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Abstract: The term out-of-stock (OOS) describes a problem that occurs when shoppers come to
a store and the product they are seeking is not present on its designated shelf. Missing products
generate huge sales losses and may lead to a declining reputation or the loss of loyal customers.
In this paper, we propose a novel deep-learning (DL)-based OOS-detection method that utilizes a
two-stage training process and a post-processing technique designed for the removal of inaccurate
detections. To develop the method, we utilized an OOS detection dataset that contains a commonly
used fully empty OOS class and a novel class that represents the frontal OOS. We present a new
image augmentation procedure in which some existing OOS instances are enlarged by duplicating
and mirroring themselves over nearby products. An object-detection model is first pre-trained using
only augmented shelf images and, then, fine-tuned on the original data. During the inference, the
detected OOS instances are post-processed based on their aspect ratio. In particular, the detected
instances are discarded if their aspect ratio is higher than the maximum or lower than the minimum
instance aspect ratio found in the dataset. The experimental results showed that the proposed method
outperforms the existing DL-based OOS-detection methods and detects fully empty and frontal OOS
instances with 86.3% and 83.7% of the average precision, respectively.

Keywords: deep learning; image analysis; image processing; out-of-stock detection

1. Introduction

Out-of-stock (OOS) is a term that refers to a situation in which customers at a retail
outlet arrive at the shelf and the specific product they are seeking is not available on its
designated shelf [1]. Figure 1 shows an example of an image from a supermarket where
multiple OOS situations are present on shelves. The OOS problem has been a matter
of research for over 50 years, and supermarket shelves are still empty [2]. Corsten and
Gruen [3] examined the extent, causes, and efforts to address the OOS problem. The study
showed that the average worldwide OOS rate was 8.3%, with Europe having the highest
rate of 8.6%. When customers encountered OOS, the average worldwide reactions were the
following:

• There were 31% that bought the item at another store;
• There were 26% that bought an item of another brand;
• There were 19% that bought a different item of the same brand;
• There were 15% that delayed purchase;
• There were 9% that did not buy the item.

In particular, product categories with high brand loyalty, such as feminine hygiene products,
diapers, and toothpaste, were most often bought at another store, while categories to which
customers are less loyal, e.g., salted snacks and paper towels, were most often substituted
with a different brand. A repetitive occurrence of OOS may result in a declining reputation
or decreasing loyalty to both the store and the brand. Missing products generate huge
losses in retailer sales with an estimated worldwide average of 3.9%. Furthermore, late
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shelf replenishment with products from storage was detected as one of the main causes of
OOS, with a worldwide average share of 25%, while in Europe, the share was a massive
38%. Hence, an efficient and accurate OOS detection system could increase sales by 1%.

Figure 1. Example of an image from our dataset with several out-of-stock (OOS) locations on shelves.

Shelf replenishment with products from storage can be late even up to 17 h, whereas
OOS caused by other reasons sometimes remains unresolved for several days [4]. Currently,
store clerks perform visual inspections of store shelves to identify possible OOS. Such a
process is labor-intensive and depends on the frequency of physical visits to each shelf.
Therefore, the implementation of a high-performing OOS detection system would not only
increase the volume of sales, but also relieve the employees of the visual inspection task
and ensure the possibility of employing them in other store-managing tasks.

Numerous approaches and different data can be used to address the problem of OOS
detection. The simplest solution is to analyze the sales data [5] and track the quantity of
unique products sold. If many items of a unique product have been sold since opening
or, even more precisely, if the ratio of sold items to displayed items of a product is large, store
employees should be notified to replenish the appropriate shelf. Alternatively, different
sensors can be installed and utilized to detect changes on store shelves and possible OOSs,
such as radio frequency identification (RFID) technology [4], infrared (IR) sensors [6],
or depth sensors [7]. Furthermore, computer vision methods can be utilized to detect OOS
in images of store shelves. In recent years, deep learning (DL) networks, which process
input data using a large sequence of different layers (e.g., convolutional, pooling, and fully
connected), have been employed in various tasks, including OOS detection in images.
DL-based methods provide the possibility of OOS detection in images using two opposite
strategies, either by detecting products on store shelves and deducing the locations of
OOSs [8–10] or by direct detection of OOS instances present in an image [11,12]. Also,
OOSs may be detected using on-shelf availability (OSA) estimation [13,14], a task in which
the goal is to estimate the amount of products on store shelves, as a minimal OSA estimation
for a certain shelf suggests that an OOS is present on the shelf.
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A major problem in OOS detection in images is the data. In particular, only one
OOS detection image dataset [15] has been made publicly available so far. However, OOS
instances from the mentioned dataset were marked using only one point, thus not capturing
the height and width of the objects, which is a drawback that makes the dataset useless
for training DL object-detection models. Therefore, any researcher who plans to study
this problem and perform certain DL experiments must collect and annotate his/her own
set of images. Next, there are many questions regarding data collection and annotation
processes. When and how do we collect the images? How do we annotate the height of an
empty area on the top shelf? How do we label continuous empty space on a shelf? How
dow we deal with small gaps on a shelf? These questions had not been answered until a
recent study [12] became the first to reflect on these issues. An explicit definition of the
data collection and annotation guidelines is crucial for the acquisition of a dataset with
all four data quality dimensions mentioned by Batini et al. [16]: accuracy, completeness,
consistency, and timeliness.

In this work, we propose a novel DL-based method for direct OOS detection in images
of supermarket shelves. To develop the method, we utilized an OOS detection dataset
that contains two OOS classes: fully empty OOS locations and frontal OOS locations
(detailed description in Section 3). The proposed method is divided into a training part,
which consists of three processes, and an inference part, which is performed through two
steps. We present a new image-augmentation procedure suitable for OOS detection. In the
training part, the proposed augmentation procedure is first applied to obtain augmented
shelf images. Following the shelf images’ generation process, these generated images are
used to pre-train an object-detection model to detect fully empty and frontal OOS instances
directly. Finally, the pre-trained model is fine-tuned using the original images. The pre-
training step and the fine-tuning step represent the first stage and the second stage of the
multi-stage model training process, respectively. During the inference, an image is first
passed through the OOS detection model. Later, the obtained results are post-processed as
follows. For each detected OOS instance, the bounding box aspect ratio is calculated and
compared with the aspect ratio of the instances present in the dataset. The detected OOS is
discarded if its aspect ratio is either higher than the maximum or lower than the minimum
OOS aspect ratio found in the dataset. Otherwise, the detected OOS instance is considered
a valid detection.

The main contributions and novelty of this paper are as follows:

• We are the first to present an effective multi-stage training setup for object-detection
networks that detect OOS directly. We show that the proposed two-stage training
procedure improves the performance of the baseline models, i.e., of the models trained
on the original images without pre-training on the augmented images.

• We are the first to introduce a post-processing technique designed for the removal of
inaccurate OOS detections. We show that the proposed post-processing technique
further improves the results obtained by the model developed using the two-stage
training procedure.

• We are the first to use a frontal OOS class. We show that using frontal OOS instances
not only enables the model to detect an additional OOS class, but also improves the
results of the fully empty OOS class.

Following the Introduction, existing methods for OOS detection are thoroughly de-
scribed in Section 2. A description of our in-house OOS detection dataset is provided
in Section 3, followed by a detailed explanation of the proposed method in Section 4.
The setup used in the conducted experiments is described in Section 5. Section 6 presents a
quantitative and visual evaluation of the proposed method and a discussion of the obtained
results. Finally, Section 7 gives the concluding remarks of the paper.

2. Related Work

OOS detection is a problem that can be solved using various approaches. As one
of the first solutions to this problem, Papakiriakopoulos et al. [5] proposed a rule-based



Sensors 2024, 24, 693 4 of 20

decision support system for automatic OOS detection based on sales and other data. Later,
several studies proposed a sensor-based solution for the detection of OOSs on store shelves.
Bertolini et al. [4] used the RFID technology to track the number of products on supermarket
shelves. Frontoni et al. [6] built an embedded wireless IR sensor network for real-time OOS
detection. Milella et al. [7] presented a solution for OSA estimation using 3D data provided
by a depth sensor. Moorthy et al. [17] mentioned another possible solution, where a weight
sensor is integrated into a shelf and a change is detected whenever a product is taken from
the shelf. Over the last decade, computer vision applications have attracted increasing
attention. Therefore, multiple image processing (IP) and DL solutions for OOS detection
have been presented. In comparison to the sensor-based approaches, computer vision-
based methods are less expensive to integrate into an OOS detection system deployed
in a supermarket, have less scalability issues, and are able to analyze the status of more
products at once [18,19].

Rosado et al. [20] proposed a framework for OOS detection in panoramas of retail
shelves using IP and machine learning. Following the image stitching process based on the
research of Goncalves et al. [21], OOS detection was performed through several processing
steps. First, the FAST corner detection algorithm [22] was applied to a panoramic image to
detect keypoints, and the locations of the aisle edges were deduced based on the vicinity of
the keypoints. The detected keypoints were then utilized to construct a binary mask of the
OOS candidates inside the localized aisle area. The mask was later divided into rectangles
and binarized according to the density of keypoints inside the rectangle. Vertical separation
of the OOS candidates present in the mask was followed by Hue-Chroma-Luminance
color space-based filtering of the candidates. Each remaining candidate was described
using a total of 152 image features from three different feature categories: geometry,
texture, and color. Finally, a two-class support vector machine (SVM) [23] performed the
classification of candidates using the aforementioned image features.

OOS can be localized by detecting products present on the shelf and analyzing areas
where products have not been detected. Šećerović and Papić [8] built such a system for
the detection of missing products in commercial refrigerators using convolutional neural
networks (CNNs). First, Faster R-CNN [24] and SSD [25] object detectors were trained
to localize products on shelves. The OOS positions were then deduced according to the
locations of the goods as follows. The K-means clustering algorithm [26] was used to
group the products detected on the same shelf using only the y coordinate of the detections.
The average silhouette method [27] was applied to determine the correct number of groups,
i.e., shelves on an image. Finally, a significant distance between products detected on the
same shelf implied the presence of an OOS problem. Chen et al. [9] developed a method
for OOS detection based on product detection and various image analysis techniques.
First, an object detection CNN was used to detect products in images of store shelves. In
particular, the Faster R-CNN model with the Inception_v2 [28] backbone was trained for this
purpose. The positions of the detected products were then used to determine the locations
of the unknown areas on the shelves. The unknown areas were finally analyzed using
three separate approaches: analysis of the amount of edge information extracted using the
Canny edge operator [29], classification of texture features using an SVM, and comparison
with the pre-computed color histograms of typical OOS areas. Achakir et al. [10] detected
OOSs by employing Faster R-CNN and MiDaS [30] models for product detection and depth
estimation in a shelf image, respectively. The results obtained with the Faster R-CNN were
refined using the ASIFT [31] descriptor to increase the product detection accuracy. Finally,
the presence of an OOS in the image was deduced based on the mean estimated depth of
areas where the products were not detected.

In addition to being employed in product detection-based OOS approaches, object-
detection models can also be trained to detect OOS directly. Yilmazer and Birant [11] used
semi-supervised DL to localize products and OOSs in grocery stores. First, three different
one-stage object-detection models were trained to detect three product classes and two
OOS classes (empty shelf and almost empty shelf) using the labeled data. In particular,
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RetinaNet [32], YOLOv3 [33] and YOLOv4 [34] models were selected for this purpose.
Following the training process, the best-performing model was used to label the unlabeled
data, and the predictions of the model were considered as pseudo-labels. Finally, the best-
performing model was re-trained using both labeled and pseudo-labeled data to obtain
the final model. Jha et al. [12] trained several EfficientDet [35] models and the complete
family of YOLOv5 [36] models in order to detect OOS in shelf images. The influence of the
training set size on the result was examined, and the obtained results showed an almost
logarithmic increase in performance with a linear increase in the training set size.

In recent years, CNNs have also been employed in various tasks related to OOS
detection. Higa and Iwamoto [13] published a method for robust OSA estimation using
IP and a six-channel input CNN. First, background subtraction was performed to detect
changes in the shelf image. Next, the Hungarian method [37] was used to determine the
correspondence of foregrounds between consecutive images, and moving foregrounds
were discarded. For each detected change, a six-channel image was constructed from the
cropped region of change before and after the change was detected, and fed into a CNN that
classified a shelf change. The classification results were used to update the shelf condition,
which was represented as a binary image. Finally, the OSA metric was calculated as the
ratio of the shelf area containing the products to the entire shelf area. The extended version
of the study [14] proposed an additional functionality for generating a heatmap that shows
the accumulation of detected changes on store shelves. Retailers can use such information
to plan the most profitable product placement strategy.

Allegra et al. [15] proposed a CNN based on U-Net [38] that was utilized to predict at-
tention maps useful for localizing the OOS present in an image. The authors also published
a dataset that has remained the only publicly available OOS detection image dataset up
to now. The dataset was built by re-annotating images from the Ego-Cart [39] dataset. In
particular, each image was labeled with points that represent the central point of the OOS
instances present in the image. Santra et al. [18] used graph-based modeling of superpixels
to automatically segment empty areas on supermarket shelves. First, all the images were
over-segmented into superpixels, i.e., regions that consist of a group of pixels, using the
simple linear iterative clustering (SLIC) [40] algorithm. A graph was then constructed for
every shelf image, with the superpixels as nodes and the edges for each pair of neighboring
superpixels. A graph convolutional network [41] and Siamese network architecture [42]
were utilized to obtain a unary feature embedding for each node and a pairwise feature
embedding for each edge, respectively. Finally, a structural SVM [43], a generalization of
SVMs that can be used to address a large range of structured output prediction tasks [44],
classified nodes into a gap or non-gap class using the following structured data as input:
adjacency list of the superpixel graph, unary feature embedding of the nodes, and pairwise
feature embedding of the edges.

Although in [9] the authors claim that direct OOS detection using a CNN cannot pro-
vide satisfactory results due to the inconsistency of the size, illumination, and background
of OOSs, the methods proposed in [11,12] show that not only satisfactory but also very
accurate results may be achieved using such an approach. However, none of the proposed
methods for direct OOS detection present any post-processing technique or custom training
setup that manages to improve the results obtained by utilizing a basic CNN training pro-
cedure (in [11] semi-supervised learning did not improve the result). The addition of these
techniques may be crucial for further improving the results of the OOS detection CNNs.
Furthermore, only one of the existing OOS-detection methods uses an additional OOS class
along with a fully empty class. In particular, in [11] the authors used an ‘almost empty’
OOS class. However, they did not describe what ‘almost empty’ means, how the class was
annotated, or what impact it had on the results of the fully empty class. A clear description
of the additional OOS class is mandatory for a well-performed data annotation process.
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3. Dataset

As in any other research area, a good dataset is of utmost importance in DL. As previously
mentioned, the only publicly available OOS detection image dataset was published in [15]
and contains images in which OOS instances were labeled using one point. However, using
only one point in an object detection task is not sufficient to localize the instances precisely,
as information on the width and height of the instances is missing. Although it is sometimes
possible to convert datasets from one task to another, e.g., converting instance segmentation
maps into instance bounding boxes, in this case, the dataset cannot be appropriately adjusted
as it is impossible to convert from instance points to instance bounding boxes. Therefore, we
collected and manually labeled a set of 511 RGB shelf images from four major retailers located
in Croatia. The images capture the full shelf height from top to bottom and were taken in
aisles that contain various products, such as beverages, coffee, and pâtés. The resolution of
the acquired images varies from 1800 to 4600 pixels in both the height and width.

We labeled the data using the same annotation guidelines as those presented in [12].
These guidelines focus only on completely empty shelf locations, i.e., locations empty
from front to back and top to bottom of the shelf. The empty location was visualized as a
three-dimensional (3D) box, and the front face of the 3D box was labeled. In the scenario
where multiple neighboring products were taken from the shelf, the continuous empty
location was labeled as a single empty location instance. Sometimes, small empty locations
are present on the shelf due to human interference and therefore, only locations with at least
half the size of the neighboring products were labeled. Furthermore, we extended these
annotations with an additional semi-empty location class. In particular, we also visualized
a 3D box for the location where multiple products were taken from the front of the shelf,
but some products were still present at the back of the shelf, and labeled the bottom face
of the 3D box if visible. We refer to the aforementioned completely empty locations as
the normal class and additional semi-empty locations as the front class. Monitoring the
occurrence of the front class may be beneficial to retailers as its presence can be considered
an early warning for a potential new normal class instance. Figure 2 displays examples
of OOS instances present in the dataset. In certain scenarios, the backside of the shelf is
not solid, and the background scene is visible through the shelf, sometimes even including
recognizable products. Although OOSs are generally characterized by a lack of keypoints
and homogeneous texture, an accurate OOS detection model should be able to detect even
these challenging OOS instances.

Table 1 shows the distribution of the images and OOS instances for different store
sections. Each store section is represented by approximately 170 images which contain
from 322 to 446 OOS instances. Whereas images from the beverage and coffee sections
display shelves with twice as many normal class instances as front instances, images from
the pâté section have an even ratio of instances of both classes. The average count of OOS
instances in an image ranges from 1.8 to 2.8 for different store sections, making a total
average of 2.4 OOSs per image across the entire dataset. In particular, Figure 3 illustrates
the distribution of OOS instances per image. The number of OOS instances varies from
zero to 15, 10, and 11 in the beverage, coffee, and pâté sections, respectively. In general,
the number of images decreases exponentially with a linear increase in the number of OOS
instances in an image.

Table 1. Images and OOS classes distribution for each store section.

Store Section
Total

Beverage Coffee Pâté

Images 171 178 162 511

Class
Normal 291 213 226 730

Front 151 109 220 480

Total 442 322 446 1210
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Figure 2. Examples of OOS instances. The red and blue rectangles mark the exact location of
the normal and front class instances, respectively. The top row shows (a) normal and (b) front
class instances, whereas the bottom row shows challenging normal class instances where (c) an
unrecognizable background or (d) a recognizable product can be seen through the shelf.

Figure 3. Histogram of OOS instances distribution per image. Each bar displays the cumulative
count and the share of each store section.

4. Method

The proposed OOS-detection method is illustrated in Figure 4. We divide our method
into two main parts: a training section and an inference section. First, a new augmentation
procedure suitable for OOS detection is applied to the original shelf images that contain
OOSs to produce augmented shelf images as follows. A randomly selected OOS instance
from an original image is duplicated and mirrored horizontally, either to the left or right,
thus enlarging itself over nearby products. The proposed OOS mirroring augmentation
technique is suitable for OOS detection in images for two reasons. First, the mirroring
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technique realistically demonstrates a real-world process in which various shoppers take
products from the same shelf throughout the working day. Second, usual data augmentation
techniques, such as image translation and scale shift, change the absolute location of OOS
instances in images but, unlike the proposed mirroring augmentation, do not alter the
shape of the instances. An object-detection model trained using images produced by the
proposed mirroring technique may benefit from extended instances to achieve a better
localization performance.

Figure 4. Scheme of the proposed OOS-detection method. The training part and the inference part of
the method are marked with orange and green dashed rounded rectangles, respectively.

The direction of mirroring D is selected based on the location of the center point C of
the selected OOS instance O in the shelf image I, as expressed in (1). If C is located in the
left quarter of I (i.e., the horizontal coordinate of the center point Cx is less than a quarter of
the width of the image Iwidth), then O should be mirrored onto the right side (RS). Similarly,
if C is located in the right quarter of I (i.e., Cx is higher than three-quarters of Iwidth), then O
should be mirrored onto the left side (LS). Otherwise, C falls within the middle part of I
and D is chosen randomly.

D =


RS, if Cx < 1

4 · Iwidth

LS, if Cx > 3
4 · Iwidth

random(LS, RS), otherwise

(1)

For OOS instances located near the left and right edges of an image, the heuristic given
in (1) selects D towards the center of the image. This is done because mirroring a near-edge
instance towards the edge would often make only a minor alteration to the instance by
expanding it to the edge in the first iteration, while if the same instance is chosen again in
the second iteration, then mirroring towards the edge would not alter the instance at all.
Furthermore, the thresholds are arbitrarily set to a quarter away from the left and right
image edges and may be replaced with other values, such as a third or fifth away from
the vertical edges. However, note that using smaller thresholds (i.e., closer to the vertical
edges) may result in a significant number of edge-touching instances in the first iteration,
which, as explained earlier, may not be affected by the OOS mirroring technique in the
second iteration. On the other hand, using large thresholds (i.e., closer to the image center)
may cause one mirroring direction to be more favorable if the horizontal distribution of
instances is shifted towards one of the vertical edges.
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While mirroring the newly duplicated OOS, we avoid making overlaps with other
OOS instances present in the image. In such a scenario, we repeatedly reduce the width of
the newly duplicated OOS by T times until there is no overlap with other OOS instances.
In our research, we set the value of T to 0.75. The proposed augmentation technique
can be repeated through N iterations to produce N new images from a single original
image. In particular, in the first iteration, the augmentation technique is applied to the
original shelf image I to produce the first augmented image I1. During the next iterations,
an augmented image IN−1 produced in the previous iteration is used as the input to which
the augmentation technique is applied to produce a new augmented image IN. In our
research, we repeat the process for two iterations and therefore obtain 786 new shelf images
using 393 original images that contain OOS instances. The pseudocode for applying the
proposed OOS mirroring procedure to a set of images and the corresponding annotations
is displayed in Algorithm 1, whereas Figure 5 shows an example of the original shelf
image and new augmented shelf images produced by the aforementioned procedure. In the
pseudocode, each function (e.g., randomly_select_OOS and find_mirroring_direction) performs
a specific task, as implied by its name, using the passed arguments.

Algorithm 1 OOS mirroring procedure

1: procedure AUGMENT_DATASET(images, annotations)
2: T, N = 0.75, 2 ▷ Width shortening and iterations count constants
3: for each I ∈ images do
4: image_annotations = select_image_data(I, annotations)
5: for iteration = 1 to N do
6: O = randomly_select_OOS(image_annotations)
7: D = find_mirroring_direction(O, I)
8: EC = find_enlargement_coordinates(O, D) ▷ O is mirrored onto EC area
9: while intersection_exists(EC, image_annotations) do

10: EC = reduce_width(EC, T, D)
11: end while
12: new_image = mirror_OOS(I, O, EC)
13: new_image_data = adjust_OOS_coordinates(image_annotations, O, EC) ▷ Onew =

O + EC
14: save(new_image, new_image_data)
15: I, image_data = new_image, new_image_data
16: end for
17: end for
18: end procedure

Next, the generated augmented images are used to pre-train an object-detection
model for the OOS detection task. In particular, we chose the YOLOv5, YOLOv7 [45],
and EfficientDet models for this purpose, but the aforementioned model can be any other
existing (or future-developed) object-detection model. Following the pre-training step,
the model is finally fine-tuned using the original dataset. The two-stage training procedure
results in an OOS detection model that can be deployed in a supermarket system by using
only the inference part of the method. Since the chosen object-detection models are fully
convolutional, the deployed model can accept RGB input images of an arbitrary resolution.
However, the best performance is expected when the input image resolution is the same or
very similar to the one used during the training process.
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Figure 5. Example of the OOS mirroring procedure. In the first iteration, the proposed OOS mirroring
technique is applied to (a) the original image to produce (b) the first augmented image. In the second
iteration, the augmentation technique is applied to (b) to produce (c) the second augmented image.
For each iteration, the newly extended OOS instance is marked with a color-coded rectangle, where
red and blue colors represent normal and front classes, respectively.

During inference, a previously unseen shelf image is passed through the model to
obtain the initial OOS detection results. Each detected OOS instance contains information
about the position, height, width, class, and confidence score of the OOS present in the
image. Later, the detected OOS instances with extreme aspect ratios are discarded as
follows. Let a be a bounding box aspect ratio defined as:

a =
OOSheight

OOSwidth
. (2)

We performed exploratory data analysis of our data and calculated a for each OOS instance
present in the dataset. Table 2 showcases the obtained intervals of a for each class and store
section, as well as the intervals for the entire dataset. If a of the OOS instance detected
by a model trained using a particular store section data falls within the calculated range
of the used store section and the predicted class of the detected instance, the detection
is considered valid; otherwise, it is discarded. For example, if a model trained using
the beverage store section data detects an OOS instance of class normal, then a of the
detected instance has to fall within the range from 0.27 to 4.53 to be considered a valid
detection. The end of Section 5 provides additional implementation details regarding the
post-processing of the detected OOS instances.

Table 2. Aspect ratio intervals of OOS instances for each class and store section.

Store Section
Class

Normal Front

Beverage 0.27 < a < 4.53 0.18 < a < 2.00
Coffee 0.28 < a < 3.66 0.18 < a < 1.75
Pâté 0.23 < a < 3.72 0.17 < a < 1.88
All 0.23 < a < 4.53 0.17 < a < 2.00
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5. Experimental Setup

To validate the proposed method, we trained the YOLOv5, YOLOv7, and EfficientDet
object-detection models. In particular, a small version of the YOLOv5 model from the sixth
release of the homonymous GitHub repository, YOLOv5s6, and similar-sized versions of
the YOLOv7 and EfficientDet, YOLOv7-tiny and EfficientDet-D3, were utilized for this
purpose. Small versions of these models were selected as they are suitable for running
on mobile phones and other resource-limited devices. The models were trained using the
following setup. Weights from the models pre-trained on the COCO [46] dataset were used
as the starting point in each experiment. The models were optimized using the stochastic
gradient descent with the Nesterov momentum [47] of 0.937. The learning rate lr(e) was
decreased linearly, as defined by the following formula [36]:

lr(e) = lrinit · [(1 −
e
E
) · (1 − lr f ) + lr f ], (3)

where lrinit represents the initial learning rate, e is the epoch for which the learning rate is
calculated, E represents the total number of training epochs given at the start of training,
and lrf is the learning rate factor that controls the amount of decrease. In our experiments,
the models utilized 0.01 for both lrinit and lrf, whereas 1000 was used as E. Furthermore,
the models were trained using a set of augmentation techniques including translation,
scale shift, horizontal flip, HSV color space channels modulation, and mosaic [34]. The
aforementioned training hyper-parameters and setup are the default values and setup
from the GitHub repositories of the trained models. The input images were scaled to a
1280 × 1280 resolution using letterbox scaling, i.e., the aspect ratio of the original images
was preserved. The models were trained on a single NVIDIA GeForce RTX 2080 Ti graphics
card using a batch size of eight.

The dataset was randomly shuffled and split into five equal-sized cross-validation
folds. Also, we decided to leave out 15% of the training subsets to form the validation
subsets, which were utilized for the early stopping of the model to avoid overfitting. The
produced training, validation, and test subsets that contain the original images were used
to fine-tune the models. Before fine-tuning, the models were pre-trained on the augmented
images using additional training subsets formed as follows. The training subsets used
for pre-training were constructed only with shelf images obtained by applying the OOS
mirroring procedure to the original images present in the training subsets used for fine-
tuning the model. In particular, if a training subset used for fine-tuning contains an original
image I, the training subset used for pre-training should contain images I1 and I2, which
were produced by applying the proposed augmentation method to the original image I
through two iterations. It is of utter importance to follow this setup to prevent data leakage.

We used two different pre-training strategies: pre-training of a model for a fixed
number of epochs and pre-training of a model in which early stopping was performed
based on the results of the validation subset. In the latter strategy, the validation subset
used during pre-training was the same as the one later used for fine-tuning the model.
To prevent data leakage during the validation of the post-processing technique, instead
of using the thresholds presented in Table 2, we recalculated the thresholds for each test
subset based only on the corresponding training subset data and used them to post-process
the initial results of the test subset for which they were calculated.

6. Results and Discussion

We evaluated the effectiveness of the proposed method using a commonly used class-
wise object detection metric of average precision (AP) [48] and its multi-class counterpart
mean AP (mAP). Table 3 shows the results obtained with the proposed method and
a comparison with methods that utilize two main deep learning-based OOS detection
strategies: product detection-based OOS detection [9] and direct OOS detection [12]. Since
product detection-based methods rely on analyzing unknown areas where products are
recognized to the left and/or right of the unknown area, they are not able to detect the
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front OOS class, which is surrounded by products from behind (i.e., upper than the front
instance in an image) as well. Therefore, the different methods presented in [9] were
evaluated only on the normal OOS class. All product detection-based methods performed
significantly worse than direct detection-based methods, achieving 20% to 25% lower AP
on the normal OOS class. The proposed method (i.e., YOLOv5/YOLOv7/EfficientDet + F)
achieved approximately 4% higher AP on the normal class than the best-performing
existing method (i.e., Jha et al. [12] using YOLOv5/YOLOv7/EfficientDet and the normal
class only). To evaluate the impact of using the front class, we additionally trained the
proposed method without the front class and the best-performing existing method using
both the normal and the proposed front classes. The obtained results show that the use of
the front OOS class not only ensured the ability to detect additional OOS instances with
high accuracy, but also affected the results of the normal class, which were increased by
approximately 1%. Furthermore, the results show that the YOLOv5 models consistently
outperformed the YOLOv7 and EfficientDet models in all experiments.

Table 3. Results of the proposed method and existing deep learning-based OOS-detection methods.
Single-class and multi-class performances were measured using average precision (AP) and mean AP
(mAP), respectively. Each result represents the average AP or mAP percentage of the five test folds. F
denotes the use of the proposed front OOS class.

Method
Class

Normal Front All

Chen et al. [9] (Canny) 63.8 - -
Chen et al. [9] (SVM) 56.9 - -

Chen et al. [9] (Color histogram) 61.4 - -

Jha et al. [12] (YOLOv5) 82.4 - -
Jha et al. [12] (YOLOv7) 79.7 - -

Jha et al. [12] (EfficientDet) 77.1 - -

Jha et al. [12] (YOLOv5 + F) 83.3 81.1 82.2
Jha et al. [12] (YOLOv7 + F) 80.7 78.7 79.7

Jha et al. [12] (EfficientDet + F) 78.3 76.3 77.3

Ours (YOLOv5) 85.5 - -
Ours (YOLOv7) 83.0 - -

Ours (EfficientDet) 80.2 - -
Ours (YOLOv5 + F) 86.3 83.7 85.0
Ours (YOLOv7 + F) 83.9 82.1 83.0

Ours (EfficientDet + F) 81.3 79.5 80.4

Table 4 displays the results obtained with the YOLOv5, YOLOv7, and EfficientDet
models using the proposed two-stage training procedure. Each model was trained and
validated using individual store section data as well as using the entire dataset. The baseline
models were trained for direct OOS detection of both normal and front classes using only
the original images (i.e., without pre-training on the augmented images), following the
method presented in [12]. In addition to pre-training the models using the early stopping-
based strategy, several pre-training strategies that use a fixed number of epochs were
utilized. In particular, models trained with beverage, coffee, and pâté section data were
pre-trained for 30, 50, and 100 epochs, while the model trained with all of the data was
additionally pre-trained for 10 epochs as using three times more data and the same batch
size as the models trained with only a subset of the data enables the model to converge
faster. Models pre-trained using the early stopping-based strategy generally trained for
approximately 140 to 180 epochs.
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Table 4. Results of the two-stage training procedure. Each result represents the average mAP
percentage of the five test folds. The result of the optimal pre-training strategy for each store section
and model is bolded.

Model Store Section Baseline [12]

Pre-Training Strategy

Fixed # of Pre-Training Epochs
Early Stopping

10 30 50 100

YOLOv5

Beverage 83.3 - 84.5 84.2 85.4 85.2
Coffee 78.1 - 79.6 80.4 80.1 79.9
Pâté 78.2 - 79.4 80.0 78.4 77.6
All 82.2 83.8 83.0 82.5 82.1 81.4

YOLOv7

Beverage 80.8 - 82.5 83.8 82.2 81.4
Coffee 70.4 - 72.2 71.2 70.8 70.6
Pâté 72.4 - 77.6 77.7 74.5 71.0
All 79.7 80.8 81.7 80.1 79.0 77.8

EfficientDet

Beverage 78.5 - 80.9 81.3 80.6 79.7
Coffee 71.1 - 72.2 73.1 71.0 70.5
Pâté 72.2 - 75.2 74.9 72.5 70.9
All 77.3 78.8 79.4 78.6 77.1 76.0

First, we discuss the influence of different pre-training strategies on the results of
the YOLOv5 models. For the beverage section, the best result was achieved using pre-
training for 100 epochs, whereas models trained using images from the coffee and pâté
sections performed the best when they were pre-trained for 50 epochs. However, when
training with the complete dataset, the best-performing model was obtained using only
10 pre-training epochs. The optimal pre-training strategy ensured an increase in the result
which ranged from 1.8% to 2.3% for different store sections, and an improvement of 1.6%
for the entire dataset. Next, we discuss how the two-stage training procedure affects the
performance of YOLOv7 models. For the beverage and pâté sections, the best results
were achieved using pre-training for 50 epochs, whereas models trained using images
from the coffee section and the complete dataset performed the best when pre-trained for
30 epochs. The best-performing pre-training strategy provided an improvement in the
result ranging from 1.8% to 5.3% for different store sections, and an increase of 2.0% for the
entire dataset. Finally, we discuss what an impact the two-stage training process had on the
results of EfficientDet models. For the beverage and coffee sections, the best results were
obtained after pre-training the models for 50 epochs, whereas models trained using images
from the pâté section and the complete dataset performed the best when pre-trained for
30 epochs. The optimal pre-training strategy helped increase the results by 2.0% to 3.0% for
different store sections, and by 2.1% for the entire dataset. In general, each YOLOv5 model
outperformed the corresponding YOLOv7 and EfficientDet models.

Furthermore, to demonstrate the advantages of pre-training the models using images
generated by the proposed OOS mirroring technique, we replaced the proposed technique
with several other data augmentation techniques and compared the results. In particular,
we compared OOS mirroring with rotation, cutout [49], and contrast. In the rotation
experiments, the input images were randomly rotated by an angle up to ±20°. Cutout
was applied by masking out 10 randomly selected locations in an image, where the mask
height and width were randomly chosen to be from 10% to 15% of the image height and
width, respectively. In the contrast experiments, the contrast of the input images was
adjusted using a contrast factor randomly selected from the interval [0.5, 2.0]. Table 5
presents the results of the two-stage training procedure using the aforementioned data
augmentation techniques. The proposed OOS mirroring technique outperformed other
data augmentation techniques by at least 1.4%, 1.7%, and 1.8% for the YOLOv5, YOLOv7,
and EfficientDet models, respectively.
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Table 5. Comparison of using different data augmentation techniques in the two-stage training
process. Each result represents the average mAP percentage of the five test folds.

Data Augmentation
Model

YOLOv5 YOLOv7 EfficientDet

Rotation 81.5 78.9 76.7
Cutout 82.0 79.6 77.1

Contrast 82.4 80.0 77.6
OOS mirroring (ours) 83.8 81.7 79.4

The ablation study in Figure 6 shows the results obtained after applying the proposed
post-processing technique to the baseline models and the optimally pre-trained models for
each store section (e.g., the YOLOv5 model pre-trained on 100 epochs and later fine-tuned
using beverage section data). The results achieved without post-processing are taken from
Table 4 and put next to the post-processed results for a clear comparison. Post-processing
of the results obtained with the baseline models trained on either a particular store section
data or all of the data provided an improvement in the result ranging from 1.2% to 1.9%,
from 1.3% to 2.4%, and from 1.3% to 2.5% for the YOLOv5, YOLOv7, and EfficientDet
models, respectively. When the post-processing technique was applied to the optimally
pre-trained models, the results improved from 1.2% to 1.8%, from 1.3% to 2.2%, and from
1.3% to 2.1% for the YOLOv5, YOLOv7, and EfficientDet models, respectively. Again, each
of the YOLOv5 models achieved a higher result than the corresponding YOLOv7 and
EfficientDet models.

The ablation study shows that both the two-stage training strategy and post-processing
technique can improve the results of the baseline models individually, but once they are
combined, the results improve even further. To understand what an impact the proposed
method can have on a retailer, let us consider a supermarket chain with an annual revenue
of $10 billion. In Section 1 of our manuscript, we showed that OOSs caused by late shelf
replenishment from storage cause a sales loss of 1%, i.e., approximately $100 million.
An OOS detection system that works with approximately 80% accuracy helps to achieve
timely replenishment and increase sales (by selling the replenished products) by $80 million.
The incorporation of the proposed method into the aforementioned system ensures an
increase of approximately 4% in the result, equivalent to an additional $4 million in revenue.

Additionally, since the proposed method is intended for use in real-world systems,
the runtime of the method needs to be discussed. Running the method on a GPU lasts 17 ms,
7 ms, and 61 ms per image for the YOLOv5, YOLOv7, and EfficientDet models, respectively.
On the other hand, running on a CPU lasts 414 ms, 264 ms, and 3627 ms per image for the
YOLOv5, YOLOv7, and EfficientDet models, respectively. It is important to note that OOS
methods do not need to produce real-time results. Customers sometimes take the product
and read the declaration in front of the shelf, after which they may take the product or
return it to the shelf. Therefore, it is sufficient to analyze store shelves every minute or
less frequently. Even if there are 100 cameras around the store and only one central unit
backstage that analyzes images sequentially, it takes YOLOv5 (i.e., the best-performing
model) approximately 40 s to analyze the entire store on a CPU (and less than 2 s on a
GPU), which is well below the necessary analysis time.

The top row of Figure 7 displays images that are successfully analyzed by the optimal
OOS detection model that was developed using the whole dataset, i.e., by the YOLOv5
pre-trained for 10 epochs and with post-processing included. In Figure 7a, the model is
able to accurately localize and classify all five OOS instances, including the one on the
top of the shelf where a lot of products can be seen through the shelf. In Figure 7b, one
OOS instance is correctly detected, while two detected ruptures between products are
successfully discarded by the proposed post-processing technique.
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Figure 6. Ablation study of the proposed method for (a) YOLOv5, (b) YOLOv7, and (c) EfficientDet
models. Each result represents the average mAP percentage of the five test folds. OP and PP represent
the optimally pre-trained model and the use of post-processing, respectively.
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Figure 7. Examples of OOS detection results. The top row (a,b) displays the successfully analyzed
images, whereas the bottom row (c,d) shows images with partially inaccurate results. The detected
OOS instances of the normal and front classes are marked with red and blue bounding boxes,
respectively. In (b), the dashed bounding boxes represent the OOS instances that were detected by
the model but discarded after the post-processing was applied.
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However, the optimal model sometimes struggles to detect OOS instances accurately.
In certain scenarios, the model does not detect empty areas on store shelves, although the
products are missing, i.e., a false negative (FN) occurs. Also, in some images, the model
detects false positives (FPs), i.e., OOS instances are either detected in locations where they
do not exist or are not localized accurately enough, thus having insufficient intersection
over union ratio with the ground truth to be considered true positives (TPs). The bottom
row of Figure 7 shows two images that contain, alongside accurate OOS detections, some
inaccurate detections. In Figure 7c, an FP occurs on the second shelf from the bottom in
the location where OOS is not present due to the products hanging at the end of the shelf.
In Figure 7d, a huge OOS instance at the top of the shelf is detected inaccurately, localizing
just a part of the actual empty space on the shelf.

7. Conclusions

This paper presents a novel DL-based method for OOS detection in images of su-
permarket shelves that capture the full shelf height. A lack of products on store shelves
may result in sales losses, customer dissatisfaction, and a declining reputation. Hence,
an efficient OOS detection system is highly valuable to any retailer. Missing products can
be detected by using sales data or sensor-based approaches. However, the latest solutions
mostly rely on computer vision-based methods.

The proposed method ensured highly accurate detection of both normal and front
OOS instances, outperforming the existing deep learning-based OOS-detection methods by
at least 3.9% of the AP on the normal OOS class. The use of the front OOS class proved to
be beneficial as it not only enabled the model to recognize an additional OOS class, but also
improved the results of the normal OOS class by approximately 1% of the AP. The presented
OOS mirroring procedure enables the easy generation of new semi-realistic shelf images.
These images can be used to pre-train an object-detection model for the OOS detection task.
The proposed two-stage training procedure helped the models achieve better generalization
performance, increasing the baseline results by up to 5.3% of the mAP for different store
sections. When selecting the best training procedure, several pre-training strategies must be
validated to determine the optimal strategy for a given dataset. Furthermore, the proposed
post-processing technique proved to be beneficial for the removal of FPs caused by visible
ruptures between different products on the shelf, additionally increasing the results by up
to 2.2% of the mAP for different store sections.

In future work, depth estimation should be incorporated into the existing solution to
further improve the results. Having depth information would be beneficial for better scene
understanding and reducing the number of FNs and FPs.
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Abbreviations
The following abbreviations are used in this manuscript:

OOS Out-of-stock
RFID Radio-frequency identification
IR Infrared
DL Deep learning
OSA On-shelf availability
IP Image processing
SVM Support vector machine
CNN Convolutional neural network
3D Three-dimensional
AP Average precision
mAP Mean average precision
FN False negative
FP False positive
TP True positive
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