.035 81.000 54.332 82.000 61.412
Rmin −36.000 −32.046 −51.000 −42.950 −86.000 −31.330

Yanchuan
R 17.225 11.304 15.764 10.357 17.559 10.390

Rmax 78.000 54.660 80.000 49.670 88.000 51.100
Rmin −62.000 −58.170 −62.000 −57.710 −93.000 −55.290

Chunhua
R 12.117 9.937 12.257 10.011 19.947 12.131

Rmax 44.000 38.424 45.000 38.880 110.000 77.778
Rmin −56.000 −37.110 −57.000 −33.590 −90.000 −36.970

Ganquan
R 8.123 8.277 13.625 9.627 15.456 9.438

Rmax 33.000 36.020 48.000 36.790 77.000 48.430
Rmin −42.000 −29.020 −50.000 −35.400 −90.000 −44.840

According to the national standard of 1:50,000 DEM elevation error, the elevation
RMSE value before Shenmu fusion generally fell between the hilly and mountain error
value and the elevation RMSE value after fusion was less than 7, which is within the
reference value range of 4–7 for flat land and hilly errors. The accuracy improvement was
better. The lowest ALOS data value of the elevation RMSE before Suide fusion was 9.958 m,
the largest ASTER elevation RMSE was 16.238 m and the maximum elevation RMSE after
fusion was 9.507 m. Before fusion, ALOS data were close to the mountain error value and
the other two fell between the mountain and alpine mountain values. Between 11 and 19 m,
the elevation RMSE value after fusion fell between 7 and 11 m, and the accuracy of SRTM
and ASTER data was improved by one level.

The Yanchuan sample area has the largest topographic undulations and the highest
average slope. The elevation RMSE value corresponded to 11–19 m between mountain
and alpine mountain. After the fusion of the three kinds of data, ALOS data has the RMSE
value of 11.301 m, which is slightly higher than the mountain elevation RMSE value, but
significantly reduced. This may have been greatly affected by the original data error; SRTM
and ASTER values were lower than 11 m and the accuracy was improved by one level. The
effect was obvious.

The error value of the data before the fusion of Chunhua was greater than the mountain
error value standard and even the ASTER value was greater than that of the mountain area.
After the fusion, the error value was reduced to meet the requirements of the next accuracy
value standard interval. ALOS and SRTM values fell between the values of the hilly and
mountain. The elevation RMSE reference value was between 7 and 11 m, and the ASTER
value was between the mountain and alpine mountain reference value range of 11–19 m.

In the Ganquan sample area, the ALOS error value fell between 7 and 11 m in standard
hilly and mountain, and SRTM and ASTER values were between 11 and 19 m in mountain
and alpine mountain. After the feature points were embedded to improve the accuracy,
the result values of these data all fell between 7 and 11 m, and the corresponding accuracy
standard was between the hilly and mountain values.

The overall accuracy improvement effect achieved through feature embedding was
evident, having been improved by one level, although some accuracy values were not
improved by a whole level, and the elevation RMSE was also significantly reduced to close
to the critical value.
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3.3. Multi-Source Data Fusion Based on Weight

The error characteristic values before and after the weighted fusion of each plot are
shown in Tables 7–11.

Table 7. The error statistical value of partition-weighted fusion in Shenmu (unit: m).

ALOS SRTM ASTER AS AA SA

Flat area at
the gully
bottom

R 6.324 6.510 8.111 4.905 5.100 5.272
Rmax 23.000 29.000 33.000 18.792 18.806 21.000
Rmin −32.000 −28.000 −38.000 −18.624 −22.358 −18.579

Flat area
between
gullies

R 4.369 5.449 7.816 3.775 3.888 4.790
Rmax 31.000 29.000 35.000 30.373 30.874 27.400
Rmin −14.000 −12.000 −14.000 −9.995 −10.874 −8.000

Gully slope
steep area

R 9.877 8.243 9.762 7.789 8.602 7.540
Rmax 29.000 29.000 42.000 25.434 32.804 28.080
Rmin −35.000 −34.000 −31.000 −28.170 −33.452 −26.308

Table 8. The error statistical value of partition-weighted fusion in Yanchuan (unit: m).

ALOS SRTM ASTER AS AA SA

Flat area at
the gully
bottom

R 15.937 16.572 18.354 13.726 13.298 15.311
Rmax 58.000 51.000 88.000 43.325 49.105 57.124
Rmin −41.000 −33.000 −44.000 −23.848 −27.27 −27.988

Flat area
between
gullies

R 15.162 15.451 16.239 12.465 11.154 12.943
Rmax 49.000 39.000 57.000 28.137 26.145 27.184
Rmin −59.000 −62.000 −93.000 −47.467 −55.85 −57.884

Gully slope
steep area

R 18.348 15.454 17.541 14.191 13.421 13.554
Rmax 78.000 80.000 77.000 77.233 76.942 76.617
Rmin −62.000 −59.000 −89.000 −56.136 −61.805 −61.405

Table 9. The error statistical value of partition-weighted fusion in Chunhua (unit: m).

ALOS SRTM ASTER AS AA SA

Flat area at
the gully
bottom

R 10.033 11.074 18.473 10.682 10.483 10.992
Rmax 39.000 33.000 89.000 33.058 33.72 36.759
Rmin −36.000 −45.000 −87.000 −39.764 −38.114 −44.394

Flat area
between
gullies

R 7.477 9.529 18.482 8.532 8.46 10.482
Rmax 36.000 42.000 72.000 37.000 35.625 41.400
Rmin −29.000 −21.000 −42.000 −30.000 −27.500 −22.520

Gully slope
steep area

R 13.894 13.410 20.836 15.214 14.395 14.267
Rmax 44.000 45.000 110.000 48.266 47.610 45.504
Rmin −56.000 −57.000 −90.000 −49.532 −52.170 −46.616

According to the 1:50,000 DEM quality standard of the State Bureau of Surveying
and Mapping, the average slope of the Shenmu sample area is 8.75◦, and the largest error
between the flat area at the gully bottom and the flat area at the bottom of the original data
is 8.111 m in the ASTER data, which falls between the values for the hilly and mountain.
After fusion of weights, the maximum values were 5.272 m and 4.790 m, respectively, which
fall between the reference value of the error in the elevation of flat land and hilly. The
accuracy was increased by one level and the effect was improved; the error value before
and after the fusion of steep areas fell between hilly and mountain values. It is closer to the
error value of the hilly after fusion.
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Table 10. The error statistical value of partition weighted fusion in Ganquan (unit: m).

ALOS SRTM ASTER AS AA SA

Flat area at
the gully
bottom

R 7.834 14.169 17.143 7.784 7.784 14.593
Rmax 27.000 37.000 51.000 21.000 21.000 25.087
Rmin −32.000 −48.000 −87.000 −31.000 −31.000 −47.321

Flat area
between
gullies

R 5.893 11.430 11.287 5.875 5.794 8.857
Rmax 36.000 39.000 77.000 24.868 25.672 41.648
Rmin −26.000 −28.000 −46.000 −20.132 −19.672 −31.054

Gully slope
steep area

R 9.574 14.858 16.760 9.821 9.805 14.119
Rmax 31.000 40.000 63.000 26.676 25.540 33.760
Rmin −36.000 −50.000 −81.000 −44.704 −42.920 −50.770

Table 11. The error statistical value of partition weighted fusion in Suide (unit: m).

ALOS SRTM ASTER AS AA SA

Flat area at
the gully
bottom

R 8.290 12.249 13.731 6.432 12.132 11.088
Rmax 29.000 28.000 70.000 28.000 36.662 33.836
Rmin −36.000 −54.000 −86.000 −25.000 −15.408 −62.823

Flat area
between
gullies

R 9.772 16.840 18.708 7.923 8.450 15.838
Rmax 46.000 53.000 82.000 36.000 36.927 44.250
Rmin −22.000 −33.000 −29.000 −16.000 −14.043 −19.188

Gully slope
steep area

R 10.797 15.154 15.489 9.994 9.800 13.022
Rmax 71.000 81.000 79.000 61.340 63.756 72.422
Rmin −36.000 −57.000 −82.000 −37.170 −34.244 −47.492

The maximum RMSE in the gentle area of Chunhua area are 18.473 m and 18.482 m,
which fall between 11 and 19 m in mountain and alpine mountain values. The error value
was significantly reduced through fusion, falling between that of hilly and mountain, and
the accuracy was improved by one level. The steep area was similar to Shenmu. While the
accuracy level was not significantly improved, the overall error value tended toward the
mountain error value.

The topography of Ganquan, Suide and Yanchuan has large ups and downs, with
average slopes of 26.42◦, 28.55◦ and 30.8◦, respectively, which generally correspond to the
quality requirements of standard mountain and alpine mountain. The maximum values of
the Ganquan flat area are 17.143 m and 11.430 m in mountain and alpine mountain; the
maximum values after fusion were 14.593 m and 8.857 m. Although the error value of the
flat area at the bottom of the ditch was larger than that of the mountain, it was optimized
to the mountain value and the accuracy level of the flat area was increased to the range of
error values from hilly to mountain. The error level in the steep area was not improved,
but the elevation RMSE value was significantly reduced. Before the fusion of Suide, the
elevation RMSE fell between 11 and 19 m in mountain and alpine mountain; in addition,
after fusion, most of these values were lower than the mountain index value of 11 m, falling
between the values for hilly and mountain, and the maximum RMSE remained between
mountain and alpine mountain values. However, the decrease was evident, tending toward
the mountain index value. The average slope of Yanchuan was the largest. Before the
fusion, the elevation RMSE value was close to approximately 19 m in the alpine region.
After the fusion, the elevation RMSE significantly decreased to close to the mountain index
value of 11 m. In general, it can be concluded that the accuracy of the results was increased
by one level or decreased significantly closer to the lower index value after fusion in a flat
area. The accuracy in steep areas did not increase by a level, but it was close to the low
index value.
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4. Discussion

Three multi-source DEM databases, the ALOS, SRTM and ASTER, were used in this
study. The ALOS and ASTER are classified as optical remote sensing stereo mapping
technology [23]. Observing the same area from different directions to obtain a stereo image
pair will inevitably lead to shadows on the image, resulting in invalid values and limited ac-
curacy. In addition, optical images are susceptible to weather and imaging conditions (such
as clouds, haze, sunlight, etc.) This will affect the accuracy of the subsequent generated 3D
elevation information [24]. ALOS–PRISM has a spatial resolution of 2.5 m, which is much
higher than that of the ASTER at 30 m, and its strong stereoscopic observation capability
gives it an unparalleled advantage over other satellites in digital elevation mapping [25].
The accuracy of the stereo pair extraction DEM is better in flat areas than in complex
areas [26]. SRTM data are obtained by interferometric aperture radar [27]. The side-view
imaging mode of radar is more susceptible to the influence of terrain inclination and data
holes are easily formed in terrain areas with large slope fluctuations, which greatly affects
the data accuracy [28,29]. Therefore, fully combining the respective advantages of multiple
sources and effectively integrating them is an effective way to improve the quality of public
DEM data [30,31]. In this study, three methods, GS fusion, feature-point-embedding fusion
and partition-weighted fusion, were used to explore the mutual enhancement of the three
data types. The three fusion methods of five plots were combined, the errors and extreme
values of the errors before and after the fusion were compared and the application was
analyzed [32]. The optimal algorithm for improving DEM accuracy in different terrains was
achieved. A comparison of the fused-extracted river network with the 5 m DEM-extracted
river network is shown in Figure 7. The statistical characteristics of errors before and after
fusion are shown in Figure 8.

Through the analysis of the error statistical characteristics before and after the fusion,
the accuracy of the original DEM data of the plot used in this study was generally found
to have the best performance in the ALOS data, with SRTM data coming in second, and
the ASTER data had the worst performance [33]. Additionally, as the average slope of the
plot increases, the error and extreme error values in the original data show an increasing
trend [34].

GS fusion has high fidelity. After fusion, it can not only maintain the advantages of
the original data to a certain extent, but also achieve the effect of data mutual enhancement
and improve data accuracy. The three combinations of GS fusion in this study all improved
the accuracy of the original data, but the improvement effect of some plots was not evident
and none of them improved by a whole level. The degree of accuracy improvement after
fusion had a low correlation with the slope of the sample area and a greater correlation
with the quality of the original data [35]; thus, the AS fusion result is the best overall.

Embedding fusion based on feature points can correct the large error values of ridges
and valleys caused by factors such as shadows or vegetation. Feature-point-embedding
fusion of the five plots in this study effectively improved the elevation RMSE and the
extreme error value. Since the feature points come from the high-precision 5 m DEM basic
data, the correction effect on the original data was greater, the accuracy improvement effect
was evident and the accuracy was improved by one level. The accuracy of some plots was
not improved by a level and the RMSE was also significantly reduced, approaching the
critical value. The original data quality is still the most relevant to the improvement in
the accuracy of the feature-point-embedding and fusion process, so ALOS data fusion is
generally used to obtain the most ideal results. However, although the original poor-quality
data could not achieve the best results, the degree of accuracy improvement was even
greater. The error eigenvalue effect of each plot of the ASTER data was the worst, but the
improvement effect of the fusion was the most significant.
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Figure 8. Error statistics before and after fusion.

The weight-based multi-source DEM data fusion method takes into account the dif-
ferent accuracies of DEM data from different sources and the fusion process is likewise
adjusted, leading to different results. An appropriate weight allows the fusion to reach
the best fusion ratio, so as to achieve the best result [12]. Partition-weighted fusion better
considers the difference in the DEM accuracy of different slopes in complex terrain. In
this study, the overall data accuracy of the partition-weighted fusion was improved sig-
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nificantly [36]. After the division, the degree of accuracy improvement of different slopes
was significantly different. The error improvement degree was best in the flat area at the
bottom of the ditch, followed by the flat area between the ditch, and the worst value was
found in the steep area of the ditch slope. After the fusion of flat areas, the accuracy of the
results will be increased by one level or decreased significantly closer to the lower index
value. The accuracy in steep areas will not increase by one level, but it will be close to the
low index value. The best smooth regional fusion effect was achieved with Shenmu AS
fusion, Chunhua AA fusion, Ganquan AS fusion, Suide AS fusion and Yanchuan AA fusion.
The best fusion effect in steep areas was achieved with Shenmu SA fusion, Chunhua SA
fusion, Ganquan AA fusion, Suide AA fusion and Yanchuan AA fusion. In general, it can
be concluded that AS fusion leads to a better fusion effect when the terrain is relatively
gentle. AA fusion exerts a greater advantage in areas with moderately undulating terrain.
The overall AA fusion accuracy improved the most. When SA was fused, a relatively stable
range of improvement could be achieved more often, and there were no significant differ-
ences in the accuracy of the improvement. Among the three combination methods, that
with the greatest impact on the accuracy improvement was the partition slope, followed by
the quality of the original data.

5. Conclusions

The DEM accuracy was improved by the three methods. The precision of most data
obtained via partition-weighted fusion and feature-embedding fusion can be improved
by one grade or more. GS fusion accuracy was improved in a simple and convenient
manner; in the feature-point-embedding fusion method, ALOS data obtained the best data
results and ASTER data improved the accuracy most significantly. In partition-weighted
fusion, AS fusion was applicable to the gentle region, while AA fusion was applicable to
the steep region.

In this study, five typical gully areas in the Loess Plateau region were selected as
sample areas to analyze applicable fusion methods for DEM accuracy enhancement. How-
ever, to further investigate the response pattern of error and topographic factors, more
sample study areas need to be studied. In the future, more fusion methods will be applied
to establish fusion models applicable to different geomorphic areas according to the sta-
tistical parameters (topographic factors) of each sample area. What is more, this study
uses what is called the white box method. In this era of machine learning and artificial
intelligence technologies, how to apply machine learning methods to this research remains
to be explored.
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