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Abstract: Any bearing faults are a leading cause of motor damage and bring economic losses. Fast and
accurate identification of bearing faults is valuable for preventing damaging the whole equipment
and continuously running industrial processes without interruption. Vibration signals from a running
motor can be utilized to diagnose a bearing health condition. This study proposes a detection method
for bearing faults based on two types of neural networks from motor vibration data. The proposed
method uses an autoencoder neural network for constructing a new motor vibration feature and a
feed-forward neural network for the final detection. The constructed signal feature enhances the
prediction performance by focusing more on a fault type that is difficult to detect. We conducted
experiments on the CWRU bearing datasets. The experimental study shows that the proposed method
improves the performance of the feed-forward neural network and outperforms the other machine
learning algorithms.

Keywords: motor bearing fault; fault detection; neural network; vibration signal

1. Introduction

Motor failures are often associated with bearing damage. This can result in high levels
of vibration that can disrupt production processes, cause motor malfunctions, and lead
to economic losses. Therefore, it is important to detect bearing faults early by monitoring
motor vibration signals to prevent more damage to the equipment and ensure uninterrupted
industrial processes [1]. In general, running motor vibration signals are collected very
quickly, and data-driven learning techniques have been increasingly used to diagnose
motor health conditions from these signals.

The methods for detecting bearing faults can be classified as statistical-feature-based
detectors and raw-signal-based detectors. Statistical-feature-based detectors first extract
statistical features from time-domain signals or frequency-domain signals, such as the
maximum value of amplitude, mean value of amplitude, and Kurtosis factor. These features
are then used to detect the fault type [1–7]. However, the efficiency of statistical features
may vary based on datasets and detection models, and it requires manual feature extraction
for each specific case. In contrast, deep-learning-based methods do not require feature
extraction because of their enormous learnable parameters. These methods learn useful
features automatically without an additional feature pre-processing stage [8–11]. Deep-
learning-based detectors significantly increase detection performance from raw signals,
making them more suitable for bearing fault detection.

This study proposes an unsupervised neural-network-based signal extraction for
improving bearing fault detection using autoencoder (AE) neural network (AENN) and
feed-forward neural network (FFNN) models. However, the process of signal extraction is
distinct from statistical-based methods and involves the use of self-supervised learning.
The proposed method differs from existing motor fault detection methods. It improves the
detection performance by focusing more on the fault type that is misclassified the most
during the training process. Specifically, the performance of the FFNN model is enhanced
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through the extracted signal utilizing an unsupervised AE model. The AE model learns
from vibration signals belonging to a fault type that was detected with more error than the
other fault types. The most misclassified fault type for the AE model is chosen using the
FFNN model on the original raw signals. In general, the structure of an AE model has the
same number of neurons in the input and output layers, and its output is a reconstructed
version of the input. The AE model learns by minimizing the variance between input and
output values. In this study, we use the difference between input and output values on the
AE model, known as reconstruction error (RE), as a new feature to reduce the detection
error of the FFNN model. When the inputs are signals other than those used to construct
the AE model, they are reconstructed with a high difference. This is because the AE model
shows a high gap between the input and output when the input is unlearned types of
signals. The main contributions of this study are as follows:

• The proposed method improves the detection performance of the FFNN model by
signal extraction, which better distinguishes a fault type that is hard to detect;

• We evaluated the proposed method on open datasets collected with different horse-
power. The proposed method gave a higher performance than the compared methods.

• The rest of this paper is organized as follows. Section 2 provides an overview of
existing studies for motor bearing fault detection. The proposed method is detailed
in Section 3. Section 4 demonstrates the experimental study, including experimental
design, dataset, evaluation metrics, and detection performances of the compared
methods. In Section 5, we conclude this study.

2. Related Work

It is beneficial to detect motor failures automatically and accurately to prevent future
failures and financial losses due to sudden breakdowns and interruptions. As mentioned
above, the utilization of machine learning algorithms to detect motor faults using signal
data from motor vibration sensors is increasing. These methods typically build the motor
fault detection model based on feature extraction and feature selection steps. Chuan et al.
proposed a deep random forest fusion (DRFF) technique to diagnose gearbox faults using
acoustic and vibratory signals [1]. First, they transformed signals from the gearbox by
a wavelet packet transformer (WPT) and extracted features using two deep Boltzmann
machines (DBMs). Finally, the random forest (RF) classifier fused the outputs of the
two DBMs. The authors of [2] offered support vector machines (SVMs) and K-nearest
neighbors (KNNs), and the bagged tree-based classifiers provided nearly 100 percent
accuracy for motor fault diagnosis from both stator currents and vibration signals of motors.
They extracted eight statistical features for the detection model: mean, median, standard
deviation, and other criteria. These features were calculated from the results of two signal
processing techniques: the matching pursuit (MP) and discrete wavelet transform (DWT).
In [4], there were eight wavelet features extracted using a three-layer WPT transformer on
the raw signal dataset to be used as the input to the classification model. Then, ensemble
learning algorithms, such as adaptive boosting (AdaBoost) and RF, were suggested to
diagnose crack faults in the presence of noise and small data. Another IoT-based ensemble
algorithm was proposed in [5] to monitor the status of the induction motor from the
motor vibration signal. Sundaram Buchaiah et al. [11] selected important features from
72 statistical features using the RF algorithm for bearing data. Then, they reduced the
dimension of input features into two by dimension reduction techniques. Finally, the
Bhattacharyya distance and SVM algorithms were used to verify fault diagnosis accuracy.

Recently, deep-learning-based methods have been used broadly for fault detection.
The advantage of deep learning is that it does not require manual feature extraction.
In [12], a deep neural network was proposed to detect multi-faults from raw sensor data
without feature selection and signal processing. The authors of [9] used signals from
multiple current sensors instead of vibration sensors. The current signal is accessible
by low-cost sensors and not easily affected by interfering noise from the surrounding
components. They diagnosed seven types of gearbox conditions, which were diagnosed
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by a two-dimensional convolutional neural network (CNN). Jong-Hyun Lee et al. [10]
proposed the CNN model to develop a motor fault diagnosing system. It detects whether
a motor condition is normal or faulty on the rotor and bearing from the vibration signals
without signal preprocessing. Many studies have used the AE model for bearing fault
detection [8,13–16]. The authors of [8] proposed a stacked denoising autoencoder (SDAE)-
based fault detector from motor vibration signals. First, the Fourier transform produced
frequency-domain signals for use as input to the SDAE. Then, several unsupervised AE
models were used to extract features. The input layer of the next AE used the encoder
layer of the above-level AE, and the final AE’s encoder layer was used for classification
with the Softmax function. In the stacked denoising autoencoder (SDA) was investigated
for the fault diagnosis of rotary machinery components when signals have ambient noise
and working condition fluctuations. They stacked three AE models to obtain high-level
feature representations to improve classification robustness. The authors of proposed an
ensemble of deep autoencoders (EDAE) for feature learning from the vibration signals
and fault diagnosis. EDAEs were constructed using fifteen AE models with various
activation functions. The features from the last AE model were fed into the Softmax
classifier for fault recognition.

Many machine-learning-based studies extracted fault detection features manually,
based on their domain knowledge, or using some statistical approaches, such as kurtosis
and skewness. In contrast, deep-learning-based methods do not require feature extraction
because of their enormous learnable parameters. The proposed method in this study
differs from existing studies by extracting an additional feature using the advantage of
self-supervised deep neural networks. It focuses on the most misclassified fault type
using the extracted signal feature to improve the fault detection model. We extract a new
signal feature by reconstruction error of the input signal on the AE model that learns from
only the fault type, which is the most difficult type to detect. Therefore, the value of the
reconstruction error of the input signal belonging to the fault type used in the training of
the AE model will be lower than the reconstruction errors of other types of signals. This
characteristic of the AE trained from the single type of fault enhances distinguishing faults
from the vibration signal data.

3. Proposed Method for Bearing Fault Detection

This section describes the training and testing processes of the proposed method to
predict bearing faults as shown in Figure 1. The solid lines indicate the training steps that
build the detection model for the bearing faults, and the dashed lines represent the testing
process of fault detection on unseen signals.

The proposed method addresses the most challenging fault type for reducing detection
error. Therefore, we first train an initial FFNN model from the original training signals
(step 1). This initial FFNN model is used to determine the most challenging fault type
from the evaluation of the validation signals (steps 2 and 3). Then, signals belonging to the
selected (determined as challenging) fault type are distinguished from the whole training
signals in step 4. Next, the AENN model learns from the selected type of faulty signals
for feature extraction in step 5. In step 6, to generate a new feature based on the initial
training signals marked as “A” in Figure 1, we feed the signals to the AENN model and
obtain reconstruction errors from the AENN model. To create the final training dataset,
we combine the initial training signals (marked as “A”) with the received reconstruction
errors in step 7. The initial training dataset consists of input signals with 120 vibration
points. After step 7, the length of the input signal becomes 121. In the last step of the
training process, the second FFNN model is trained from the final prepared training signals
(marked as “B”) for further detection.

The testing process (detect faults from the unseen signals) is demonstrated in
steps 9–12. Before detecting bearing fault by the final FFNN model, the reconstruction
error of the input signal is obtained from the AENN model (step 9). In steps 10–12, the
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final FFNN model detects the bearing health condition from the combination of unseen
input signal and its reconstruction error.
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Figure 1. General architecture of the proposed detection method for bearing faults; FFNN: feed-
forward neural network, AENN: autoencoder neural network.

In this study, we utilize an AE neural network model to generate a new feature from the
input signal, which will enhance the detection model based on the FFNN with three hidden
layers. Our proposed method involves simpler model architectures than CNNs, which are
usually more effective in dealing with high-dimensional data, such as images. Therefore,
we have employed the reconstruction error of the input signals on the AENN model with a
single hidden layer to improve the feature representation of the FFNN.

Figure 2 shows an example of how the AE model is constructed in the proposed
method. First, we separate the particular type of signals from the whole signals based
on the detection results from the baseline FFNN model (original signal-based FFNN
model) shown in Figure 1. For instance, the AE model trained on the selected Fault-1-
type signals in Figure 2. The bottleneck hidden layer of the AE model in the proposed
method has 60 neurons and transformed the received values from the preceding layer by
the rectified linear unit (ReLU) activation function. To better distinguish Fault-1 from
other bearing faults, a new signal feature is extracted by giving a training signal to the
prepared AE model and calculating the RE. As a result, the final training signals are
made by combining the original signals with the reconstruction error of the input signal.

The AE is a symmetric neural network where the numbers of neurons in the input
and output layers are the same. It learns the data pattern by reducing the input dimension
and then reconstructing the input from the reduced dimensional space. Due to its structure,
it has been used in dimension reduction, data denoising, and synthetic data generation.
For example, a bottleneck layer of the AE model that is a compressed representation of
its input is used in dimension reduction. In the training process of the AE, if inputs are
data with noise and outputs are the original data, the AE can be applied for data denoising.
In this paper, we use RE, which is a variance between the input and output layers of the
AENN model, to emphasize a particular type of motor fault. RE is defined as follows (1):
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RE =
∑k

j=1
(
xj − x̂j

)2

k
(1)

where k is the number of neurons in the input and output layers of the AE, xj is the j-th
neuron in the input layer, and x̂j is the corresponding neuron with the reconstructed value
of xj.
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Figure 2. Example of the AE model preparation in the proposed method.

The proposed method predicts motor bearing faults by the FFNN model. The neural
network was first introduced in 1943 [17] and has been successfully applied in various
domains, such as image processing [18], natural language processing [19], and predicting
motor faults [20]. The FFNN is constructed by fully connected (dense) layers that are
simpler in architecture to compare convolutional neural networks (CNNs). The fully
connected layers consist of neurons, and every neuron connects to all neurons in the
descendant layer. CNNs are typically more effective when dealing with high-dimensional
data like images in which local patterns and spatial relationships are important. Fully
connected layers process the entire input signal as a single vector, allowing them to capture
the relevant information that spreads across the entire signal rather than being localized in
specific regions. In particular, an underlying pattern of the CWRU dataset was effectively
captured with an accuracy exceeding 90% by a simple neural network with fully connected
dense layers. For this study, we propose a simple fully connected feed-forward neural
network with three hidden layers.

The proposed FFNN has three hidden layers, as shown in Figure 3. Neurons in
each hidden layer transform their received value from the preceding layer by the ReLU
activation function. The output layer uses the Softmax activation function to predict motor
conditions; it returns the probability of each motor condition as a value from 0 to 1, and
the sum of all probabilities is equivalent to 1. From the result outputs, the high-probability
bearing fault is chosen as the final detection result.
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The FFNN model is trained on the prepared training signals by combining the original
and extracted signals. It can improve the detection performance by using the extracted
signal based on the most misidentified fault type.

4. Experimental Study
4.1. Dataset

The Case Western Reserve University (CWRU) bearing dataset [21] is a popular
benchmark dataset in machinery fault diagnosis. This dataset is relatively large, containing
vibration signals gathered from bearings under various fault conditions, including inner
race, outer race, and ball faults, as well as healthy conditions. There are several reasons
to apply data-driven learning methods, especially neural networks, to this dataset for
monitoring motor health conditions. Neural networks handle large datasets and process
the entire dataset without manual operation. Moreover, neural networks are robust to
noise from variations in operating conditions and other sources of variability commonly
encountered in real-world industrial environments. The fault conditions represented
in the CWRU dataset are common in industrial machinery, such as rotating equipment
with rolling element bearings. By developing machine learning models on this dataset,
researchers aim to improve the reliability and efficiency of machinery condition monitoring
systems in real-world applications. We used the CWRU bearing dataset to evaluate fault
detection methods.

The vibration signals were recorded from healthy bearings and three types of faulty
bearings, including the inner raceway, rolling element (ball), and outer raceway, each
with a failure diameter of 0.021 inches, with motor speeds from 0 to 3 horsepower. We
utilized drive-end (DE) bearing vibration signals in the experimental study. There were four
datasets prepared for the experimental study. Each dataset consists of four files for normal
bearing conditions and three kinds of faulty bearing conditions, as shown in Figure 4.
Table 1 shows the data files used in the experimental study. Figure 5 demonstrates an
example of the vibration signals of bearing health conditions.
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Table 1. Data files of the experimental datasets.

Prepared Dataset Motor
Load hp

Shaft
Speed rpm File Number Fault Types Fault Size # Samples Min Max Avg Stdev

Dataset-1 HP-0 1797

97 Normal * 243,938 −0.287 0.311 0.013 0.073
222 Ball 0.021 121,991 −1.618 1.660 0.021 0.134
209 Inner race 0.021 122,136 −3.372 3.788 0.014 0.525
234 Outer race centered 0.021 122,426 −6.412 6.653 0.005 0.583

Dataset-2 HP-1 1772

98 Normal * 483,983 −0.346 0.318 0.013 0.065
223 Ball 0.021 121,701 −1.414 1.475 0.004 0.129
210 Inner race 0.021 121,556 −3.284 3.686 0.003 0.442
235 Outer race centered 0.021 122,281 −6.653 6.653 0.003 0.57

Dataset-3 HP-2 1750

99 Normal * 485,063 −0.327 0.359 0.012 0.063
224 Ball 0.021 122,136 −0.531 0.646 0.005 0.107
211 Inner race 0.021 121,846 −3.124 3.623 0.003 0.489
236 Outer race centered 0.021 121,991 −6.653 6.653 0.004 0.559

Dataset-4 HP-3 1730

100 Normal * 485,643 −0.306 0.284 0.012 0.065
225 Ball 0.021 122,136 −0.493 0.576 0.004 0.118
212 Inner race 0.021 121,991 −3.087 3.615 0.003 0.449
237 Outer race centered 0.021 121,991 −6.113 6.207 0.003 0.561

Avg: average value; Max: maximum value; Min: minimum value; Stdev: standard deviation. Please note that the
symbol “*” indicates that the fault size is irrelevant.

4.2. Compared Detection Methods

The proposed detection method for bearing faults has been compared with machine
learning algorithms, including KNN, SVM, AdaBoost, decision tree (DT), naïve Bayes
(NB), and RF. We implemented the compared detection models in Python using the Scikit-
learn package [22] for machine learning classifiers and the Keras library [23] for deep
neural networks. The parameter configurations of the compared algorithms are shown
in Table 2. We trained several models from each algorithm using varying configurations.
For instance, we trained KNN-based models with different numbers of neighbors ranging
between 3 and 25. To compare the KNN-based detection model with others, we selected
the best-performing model on test datasets from these KNN models. Table 3 shows the
configurations of the models in the proposed method.

Table 2. Input parameters of the experimented classifiers.

Classifiers Configured Values

K-Nearest Neighbors The number of neighbors was configured from 3 to 25.

Support Vector Machine The linear, polynomial, radial basis function (rbf), and sigmoid
kernels were used.

Adaptive Boosting The number of estimators was configured from 10 to 150.

Decision Tree Classification criteria were configured by “gini” and “entropy”.

Random Forest The number of trees was configured from 10 to 150.

The proposed method employs AE and FFNN models to detect bearing faults. We
generate an additional feature from the input signal via the AE model to enhance the
detection performance of the FFNN model. This additional feature is generated by the
reconstruction error of the input signal on the AE model. We train AE models with different
structures on signals of all types of bearing conditions to select the AE model with the
lowest training error. Figure 6 represents the average mean squared error of the trained AE
models on datasets 1–4 shown in Table 1. The AE-3 model with a single hidden layer of
60 nodes gave the smallest average error for all bearing health conditions. Therefore, the
proposed method used AE-3 for extracting the RE-based feature. The structure of the AE-3
model has an input layer with 120 nodes, a hidden layer (latent space) with 60 nodes, and
an output layer with 120 nodes.
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Table 3. Configurations of the models in the proposed method: the proposed method consists of two
neural network models for reconstruction-error-based feature generation and fault detection.

Configurations FFNN AENN

Layer: (neurons)
Input: (121)
Hidden: (242, 121, 60)
Output: (4)

Input: (120)
Hidden: (60)
Output: (120)

Layer: (activation function) Hidden: (ReLU)
Output: (Softmax) Hidden: (ReLU)

Learning rate 0.001 0.001

Optimizer Adam [24] Adam [24]

Loss function Categorical Cross-Entropy Mean Squared Error

Batch size 8 8

Epochs 500 early stopping [25] of 100 500
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Figure 6. Average training errors with standard deviations of AE models on datasets 1–4. (a) AE
models learned from the normal signals; (b) AE models learned from the inner race fault signals;
(c) AE models learned from the ball fault signals; (d) AE models learned from the outer race centered
fault signals. AE-1: layers [120, 60, 30, 15, 30, 60, 120]; AE-2: layers [120, 60, 30, 60, 120]; AE-3: layers
[120, 60, 120]; AE-4: layers [120, 30, 120]; AE-5: layers [120, 15, 120].
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For the FFNN model used in the proposed method, we trained various FFNN models
to choose the appropriate hyperparameter configurations. Figure 7 shows the average
validation accuracy of the baseline FFNN and the proposed FFNN models on datasets 1–4.
We used 90% of the dataset for training, and the remaining 10% was used for validation.
The learning rate of 0.001 and batch size of 8 with the ReLU activation function showed
higher accuracy than the other configurations.
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4.3. Experimental Results

First, the baseline FFNN is learned from the original training signals. We found the
most misclassified type of bearing fault from the training dataset using the baseline FFNN
model to train the AE model on the most challenging fault type. Then, the proposed
FFNN model was trained on the original and AE-based extracted signals. Table 4 shows
the confusion matrix of baseline FFNN models on the validation set, which is 10% of the
training signals. In datasets 1–3, the outer race fault was the most misclassified. However,
the ball fault in Dataset-4 was more incorrectly detected than other bearing faults.

Table 4. Confusion matrix of the baseline FFNN models on datasets 1–4.

Actual Actual

Pr
ed

ic
te

d

Dataset-1 Normal Ball fault Inner
race fault

Outer
race fault

Pr
ed

ic
te

d

Dataset-2 Normal Ball fault Inner
race fault

Outer
race fault

Normal 201 0 0 1 Normal 395 0 0 0
Ball fault 0 111 1 1 Ball fault 0 116 1 1

Inner race fault 0 1 91 2 Inner race fault 0 1 96 3
Outer race fault 0 1 0 99 Outer race fault 0 1 1 93

Missed 0 2 1 4 Missed 0 2 2 4

Actual Actual

Pr
ed

ic
te

d

Dataset-3 Normal Ball fault Inner
race fault

Outer
race fault

Pr
ed

ic
te

d

Dataset-4 Normal Ball fault Inner
race fault

Outer
race fault

Normal 397 0 0 0 Normal 403 0 0 0
Ball fault 0 95 0 1 Ball fault 0 96 0 3

Inner race fault 0 0 105 6 Inner race fault 0 0 104 0
Outer race fault 0 1 0 104 Outer race fault 0 6 0 98

Missed 0 1 0 7 Missed 0 6 0 3

We compared the proposed detection model and baseline FFNN model to demon-
strate how the proposed method improved the detection performance of the baseline
FFNN model. We trained four baseline models using the original input signals of
datasets 1–4 separately. Then, the proposed FFNN models were trained by the original
and extracted input signals. For signal extraction for the proposed FFNN, we selected
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AE models learned from the most misclassified motor condition signals on each dataset
based on the confusion matrix shown in Table 4. Each model was tested on three datasets,
and the final performance was averaged in Table 5. We can see that the proposed AE-
based FFNN models outperform the baseline FFNN models based on the initial signals
without the extracted feature, and their average evaluation metrics were higher than the
baseline FFNN models. Moreover, the recall and f-measure measurements of baseline
FFNN models were improved by using the extracted feature from the AE model, and its
average values increased by more than 1% by the proposed method.

Table 5. Comparison between the baseline FFNN models and the proposed AE-FFNN models on
datasets 1–4.

Performance

Models Were Trained on
the Dataset-1, and Tested

on the Datasets 2–4

Models Were Trained on
the Dataset-2, and Tested

on the Dataset 1, 3, 4

Models Were Trained on
the Dataset-3, and Tested

on the Datasets 1, 2, 4

Models Were Trained on
the Dataset-4, and Tested

on the Datasets 1–3

Baseline Proposed Baseline Proposed Baseline Proposed Baseline Proposed

Accuracy 96.694
(0.003)

97.484
(0.002)

97.724
(0.007)

98.284
(0.004)

96.502
(0.012)

97.489
(0.006)

95.526
(0.018)

96.489
(0.012)

Precision 95.045
(0.004)

95.887
(0.002)

96.833
(0.004)

97.462
(0.002)

95.064
(0.009)

96.296
(0.005)

94.974
(0.012)

95.573
(0.009)

Recall 94.237
(0.006)

95.69
(0.004)

96.574
(0.005)

97.404
(0.002)

94.722
(0.011)

96.173
(0.005)

93.339
(0.017)

94.726
(0.01)

F-measure 94.49
(0.006)

95.735
(0.004)

96.691
(0.005)

97.42
(0.002)

94.849
(0.01)

96.203
(0.005)

93.947
(0.016)

95.048
(0.01)

AUC 99.717
(0.001)

99.776
(0)

99.746
(0.001)

99.835
(0.001)

99.465
(0.002)

99.513
(0.002)

99.578
(0.002)

99.606
(0.001)

Finally, we compared six machine learning classification models with the proposed
method, including KNN, RF, AdaBoost, SVM, NB, and DT. We experimented with four
different datasets gathered by different shaft speeds. Four models were trained for each
algorithm using datasets listed in Table 1 for performance evaluation. Then, each model
was tested on three untrained datasets. For instance, a model trained on Dataset-1 with
a shaft speed of 1797 rpm was tested on Dataset-2, Dataset-3, and Dataset-4 with shaft
speeds of 1772, 1750, and 1730 rpm, respectively. Table 6 shows the average performances,
and detailed performances are represented in Appendix A. The proposed method showed
more stable results than the compared methods on the datasets collected at different shaft
speeds, as shown in Figure 8.

Table 6. Average performance of the compared models.

Performance KNN RF AdaBoost SVM DT NB Proposed

Accuracy 87.200 94.408 77.450 91.975 80.133 78.233 97.559

Precision 86.142 92.425 67.750 91.025 71.417 68.008 96.444

Recall 79.425 91.142 66.408 87.383 70.300 68.425 96.189

F-measure 81.575 91.725 66.892 88.792 70.742 66.967 96.274

AUC 91.867 99.283 86.283 99.125 81.833 93.433 99.699

Tables A1–A4 show the comparison of the proposed AE-FFNN model and other
machine-learning-based predictive models. We configured the input parameters of the
particular machine learning models differently based on the dataset. The best values for
the input parameters were selected based on the training performance. As a result of
these comparisons, the proposed detection method performed better than the compared
individual predictive methods.
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Table A1 shows the testing results on datasets 2–4. All models learned from Dataset-1.
The RF model showed higher results than the machine-learning-based models on each
testing dataset. However, the proposed method outperformed the RF by increasing the
average accuracy, precision, recall, f-measure, and AUC values on datasets 2–4 by 3.184%,
4.154%, 5.590%, 4.901%, and 0.509%, respectively.

For machine-learning-based compared detection models learned from Dataset-2,
the RF model performed better than others on all testing datasets, including Dataset-1,
Dataset-3, and Dataset-4. However, the proposed method outperformed its accuracy by
1.762%, precision by 3.023%, recall by 3.382%, f-measure by 4.024%, and AUC by 2.815%
on average, as shown in Table A2.

Table A3 shows the results of the compared models trained on Dataset-3, and evaluated
on datasets 1, 2, and 4. As a result of the compared models, except for the proposed model,
RF and SVM models showed comparable higher results than others. However, the proposed
method was superior to these models.

In Table A4, we showed the results on datasets 1–3 for detection models learned
from Dataset-4. We can see that the proposed method achieves the best performance for
predicting bearing faults. Its average accuracy, precision, recall, f-measure, and AUC on
test datasets reached 98.18%, 96.651%, 96.007%, 95.547%, and 96.699%, respectively. These
are higher than the RF model by 4.184%, 5.64%, 5.947%, and 3.766%.

Figure 8 represents distributions of detection performances across all experimented
datasets of the compared models learned from datasets 1–4 by the box plot diagram.
According to all evaluation measurements, RF and SVM models showed comparable
results with the proposed method by giving performances that were higher than 80%. We
can see that the performance of the SVM model was less spread out than the RF model, and
its value was relatively lower. However, the proposed method performed better than other
models according to all measurements by showing the shortest performance distribution
with the highest value.

5. Conclusions

In this study, we proposed a method for bearing fault detection from motor vibration
signals based on two different types of neural networks, such as the AENN for feature
extraction and the FFNN for detection. The AENN is a type of neural network that
reconstructs a given input into its output as similarly as possible. Mainly, it is used for data
denoising by reconstructing noisy data or for generating synthetic data from its learned
distribution. In the proposed method, we used AENN’s input–output difference to extract
the input feature for the bearing fault detection model. By training the AENN model on
only the most complicated signal types instead of all signal types, we were able to use its
RE to make a feature to help distinguish fault types. In other words, the AENN model
reconstructs a given input signal to the output with less loss when the input is of a learned
signal type rather than its unlearned signal type.

The AENN model is learned from signals of a single type of fault to emphasize that
type of fault over others. However, the detection models were designed with four outputs
for ball fault, inner race fault, outer race fault, and normal condition of motor bearings. The
limitation of the proposed model is that it can improve the fault detection FFNN model
based on the additional generated feature that can emphasize only one fault type.

We evaluated the proposed method on the CRWU bearing open dataset and compared
it with six machine-learning-based models. The presented method successfully enhanced
the detection performances of the FFNN by focusing on the most challenging bearing
fault type to detect using the AENN model. It increased average values of the recall and
f-measure of the baseline FFNN by more than 1% on the experimented datasets. Moreover,
the proposed method outperformed the average accuracy, precision, recall, f-measure, and
AUC of the KNN, RF, AdaBoost, SVM, DT, and NB models in Tables A1–A4 by (10.430,
10.474, 14.298, 15.454, 10.919), (2.688, 3.632, 4.606, 4.771, 2.544), (18.013, 25.124, 29.490,
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29.479, 21.619), (4.105, 5.474, 7.356, 7.971, 4.236), (16.480, 21.790, 25.573, 25.679, 21.561), and
(15.171, 24.724, 28.381, 28.413, 18.236), respectively.
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Appendix A

Tables A1–A4 show the comparison of the proposed AE-FFNN model and other
machine-learning-based predictive models.

Table A1. Comparison of the experimented fault detection models learned from Dataset-1.

Test Dataset Performance KNN RF AdaBoost SVM DT NB Proposed/AENN Learned
from the Outer Race Fault/

Dataset-2

Accuracy 87.300 93.600 77.500 91.300 81.800 81.400 97.739
Precision 86.100 90.800 64.700 90.700 71.900 70.500 96.128

Recall 77.800 88.900 62.200 84.800 70.500 68.100 96.168
F-measure 80.200 89.800 63.300 87.200 71.100 67.700 96.133

AUC 91.200 99.200 83.600 99.100 82.200 93.400 99.776

Dataset-3

Accuracy 85.100 94.000 79.800 90.400 81.700 79.900 97.518
Precision 84.000 92.000 69.300 90.100 72.300 67.200 95.915

Recall 73.900 89.600 65.700 83.200 70.400 65.000 95.724
F-measure 77.300 90.700 67.300 86.100 71.100 65.200 95.794

AUC 88.800 99.300 83.600 99.600 82.000 94.200 99.804

Dataset-4

Accuracy 83.900 95.300 80.300 92.300 80.200 84.300 97.196
Precision 82.200 92.400 68.400 92.000 69.700 73.300 95.620

Recall 72.000 91.800 66.600 86.600 68.900 72.700 95.178
F-measure 75.700 92.000 67.400 88.900 68.900 71.400 95.276

AUC 87.500 99.300 85.300 99.600 81.100 95.000 99.748

Table A2. Comparison of the experimented fault detection models learned from Dataset-2.

Test Dataset Performance KNN RF AdaBoost SVM DT NB Proposed/AENN Learned
from the Outer Race Fault/

Dataset-1

Accuracy 87.500 94.300 72.000 90.400 76.900 69.100 97.699
Precision 88.200 93.400 66.700 90.400 72.500 63.800 97.130

Recall 84.400 92.900 67.100 88.000 71.600 64.800 97.127
F-measure 85.100 93.100 66.600 88.700 71.900 63.400 97.125

AUC 94.600 99.400 86.000 99.500 82.000 90.800 99.707

Dataset-3

Accuracy 89.600 95.800 80.300 92.800 84.100 80.600 98.590
Precision 88.400 94.300 70.700 90.900 75.100 67.100 97.573

Recall 81.800 92.700 67.100 87.500 73.900 66.600 97.539
F-measure 83.600 93.400 68.600 89.000 74.400 66.200 97.527

AUC 93.500 99.600 85.000 99.800 84.200 94.500 99.904

https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
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Table A2. Cont.

Test Dataset Performance KNN RF AdaBoost SVM DT NB Proposed/AENN Learned
from the Outer Race Fault/

Dataset-4

Accuracy 87.300 96.800 80.800 95.200 80.800 84.800 98.563
Precision 85.000 94.800 68.900 93.100 70.200 72.400 97.683

Recall 77.900 94.400 69.200 91.500 69.000 73.800 97.546
F-measure 80.300 94.600 68.600 92.200 69.500 71.900 97.607

AUC 91.600 99.600 88.000 99.700 81.300 95.300 99.894

Table A3. Comparison of the experimented fault detection models learned from Dataset-3.

Test Dataset Performance KNN RF AdaBoost SVM DT NB Proposed/AENN Learned
from the Outer Race Fault/

Dataset-1

Accuracy 86.500 93.300 71.700 89.400 74.300 65.400 96.716
Precision 86.200 92.100 67.400 89.500 69.500 62.500 96.059

Recall 83.100 91.600 67.300 86.700 69.100 63.400 95.910
F-measure 83.900 91.800 67.300 87.400 69.300 61.200 95.961

AUC 93.300 99.000 86.900 98.100 80.400 90.500 99.347

Dataset-2

Accuracy 90.200 94.500 77.000 94.000 82.500 79.900 97.527
Precision 87.400 91.400 64.400 92.000 72.100 68.600 95.875

Recall 82.900 90.400 63.900 89.600 71.200 70.600 95.707
F-measure 84.200 90.900 64.000 90.700 71.600 67.800 95.733

AUC 94.000 99.200 87.400 98.200 82.800 93.400 99.430

Dataset-4

Accuracy 90.100 96.500 79.400 96.900 81.800 83.800 98.224
Precision 87.700 93.900 68.000 95.100 71.400 71.700 96.953

Recall 82.800 93.900 67.600 94.500 70.800 74.500 96.901
F-measure 83.900 93.900 67.500 94.700 71.100 71.500 96.914

AUC 94.200 99.500 89.700 99.500 82.400 95.400 99.764

Table A4. Comparison of the experimented fault detection models learned from Dataset-4.

Test Dataset Performance KNN RF AdaBoost SVM DT NB Proposed/AENN Learned
from the Ball Fault/

Dataset-1

Accuracy 83.400 91.100 71.500 86.100 73.300 67.600 95.398
Precision 84.900 90.300 67.000 87.100 68.500 63.000 95.064

Recall 79.300 88.900 66.700 82.600 67.900 64.200 94.247
F-measure 81.200 89.500 66.800 83.400 68.100 62.400 94.539

AUC 91.100 98.800 85.400 98.200 79.600 90.600 99.455

Dataset-2

Accuracy 87.600 93.600 78.100 92.300 81.500 80.700 97.358
Precision 86.300 91.000 66.100 90.300 70.600 68.300 96.132

Recall 78.400 88.800 64.800 86.500 68.900 69.200 95.393
F-measure 81.600 89.900 65.400 88.200 69.700 67.700 95.677

AUC 91.100 99.100 87.400 98.500 81.300 93.500 99.679

Dataset-3

Accuracy 87.900 94.100 81.000 92.600 82.700 81.300 98.181
Precision 87.300 92.700 71.400 91.100 73.200 67.700 97.199

Recall 78.800 89.800 68.700 87.100 71.400 68.200 96.826
F-measure 81.900 91.100 69.900 89.000 72.200 67.200 97.002

AUC 91.500 99.400 87.100 99.700 82.700 94.600 99.881
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