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Abstract: To address the uncertainty of optimal vibratory frequency fov of high-speed railway
graded gravel (HRGG) and achieve high-precision prediction of the fov, the following research
was conducted. Firstly, commencing with vibratory compaction experiments and the hammering
modal analysis method, the resonance frequency f 0 of HRGG fillers, varying in compactness K, was
initially determined. The correlation between f 0 and fov was revealed through vibratory compaction
experiments conducted at different vibratory frequencies. This correlation was established based
on the compaction physical–mechanical properties of HRGG fillers, encompassing maximum dry
density ρdmax, stiffness Krd, and bearing capacity coefficient K20. Secondly, the gray relational
analysis algorithm was used to determine the key feature influencing the fov based on the quantified
relationship between the filler feature and fov. Finally, the key features influencing the fov were used
as input parameters to establish the artificial neural network prediction model (ANN-PM) for fov. The
predictive performance of ANN-PM was evaluated from the ablation study, prediction accuracy, and
prediction error. The results showed that the ρdmax, Krd, and K20 all obtained optimal states when fov

was set as f 0 for different gradation HRGG fillers. Furthermore, it was found that the key features
influencing the fov were determined to be the maximum particle diameter dmax, gradation parameters
b and m, flat and elongated particles in coarse aggregate Qe, and the Los Angeles abrasion of coarse
aggregate LAA. Among them, the influence of dmax on the ANN-PM predictive performance was the
most significant. On the training and testing sets, the goodness-of-fit R2 of ANN-PM all exceeded 0.95,
and the prediction errors were small, which indicated that the accuracy of ANN-PM predictions was
relatively high. In addition, it was clear that the ANN-PM exhibited excellent robust performance.
The research results provide a novel method for determining the fov of subgrade fillers and provide
theoretical guidance for the intelligent construction of high-speed railway subgrades.

Keywords: high-speed railway subgrade; vibration compaction; optimal vibration frequency; key
features; ANN

1. Introduction

The compaction quality control of high-speed railway graded gravel (HRGG) was a cru-
cial factor influencing the service performance of the subgrade [1–3]. Vibratory compaction
was the mainstream method in subgrade construction, where the vibration frequency
was closely related to compaction quality control. Unreasonable vibration frequencies
could lead to poor control of subgrade compaction quality, which caused various types
of subgrade diseases, such as uneven settlement [4,5] and permanent deformation [6,7].
Meanwhile, there has been limited research on the intelligent prediction of the optimal

Sensors 2024, 24, 689. https://doi.org/10.3390/s24020689 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24020689
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24020689
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24020689?type=check_update&version=2


Sensors 2024, 24, 689 2 of 19

vibratory frequency fov for vibratory compaction, which has hindered the development
of intelligent subgrade construction [8]. Hence, proposing a method for determining the
subgrade compaction fov and achieving intelligent prediction of the compaction fov are
of great guiding significance for improving the service performance of the subgrade and
developing intelligent construction for high-speed railway subgrades.

Existing research highlights a robust correlation between vibration frequency and
the dry density ρd of coarse-grained soil fillers. Through plate vibration compaction
experiments, Wang et al. [9] and Ji et al. [10] identified an optimal vibration frequency
range (25~27 Hz) under varying excitation forces, resulting in the attainment of maximum
dry density during the compaction of coarse-grained soil fillers. Moreover, in vibration
compaction experiments, Xie et al. [11] observed that employing the optimal frequency
reduces HRGG filler crushing, contributing to its optimal mechanical performance. Further-
more, based on indoor experiments, Ye et al. [12] found that when the vibration frequency
(25~30 Hz) approaches the resonance frequency of the fillers, the structure of coarse-grained
soil fillers becomes more compact, resulting in the maximum dry density. It was observed
that there existed an optimal vibration frequency fov within coarse-grained fillers during
vibratory compaction, which resulted in the optimal compaction state of the fillers. Ad-
ditionally, the study indicates a close relationship between the resonance frequency f 0
of the fillers and the optimal vibration frequency [13,14]. Furthermore, to improve the
efficiency of vibratory compaction for coarse-grained fillers, many scholars conducted
research on determining the fov for coarse-grained fillers. Xie et al. [15] concluded that the
f 0 of coarse-grained soil fillers increased with compaction density. Additionally, it was
observed that the compaction performance of the fillers was optimal when the vibration
frequency matched the f 0. Hence, it was urgent to investigate the relationship between f 0
and compacted fov, and propose a new method to determine the fov.

With the development of intelligent compaction technology, the high-precision pre-
diction of vibratory compaction parameters became a crucial part of intelligent subgrade
construction [16,17]. Recently, many scholars have established the relationship between
compaction parameters and filler features using linear regression models [18]. Nevertheless,
there was a clear non-linear relationship between fov and filler characteristics, and the accu-
racy of this model was still open to question. In previous studies, machine learning (ML),
recognized for its non-linear mapping capability, has proven to be an effective approach for
predicting parameters in vibratory compaction. For example, Isik [19] applied the artificial
neural network (ANN) algorithm to forecast compaction parameters in fine-grained soil and
substantiated the suitability of the ANN algorithm by utilizing accuracy and error metrics
such as goodness-of-fit (R2) and mean square error (MSE). Zaman et al. [20] established
an ANN model to quantify the relationship between the elastic modulus and stress state
of roadbed-graded aggregates. Additionally, Xie et al. [21] found that the ANN model
had a better predictive capability for the optimal moisture content of HRGG fillers during
vibratory compaction. All the above studies employed the ANN model to predict vibratory
compaction parameters, and the prediction results were favorable, which indicated that the
ANN model exhibited a strong predictive capability for vibratory compaction parameters.
Additionally, considering the multitude of factors influencing fov, taking the key feature
influencing the fov as input features for the prediction model could reduce the sample
space dimension, enhance the predictive performance of the model, and further improve
prediction accuracy [22,23]. Nevertheless, there was a lack of systematic characterization of
the performance of coarse-grained fillers, especially the relationship between gradation,
particle shape, particle crushing, and fov. Hence, it was necessary to determine the key
feature influencing the fov.

In summary, to address the issue of uncertainty in the vibration compaction fov of
HRGG fillers and achieve intelligent prediction of fov, this paper conducts the following
research. Firstly, based on vibratory compaction experiments and the hammering modal
analysis method, the f 0 of different compaction degrees K of fillers was determined. Fur-
thermore, the correlation between f 0 and fov was revealed based on compaction experiments
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at different vibratory frequencies and based on the maximum dry density ρdmax, dynamic
stiffness Krd, and bearing capacity coefficient K20 of the fillers. Secondly, the gray relational
analysis algorithm was used to determine the key feature influencing the fov based on
the quantified relationship between the filler feature and fov. Finally, the key features
influencing the fov were used as input parameters to establish the artificial neural network
prediction model (ANN-PM) for fov, and the predictive performance of ANN-PM was eval-
uated from the prediction accuracy and error. This research not only determined the fov of
HRGG fillers through the hammering modal analysis method, but also achieved intelligent
prediction of fov based on the ANN model. This provides a theoretical foundation for
intelligent construction in high-speed railway subgrades.

2. The Method of Determining fov

2.1. Material

As shown in Figure 1a, the HRGG fillers used in this experiment were surface subgrade
fillers of the high-speed railway, which consisted of crushed limestone gravel. Based on
the Code for Railway Subgrade Design (TB 10001-2016) [24], the gradation of fillers should
meet the following requirements: the maximum particle diameter dmax ≤ 60 mm, the
coefficient of uniformity Cu ≥ 15, and the coefficient of curvature Cc = 1~3. Hence, as
shown in Figure 1b, three types of gradation were selected as experimental fillers: skeleton
pore gradation G1 (dmax = 45 mm, Cu = 18.2, Cc = 1.374), skeleton dense gradation G2
(dmax = 45 mm, Cu = 40.0, Cc = 2.243), and suspended dense gradation G3 (dmax = 40.5 mm,
Cu = 53.333, Cc = 1.2).
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Figure 1. Experimental material: (a) crushed limestone aggregate, (b) three typical gradation curves.

2.2. Experimental Design

Vibratory compaction experiments were conducted using an improved large-scale
intelligent vibratory compactor [15]. The equipment was not only equipped with four
adjustable parameters, containing the vibratory frequency f (0~80 Hz), static load mp
(0~400 kg), eccentricity distance re (0~8 cm), and eccentric mass me (0~2.4 kg), but also its
compaction mechanism was similar to the on-site roller compaction. As shown in Figure 2a,
it was important to note that compared with the conventional vibratory compactor, this
equipment embedded displacement sensors, hall sensors, and vibratory acceleration sen-
sors. Furthermore, based on Equations (1) and (2), the real-time output of the dry density
ρd curve and dynamic stiffness Krd curve can be obtained.

ρd =
mg

πD2
c (h0 − Sn)

(1)

Krd =
mereω2 sin(∆φ) + mpg − md

..
x
∣∣ .
x=0

x| .
x=0

(2)
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where m is the mass of fillers; Dc is the internal diameter of the compaction cylinder; h0 is
the pavement thickness; Sn is the displacement rate of fillers; me is the mass of the eccentric
block; re is the eccentricity; ω is the rotation speed of the eccentric block; ∆φ is the lag
phase angle, which is obtained from the hall sensor; mp is the mass of the weight block; md
is the mass of the vibratory system; x is the displacement of the vibratory system, which
is obtained from the displacement sensors; ẍ is the acceleration of the vibratory system,
which is obtained from the acceleration sensors.
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Figure 2. Experimental equipment: (a) intelligent compaction equipment, (b) experimental data
collection, and (c) indoor flatbed loading equipment.

Applying the method proposed by Xie et al. [25] to determine the maximum dry
density ρdmax, the compaction degree K of HRGG fillers can be calculated in real time by
Equation (3). Hence, as shown in Figure 2b, the fillers with different K can be accurately
obtained by controlling the vibratory compaction time. Additionally, as shown in Figure 2c,
to validate the efficacy of the Krd obtained from the intelligent vibratory compactor, the
bearing capacity coefficient K30 was used to evaluate the mechanical properties of the fillers.
To ensure consistency between the indoor K30 and field experiments, it is necessary to scale
down the K30 of the field using the theory of similarity. The K30 in this experiment was
computed by Equation (4), which was derived based on the similarity coefficient for K30
proposed by Xie et al. [11].

K =
ρd

ρdmax
(3)

K30 = K20 =
σ0.84

S0.84
(4)

where S0.84 is a sinkage of 0.84 mm and σ0.84 is the load strength corresponding to a sinkage
of 0.84 mm.
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To improve the compaction quality and control the particle crushing, the parameters
for the vibratory compaction experiments were selected using the optimal parameter
determination method based on the resonance frequency f 0 proposed by Xie et al. [25]. The
vibratory frequency f was set to the f 0 of the fillers, the excitation force F0/mp < 1.9, the
moisture content ω was set to the critical moisture content of the fillers, the diameter-to-
diameter ratio (Dc/dmax) was set to 3.9, and the thickness-to-diameter ratio (h0/dmax) was
set to 3.5. Hence, in this paper, the parameters for the vibratory compaction experiments
were shown in Table 1.

Table 1. The parameters of vibratory compaction experiments.

Gradation f (Hz) ω (%) mp (kg) re (mm) me (kg) Dc (mm) h0 (mm)

G1 40 3.6 600 18.0 4.7 200 155
G2 34 4.0 600 25.1 4.7 200 155
G3 26 5.4 600 44.4 4.7 200 155

As shown in Figure 3, the vibratory compaction experiments were primarily divided
into three steps. (1) Sample preparation: the initial fillers were classified based on particle
size through sieving tests, and the samples were prepared according to the experimental
gradation. (2) Vibratory compaction: experiments were conducted using the intelligent
vibratory compactor, and the ρd and Krd of the HRGG fillers were collected in real time.
(3) K20 testing: the K20 of the HRGG fillers after vibratory compaction was tested based on
a plate load test.
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Figure 3. The diagram of vibratory compaction experiments.

2.3. The Tests of Determining f0
The post-compaction f 0 of the HRGG fillers was obtained from the hammering modal

analysis method [26]. As shown in Figure 4, the hammering modal experiments were
primarily divided into three steps. (1) Demold: the complete compacted HRGG fillers were
obtained using demolding equipment after the plate load test. (2) Installation of acceleration
sensors: a triaxial accelerometer was installed at the top of the fillers and connected to
the DH5922D dynamic signal acquisition equipment. (3) Collection of hammer impact
acceleration signals: a rubber hammer was used to strike the top of the fillers, and the
acceleration signals of the fillers during the strike were recorded in real time. To ensure the
reliability of the signals, the hammering modal experiments for fillers with different K were
repeated three times. Based on the acceleration signals of the fillers, the f0 with different K
of fillers was determined by the hammering modal analysis method.

Figure 5 shows the hammering modal method analysis process based on G2 type
HRGG fillers. Figure 5a shows the time-domain amplitude of the acceleration signal.
The acceleration amplitude gradually weakened after reaching the peak until stabilized,
indicating the fillers’ vibratory feature during the strike. The initial peak indicated a rapid
response of the fillers to the hammering, while the weakening process indicated that the
hammering energy gradually dissipated within the fillers until stabilized. As shown in
Figure 5b, the time-domain acceleration signal was subjected to Fourier transformation to
obtain the acceleration signal spectrum. It was observed that the acceleration reached the
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peak at a frequency of 33 Hz, which indicated a significant vibratory response of the fillers
at this frequency. Hence, 33 Hz was determined as the first f 0 of the G2 type HRGG fillers.
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Figure 4. The diagram of hammer impact experiments.
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Figure 5. Hammer impact modal analysis: (a) acceleration time-domain amplitude, (b) acceleration
amplitude-frequency spectrum.

As shown in Figure 6, hammering modal experiments were conducted on HRGG fillers
with different K and gradation, revealing the relationship between grading, K, and f 0. As
shown in Figure 6a, with the K increasing, the f 0 of all three fillers showed a pattern of
“rapid increase—slower increase”, and when K > 0.95, f 0 tended to stabilize. As shown in
Figure 6b, when K = 0.96, the filler gradation transitioned from G1 to G3, and the coarse
particle content gradually decreased, which led to a gradual reduction in f 0.
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Figure 6. Relationship between K, gradation, and f 0: (a) relationship between K and f 0, (b) relationship
between gradation and f 0 when K = 0.96.
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2.4. Relationship between fo and fov

In summary, the f 0 of HRGG fillers with different K had been determined by hammer-
ing modal experiments. Vibratory compaction experiments were conducted with vibratory
frequencies set at 20, 25, 30, 35, 40, and 45 Hz. Furthermore, the relationship between f 0
and fov was explored by the parameters Krd, K20, and ρd of the fillers.

As shown in Figure 7, the evolution patterns of Krd, K20, and ρd for the HRGG fillers
under different vibratory frequencies during the vibratory compaction were obtained. As
shown in Figure 7a, the Krd of fillers at different vibratory frequencies all exhibited a pattern
of “rapid increase—slower decrease”, indicating the presence of an “inflection point” in the
Krd curve. As shown in Figure 7b, when the vibratory frequency was set as f 0, the K20 also
reached the maximum value at the “inflection point” of Krd. As shown in Figure 7c, the ρd
of fillers at different vibratory frequencies all showed a pattern of “rapid increase—slower
increase”. Nevertheless, it was difficult to determine the maximum dry density ρdmax based
on the evolution pattern of ρd. Hence, ρdmax could be determined on the ρd curve by the
vibratory time Tip corresponding to the “inflection point” on the Krd curve [25].
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Figure 7. Evolution of Krd, K20, and ρd of graded gravel (G1) under different vibratory frequencies:
(a) Krd time history curve, (b) K20 time history curve, (c) ρd time history curve.

As shown in Figure 8, the relationships between Krd, K20, and ρdmax of HRGG fillers,
in relation to vibratory frequency and gradation, were obtained from vibratory compaction
experiments. As shown in Figure 8a, when the vibratory frequency was f 0, fillers with
different gradations all exhibited the maximum Krd. Similarly, as shown in Figure 8b,c,
when the vibratory frequency was f 0, the K20 and ρdmax all reached maximum values,
which was consistent with the evolution patterns of Krd. The above experimental results
indicated that the mechanical and physical properties of the compacted fillers were op-
timal when the vibratory frequency was f 0, further indicating that f 0 was the optimal
compaction frequency.
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Figure 8. Relationship between vibratory frequency and maximum Krd, K20, and ρdmax: (a) relation-
ship between vibratory frequency and maximum Krd, (b) relationship between vibratory frequency
and K20, and (c) relationship between vibratory frequency and ρdmax.

3. ANN-Based Predictive Model for fov

3.1. Key Feature of fov

According to the Chinese Code for Design of Railway Earth Structure (TB 10001–2016) [1],
the performance feature of the fillers include gradation, particle shape, and particle crush-
ing, such as Cu, Cc, dmax, three typical particle diameters (d ≤ 0.5 mm, d = 0.5~1.7 mm,
d ≥ 1.7 mm), the Los Angeles abrasion of coarse aggregate LAA, flat and elongated par-
ticles in coarse aggregate Qe, the water absorption of coarse aggregate Wac, the water
absorption of fine aggregate Waf, the liquid limit of fine aggregate LL, and the plastic limit
of fine aggregate PL. As shown in Figure 9, to identify the feature of influencing the f ov,
all features were tested in the vibratory compaction experiments based on the Railway
Ballast (TB/T 2140-2008) [27] and Geotechnical Testing Procedures for Railway Engineering
(TB 10102-2023) [28].
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Figure 9. Performance feature experiments of fillers.

Recently, the relationship between all features and fov was still unclear. If all features
influencing fov were inputted into the ML prediction model, this might have overshadowed
the role of key features and increased the difficulty of model training. Hence, it was
necessary to identify the key features influencing fov, and then input them into the ML
prediction model to reduce the spatial dimension of the samples and enhance the efficiency
of model training.

As shown in Figure 10a, Grey Relational Analysis (GRA) was a statistical method
for analyzing multiple factors, which assessed the correlation of sequences based on the
similarity of their curve shapes. The similarity in sequence curve shapes was positively
correlated with sequence correlation [29]. Hence, the key feature of influencing the fov
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could be determined based on GRA. As shown in Figure 10b and Table 2, the correlation
coefficient R between each characteristic and fov was calculated. Generally, the feature
could be considered as strongly correlated when R > 0.6. Thus, the feature strongly
correlated with fov was as follows: dmax (0.75), d < 0.5 mm (0.73), d ≥ 1.7 mm (0.71),
d = 0.5 mm~1.7 mm (0.68), Qe (0.66), LAA (0.64).
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Figure 10. Based on the GRA algorithm analysis of fov key characteristics: (a) flowchart of GRA
algorithm, (b) characterization analysis results.

Table 2. The correlation between different performance features of HRGG fillers and fov.

Performance feature Cu Cc dmax d ≤ 0.5 d = 0.5~1.7 d ≥ 1.7 LAA Qe Wac Waf LL PL

Correlation coefficient R 0.58 0.5 0.75 0.73 0.68 0.71 0.64 0.66 0.56 0.55 0.1 0.22

3.2. Dataset of ANN Model

The GRA algorithm explicitly determined the key feature influencing the fov. Nev-
ertheless, it was difficult to provide a detailed description of the gradation feature for
d ≥ 1.7 mm, d = 0.5 mm~1.7 mm, and d < 0.5 mm, making it impractical for direct applica-
tion in the ML prediction model. Hence, it was crucial to accurately quantify the gradation
feature of the fillers. As shown in Equation (5), Wu et al. [30] proposed an equation that
could describe the continuous gradation of coarse-grained soil. Thus, the three indicators
of the gradation feature could be described by the two gradation characteristic parameters:
b and m. Eventually, dmax, b, m, Qe, and LAA were considered as the key features of
influencing the fov and were used as input features for the ML prediction model.

P =
1

(1 − b)
(

dmax
d

)m
+ b

× 100% (5)

where b and m are the gradation characteristic parameters.
To validate the reasonableness of Equation (5) in describing the gradation feature

of HRGG fillers, as shown in Figure 11, the dmax was set to 60 mm, and different values
were assigned to b and m, resulting in gradation curves of different forms. The slope
of the gradation curve was primarily determined by m. When b was held constant, m
was positively correlated with the slope of the gradation curve. Meanwhile, the shape of
the gradation curve was mainly determined by b. When m was held constant, with the
b increasing, the gradation curve gradually transitioned from “hyperbolic” to “reverse
S-shaped”. In conclusion, the parameters m and b in the gradation equation, respectively
determined the slope and shape of the gradation curve. The wide range of variation in the b
and m allowed the gradation equation to reflect different forms of gradation curves. Hence,
it was reasonable to use Equation (5) to describe the gradation feature of HRGG fillers.
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Figure 11. Relationship between gradation characteristic parameters and curve shape: (a) b = −0.28,
(b) b = 0.36, (c) b = 1.0, (d) m = 0.45, (e) m = 0.725, and (f) m = 1.0.

The ML prediction model dataset was further constructed based on the five key fea-
tures of influencing the fov. A dataset D = {(xρ, yρ)}N i=1 was established by analyzing the
relationship between fov and the five key features for 333 sets of fillers with different grada-
tions, where xρ represented the input feature consisting of the five key characteristics, and
yρ represented the output feature consisting of fov. As shown in Figure 12, the relationships
between the five key features and fov in the ML prediction model dataset were obtained
by analysis.

3.3. Establishment and Evaluation of ANN-PM

As shown in Figure 13, Artificial Neural Network (ANN) was a typical ML algo-
rithm [31–36] used for predictive analysis of the fov. Additionally, the ANN model was
trained using the Adam optimizer algorithm [37,38]. During the training, the mean absolute
error (MAE) was used as the objective function to calculate particle fitness, which could be
calculated by Equation (6). As shown in Figure 14, the establishment of the ANN prediction
model (ANN-PM) based on fov primarily involved three steps: (1) partitioning the dataset,
(2) developing the ANN-PM based on the training set, (3) and evaluating the performance
of the ANN-PM based on the testing set.

f itness = MAE =
1
n

1

∑
i=1

|yi − ŷi| (6)

where n is the sample size, yi is the true value, and ŷi is the predicted value.
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Figure 14. Schematic of ANN-based fov prediction model.

Step 1: Partitioning the dataset.
The dataset D was divided into training and testing sets in a 7:3 ratio, where the

training set was used to develop the ML prediction model, and the testing set was used to
evaluate the performance of the ANN-PM.

Step 2: Developing the ANN-PM based on the training set.
The ANN model was employed to predict fov, while the particle swarm optimization (PSO)

algorithm [39,40] was introduced to optimize the hyperparameters of the ANN-PM. This
method has been confirmed as an effective approach for hyperparameter optimization [41].
After that, the training set was inputted into the ANN-PM, and it was trained based on
the optimal hyperparameters. The goodness-of-fit R2 [42], mean square error (MSE) [43],
and mean absolute error (MAE) [44] were used to evaluate the generalization ability of
the ANN-PM.

Step 3: Evaluating the impact of key features on the ANN-PM performance based
on the ablation study.

A series of prediction experiments was designed by removing key features to explore
their impact on the ANN-PM predictive performance [45]. Similarly, R2 was employed to
evaluate the predictive performance of ANN-PM under different experimental conditions.

Step 4: Evaluating the performance of the ANN-PM based on the testing set.
After the ANN-PM was developed, the testing set was used for fov prediction. To

quantify the generalization ability of the ANN-PM, the same evaluation criteria (R2, MAE,
and MSE) for prediction accuracy and error as in step 2 were applied to evaluate the
predictive performance of the ANN-PM.
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3.4. Sensitivity Analysis of ANN-PM

As shown in Figure 15, based on the Monte Carlo method, the random fluctuations
in ANN-PM input data could propagate through the output solution [46,47]. Then, the
quantitative analysis of the probability distribution of the output solution could characterize
the robustness of the ANN-PM.
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Figure 15. Schematic of the Monte Carlo method.

To comprehensively evaluate the ANN-PM performance, the Monte Carlo method
was employed to simulate the probability distributions of R2 and MSE. This analysis aimed
to evaluate the robustness of the predictive models. The specific steps were outlined
as follows:

Step 1: Randomization of data and result computation.
Randomizing the training set involves randomly combining 70% of the data for

training and making predictions on the testing set. A set of M−R2 and M−MSE was
calculated based on the predicted results, as shown in Equations (7) and (8).

M − R2 = fR2(x1, x2, . . . xn) (7)

M − MSE = fMSE(x1, x2, . . . xn) (8)

where M−R2 and M−MSE are the R2 and MSE obtained through the Monte Carlo method.
fR2() and fMSE() denote the non-linear functions between the random input training set, the
R2, and MSE.

Step 2: Repetitive simulation.
The number of Monte Carlo simulations was set to 300. Next, the computational

process outlined in step 1 was repeated, resulting in N sets of M−R2 and M−MSE, which
were used to create probability distribution plots for structural analysis.

4. Results and Analysis
4.1. Establishment of ANN-PM Based on the Training Set

Figure 16 shows the variation of fitness for the ANN-PM during the iterative. It was
clear that, with the iterative optimization of the PSO algorithm, the fitness of the ANN-PM
significantly decreases and tends to stabilize after fewer iterations. This indicated that
the PSO algorithm has a significant advantage in improving the prediction accuracy of
ANN-PM. The optimum hyperparameters of the used ANN-PM in this paper were shown
in Table 3. Furthermore, the obtained optimal hyperparameters were inputted into the
ANN-PM for the prediction of fov.
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Figure 16. MAE values versus some iterations using hybrid models.

Table 3. Optimum hyperparameters of ANN models.

Hyperparameters α Neurons1 Neurons2 Epoch Batch Size

ANN 0.001 100 100 200 16

As shown in Figure 17a, the scatter plot showed the fitting results of the ANN-PM on
the training set, indicating the relationship between the predicted and actual values of fov.
The horizontal axis represented the actual values of fov, while the vertical axis represented
the predicted values. The more concentrated the data points were on the 45◦ median axis,
the better fitting capability of the ANN-MLPM. The data points of the ANN-PM generally
fluctuated around the 45◦ median axis, with the majority of points concentrated within the
10% error range, and only a small number of points fell outside this range, indicating that
the ANN-PM demonstrated good fitting capability.
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Figure 17. Predictive performance of ANN-PM in the training dataset: (a) R2, (b) R2, MSE, and MAE.

As shown in Figure 17b, the predictive performance of the ANN-PM on the training
set was evaluated from the perspective of prediction accuracy and error. On the training
set, the error indicators MAE (0.85391 Hz) and MSE (1.53176 Hz) of the ANN-PM were
both small. Additionally, the R2 of the ANN-PM was higher than 0.96, indicating a high
level of fitting accuracy. However, the predictive results on the training set only indicated
the predictive ability of the ANN-PM during the development of the model. Hence, the
predictive performance of the ANN-PM should have been evaluated using the testing set.
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4.2. Evaluating the Impact of Key Features on the ANN-PM Performance

As shown in Figure 18, when five features were used as input features, the ANN-
PM achieved the highest R2, indicating the highest prediction accuracy. Subsequently,
after removing the LAA, the R2 of the ANN-PM was 0.9235, which only decreased by
approximately 0.035. This indicated that the importance of the LAA for prediction results
was relatively low. Conversely, when the dmax was removed, the R2 of the ANN-PM
dropped to 0.8956, falling below 0.9. Similarly, when the dmax was removed, MAE and MSE
all reached their maximum values. This indicated that the dmax held significant importance
for prediction results. A comparative analysis revealed the importance rankings of the
individual metrics as follows: dmax > b > m > Qe > LAA.
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Figure 18. The results of the ablation study: (a) R2, (b) MSE and MAE.

4.3. Evaluation of ANN-PM Based on the Testing Set

As shown in Figure 19a, the scatter plot showed the fitting results of the ANN-PM
on the testing set, indicating the relationship between the predicted and actual values of
fov. The data points of the ANN-PM generally fluctuated around the 45◦ median axis, with
the majority of points concentrated within the 10% error range, and only a small number
of points fell outside this range, indicating that the ANN-PM demonstrated good fitting
capability. As shown in Figure 19b, the predictive performance of the ANN-PM on the
testing set was evaluated from the perspective of prediction accuracy and error. On the
testing set, the error indicators MAE (1.05942 Hz) and MSE (1.93091 Hz) of the ANN-PM
were both small. Additionally, the R2 of the MLPM was higher than 0.95, indicating a high
level of fitting accuracy.
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Figure 19. Predictive performance of ANN-PM in the test dataset: (a) R2, (b) R2, MSE, and MAE.
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Based on the above, the ANN-PM showed good predictive performance in terms of
prediction accuracy and error evaluation on both the training and testing sets. Hence, the
ANN-PM could be employed to predict the fov for the vibratory compaction of HRGG fillers.

4.4. Sensitivity Analysis of ANN-PM

As shown in Figure 20, the probability distributions of the R2 and MSE were obtained
by the Monte Carlo analysis. The distribution of R2 for the ANN-PM closely approached 1,
with its mean value exceeding 0.9. This indicated that the ANN-PM maintained a high level
of predictive accuracy. Simultaneously, the MSE distribution for the ANN-PM approached
zero. Combining the robustness analysis results of R2 and MSE, it was clear that the
ANN-PM exhibited excellent robust performance.
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5. Discussion

Based on the results of this paper and the references [11,21,48], it is indicated that
the ANN model exhibits excellent predictive performance for the vibration compaction
parameters (fov) of HRGG fillers. This highlights the significant advantage of the ANN model
in fov prediction, providing more accurate guidance for practical engineering applications.
Hence, in forthcoming fov prediction applications, especially in the field of intelligent
compaction, the ANN model is poised to become a potent tool. As intelligent technologies
continue to evolve, this model has the potential to deliver accurate fov predictions for
practical engineering, further propelling the advancement of intelligent compaction control.
Nevertheless, there are still some issues that require further optimization regarding the
ANN model. Despite demonstrating excellent predictive capabilities, the black-box nature
of the ANN can hinder its real-world applications due to a lack of transparency in decision
making. Hence, an in-depth exploration of data augmentation and model interpretability
techniques can enhance the robustness of predictive results. Given these limitations, future
research could employ SHapley Additive exPlanations (SHAP) analysis to reveal the relative
importance of different input features. Moreover, the integration of advanced techniques
such as ensemble learning or hybrid models may further improve prediction accuracy and
reduce potential uncertainties.

6. Conclusions

To address the uncertainty of optimal vibratory frequency fov of high-speed railway
graded gravel (HRGG) and achieve high-precision prediction of the fov, the following re-
search was conducted. Firstly, the correlation between the resonance frequency f 0 and fov of
fillers with different compactness K was determined by vibratory compaction experiments
and the hammering modal analysis method. Secondly, the relationship between the filler
feature and fov was established, which revealed the key feature influencing the fov. Finally,
the artificial neural network prediction model (ANN-PM) for predicting fov was established
based on the key characteristics. The ablation study, prediction errors, and accuracy were
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used to evaluate the predictive performance of ANN-PM. Furthermore, the ANN-PM ro-
bust performance was evaluated based on the sensitivity analysis. The main conclusions
obtained are as follows:

1. In the vibratory compaction experiments, maximum dry density ρdmax, stiffness Krd,
and bearing capacity coefficient K20 of different gradation HRGG fillers all obtained
optimal states when the vibratory frequency was set as f 0, which indicated that f 0
was the fov.

2. Based on the gray relational analysis algorithm, the key features influencing the fov
were determined to be the maximum particle diameter dmax, gradation parameters
b and m, flat and elongated particles in coarse aggregate Qe, and the Los Angeles
abrasion of coarse aggregate LAA.

3. The key feature influencing the fov was used to establish the ANN-PM. Then, based on
the ablation study, it was indicated that the impact hierarchy of the five key features
on the ANN-PM predictive performance was dmax > b > m > Qe > LAA.

4. On the training and testing sets, the goodness-of-fit R2 of ANN-PM all exceeded 0.95,
and the prediction errors were small, which indicated the strong prediction capability
of ANN-PM for fov.

5. Based on the sensitivity analysis, the distribution of R2 for the ANN-PM closely
approached 1, with its mean value exceeding 0.9. In addition, the MSE distribution
for the ANN-PM approached zero. It was clear that the ANN-PM exhibited excellent
robust performance.
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