
Citation: Rhudy, M.B.; Mahoney, J.M.;

Altman-Singles, A.R. Knee Angle

Estimation with Dynamic Calibration

Using Inertial Measurement Units for

Running. Sensors 2024, 24, 695.

https://doi.org/10.3390/s24020695

Academic Editor: Carlo Ricciardi

Received: 20 December 2023

Revised: 17 January 2024

Accepted: 19 January 2024

Published: 22 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Knee Angle Estimation with Dynamic Calibration Using Inertial
Measurement Units for Running
Matthew B. Rhudy 1,* , Joseph M. Mahoney 2 and Allison R. Altman-Singles 1,3

1 Mechanical Engineering, The Pennsylvania State University, Berks College, Reading, PA 19610, USA
2 Mechanical Engineering, Alvernia University, Reading, PA 19607, USA; joseph.m.mahoney@gmail.com
3 Kinesiology, The Pennsylvania State University, Berks College, Reading, PA 19610, USA; ara5093@psu.edu
* Correspondence: mbr5002@psu.edu

Abstract: The knee flexion angle is an important measurement for studies of the human gait. Running
is a common activity with a high risk of knee injury. Studying the running gait in realistic situations
is challenging because accurate joint angle measurements typically come from optical motion-capture
systems constrained to laboratory settings. This study considers the use of shank and thigh inertial
sensors within three different filtering algorithms to estimate the knee flexion angle for running
without requiring sensor-to-segment mounting assumptions, body measurements, specific calibration
poses, or magnetometers. The objective of this study is to determine the knee flexion angle within
running applications using accelerometer and gyroscope information only. Data were collected for a
single test participant (21-year-old female) at four different treadmill speeds and used to validate the
estimation results for three filter variations with respect to a Vicon optical motion-capture system.
The knee flexion angle filtering algorithms resulted in root-mean-square errors of approximately
three degrees. The results of this study indicate estimation results that are within acceptable limits of
five degrees for clinical gait analysis. Specifically, a complementary filter approach is effective for
knee flexion angle estimation in running applications.

Keywords: inertial measurement units; gait analysis; kinematic constraints; Kalman filtering

1. Introduction

Running is an important aspect of many people’s lives through various sports, leisure,
and fitness activities [1]. Despite its popularity, running is often associated with a high
risk of injury [2–4]. The knee is a common site for overuse injuries [5–7]. Knee injuries
have been associated with both knee kinematics and kinetics in previous studies [8,9].
In addition, knee flexion angles are important data when assessing various aspects of
gaits in different research applications, such as assessing the joint angle symmetry during
fatigue [10], comparing male and female runners [11], and performing gait analysis for
people with multiple sclerosis [12], among others. Knee flexion is associated with higher
strain in the knee ligaments, which can result in ligament strains and tears when paired
with other dynamic movements. Knee flexion is also important for optimizing performance
and making comparisons between different demographic groups. Because running is a
common physical activity that presents a risk of knee injury, research regarding knee angle
estimation during running is necessary to clearly understand gait kinematics.

Various measurement systems have been used for gait analysis [13] to determine knee
flexion angles. Optical motion capture is a popular way to identify joint angles owing
to its high accuracy [14]. This technology, however, is cost limiting for some researchers.
Additionally, the application becomes limited to relatively small testing areas owing to the
physical constraints of fixed motion-capture camera systems. The process for applying
markers is also time consuming. This is especially restrictive when considering studies
of gait during running because much of running is done outdoors. Outdoor activity is
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often encouraged for individuals because of the overall health benefits of the time spent
outdoors [15,16]. Owing to these significant limiting factors of optical motion-capture
systems, portable technology for identifying joint angles is desirable. That is, optical
motion-capture systems are not practical for analyzing gaits during outdoor running
applications, such as trail running and running during outdoor sports.

Inertial measurement units (IMUs) have become a popular means for identifying
human kinematic information in various applications owing to their reasonable availability,
cost, and portability. The wearable nature of these sensors makes them practical for use in
different environments outside of a laboratory. Because these sensors are wearable, they
can be used in outdoor running applications as a means for estimating knee angles. IMUs
have been used in multiple studies to estimate the knee flexion angles for applications,
such as walking [17–20], walking and running [21–23], squats [21,24], lunges [25], and joint
rehabilitation movements [26].

IMUs typically contain three-axis accelerometers, three-axis rate gyroscopes, and,
sometimes, three-axis magnetometers. Although the details of the actual implementation
vary, the general principles of IMU knee-flexion-angle estimation research involve the
fusion of different combinations of IMU sensor information through filtering techniques,
such as the complementary filter (CF) [17], Kalman filter (KF) [22], extended Kalman
filter (EKF) [20–22,26], and unscented Kalman filter (UKF) [18,24], or smoothers, such
as the Rauch–Tung–Striebel smoother (RTSS) [25]. Some researchers consider the use of
accelerometers, rate gyroscopes, and magnetometers [18,24]; however, more commonly,
accelerometers and rate gyroscopes are implemented without including magnetometer
measurements [17,19–22,25,26]. Magnetometer measurements are often omitted from joint
estimation algorithms owing to their susceptibility to interference from local magnetic
fields [20,25].

Other researchers have considered data-driven approaches, such as machine learn-
ing, for knee-flexion-angle estimation [23,27,28]. For example, Gholami et al. consider
foot-mounted accelerometer data coupled with machine learning to identify lower limb
kinematics [23]. As noted in Gholami et al. [23], however, there are significant limitations
with data-driven approaches for joint angle estimation applications. Specifically, it is dif-
ficult to generalize the results of this type of study for a general population owing to the
possibility of overfitting to the sample data. Additionally, a large and diverse dataset must
be collected to train and validate these types of approaches. Because of this, data-driven
approaches are not considered as a part of this article.

One of the challenges associated with the use of IMU data for joint angle estimation
is the alignment of the sensor frames to the relevant body segments. There are different
strategies for handling this issue, each with advantages and disadvantages. As outlined by
Hindle et al. [24], the commonly implemented strategies for sensor-to-segment alignment
can be categorized into manual alignment [29], static pose estimation [18,19,22,30], func-
tional calibration [31–33], deep learning [34], or some combination of these approaches [21].
The use of static poses is common, according to the literature, involving subjects hold-
ing still from 5 to 10 s in a specified standing pose [18,19,21,22] or seated pose [19]. For
these static data, accelerometers are utilized to detect the gravity vector because all the
accelerations measured using accelerometers are due to only gravity when there is no
motion [19,21]. Alternatively, some researchers use estimated orientations of the individ-
ual IMUs from a filtering algorithm to perform the static alignment [18,24]. The other
commonly considered approach for sensor-to-segment alignment is functional calibration,
which requires the subjects to execute specific calibration movements prior to the testing.
These movements are selected to excite different modes of motion in the anatomical planes,
thus increasing the observability of the body segments within the IMU data. Knee flexion
and extension movements were used either actively or passively by a physical therapist in
Cutti et al. [32] and Ferrari et al. [33]. Favre et al. consider a combination of multiple active
and passive movements for calibration purposes [31].
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In addition to these techniques, some research efforts have investigated dynamic
calibration procedures that do not require any specific static poses or calibration movements
prior to the testing. This idea, originally proposed by Seel et al. [17,35], was later utilized
with some modifications by Versteyhe et al. [25] and Vasquez et al. [20]. In each of these
studies, some notable advantages have been identified as follows [17]:

1. Sensor-to-segment mounting assumptions are avoided;
2. No measurements of body segment distances are manually determined;
3. No predefined postures or movements are required for the calibration;
4. Magnetometers are not required.

Another study by McGrath et al. proposes a similar approach but using a different
mathematical technique: principal component analysis (PCA) [36]. Carcreff et al. explored
PCA for sagittal plane identification using foot-mounted IMUs [37].

The principles of the dynamic calibration method by Seel et al. [17] have so far
been implemented for level walking [17,20], stair descent [20], sit-to-stand-to-sit [20], and
lunges [25]. These movements involve relatively low accelerations and low impacts when
compared to running. Preliminary implementations of the method by Seel et al. [17] for
running data resulted in somewhat poor estimates of knee flexion angles, thus motivating
a need for improving and refining this technique for the specific application of running.

IMU data have been applied to running tasks in multiple previous studies. For
example, accelerometer data were used to compare male and female running patterns
using machine learning in Clermont et al. [38]. Wundersitz et al. used trunk-mounted
accelerometer data to compare peak accelerations experienced during walking, jogging, and
running relative to a motion-capture system [39]. A tibial accelerometer was used in [40] to
estimate the ground reaction force during running. IMUs have been used to identify initial
contact and terminal contact gait events in Kiernan et al. [41] and Yang et al. [42]. Potter
et al. conducted a study of foot IMUs for estimating running gait parameters [43]. Building
upon the insight of these studies, this study incorporates the use of IMU data to identify
key aspects of the running gait and leverages this information to capture the knee angle
kinematics more effectively.

The objective of this study is to expand upon the work of Seel et al. [17,35] to make
additional novel contributions. The following items outline the key differences in this study:

1. The methods of Seel et al. [17] are adapted to work well, specifically for the application
of running, which involves fast movements with high accelerations. The methodology
of Seel et al. [17] does not perform well when directly applied to running data;

2. Simple accelerometer peak detection is used to parse the data into gait cycles. This
gait cycle information is then leveraged to separate the IMU data into regions of
data corresponding to different aspects of the gait, such as the stance phase, swing
phase, foot strike, and float. Based on this information, the dynamic alignment of
the sensors is performed strategically, using the reliable portions of the dataset. This
improves the necessary sensor alignment, thus allowing for more accurate knee flexion
angle estimates;

3. Using the newly aligned sensor data, three different filtering algorithms are developed
for the application of knee flexion angle estimation during running. These algorithms
utilize rate gyroscope and accelerometer measurements from one shank-mounted
and one thigh-mounted IMU. Each of these algorithms is compared with respect to
accurate reference data from a motion-capture system;

4. The identified foot strikes are also used to identify the portions of the accelerometer
data that correspond to the impact rather than the dynamic movement. These portions
of the dataset are strategically omitted from the measurement update portion of the
proposed filtering algorithms, thus mitigating the erroneous effects of the impact due
to foot strikes.
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2. Materials and Methods
2.1. Experimental Setup and Data Acquisition
2.1.1. Inertial Measurement Units

This study utilized two Blue Trident (Vicon, Centennial, CO, USA) inertial measure-
ment units (IMUs) fixed to the anterior distal aspect of the thigh and the anteromedial
distal aspect of the tibia of the dominant leg. Each was taped to the skin and wrapped
firmly to the corresponding segment. A picture of the IMU mounting locations is provided
in Figure 1 prior to being wrapped. The considered IMUs feature accelerometer measure-
ments for a range of ±16 g with 16-bit resolution and gyroscope measurements for a range
of ±2000 deg/s with 16-bit resolution. These IMUs also contain magnetometers; however,
these measurements were not used for this study.
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Figure 1. Image of the IMU mounting on the participant.

2.1.2. Motion-Capture System

In addition to the IMUs tracking the thigh and shank segments, 23 retroreflective
markers were taped to the dominant limb of the participant. Note that the same leg was
used for the motion capture and IMU sensor mounting for this study. A twelve-camera
combined Vicon Bonita and Vero (Vicon, Centennial, CO, USA) motion-capture system
was used to collect optical marker data on the thigh and shank of the lower extremity. All
the data were collected using Vicon Nexus 2.15 (Vicon, Centennial, CO, USA) at 200 Hz
and synchronized with the IMU data collected at 400 Hz. A standing calibration of the
participant was collected, and the anatomical markers were removed, leaving only the
IMUs and tracking marker clusters on the thigh and shank.

The raw marker trajectories were low-pass filtered using a zero-lag 4th-order Butter-
worth filter with a 6 Hz cutoff frequency. The knee and thigh segments were identified, and
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the 3D joint angles were calculated using the optical markers in Visual 3D (C-Motion Inc.,
Germantown, MD, USA).

2.2. Knee Flexion Angle Estimation Using Shank- and Thigh-Mounted IMUs

This study considers the estimation of knee flexion angles using two IMUs. One IMU
is mounted on the shank, which is indicated as IMU1, while the other is mounted on the
thigh, which is indicated as IMU2. A diagram illustrating the mounting location and IMU
axes and the knee flexion angle, α, is shown in Figure 2.
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2.2.1. IMU-Based Joint Angle Measurement for Gait Analysis [17]

Consider the shank and thigh IMUs, as shown in Figure 2, which provide triaxial
accelerations a1(t) and a2(t) and triaxial angular velocities g1(t) and g2(t) for a sampling
period, ∆t, where the subscripts 1 and 2 indicate the shank and thigh, respectively. The
angular accelerations are calculated using a third-order central differencing approximation
as follows:

.
gi(t) =

gi(t − 2∆t)− 8gi(t − ∆t) + 8gi(t + ∆t)− gi(t + 2∆t)
12∆t

, i = 1, 2 (1)

An optimization procedure is used to determine the 3D unit vectors, j1 and j2, which
correspond to the knee flexion axis in the local coordinates of the shank and thigh sensors,
respectively. This is accomplished by minimizing the cost function as follows:

Ψ(ϕ1, ϕ2, θ1, θ2) =
N
∑

k=1
[∥g1(tk)× j1∥2 − ∥g2(tk)× j2∥2]

2

j1 =

 cos ϕ1 cos θ1
cos ϕ1 sin θ1

sin ϕ1

, j2 =

 cos ϕ2 cos θ2
cos ϕ2 sin θ2

sin ϕ2

 (2)

where ∥·∥2 denotes the L2-norm, (ϕ1, θ1) and (ϕ2, θ2) represent spherical coordinates for a
coordinate transformation from the individual IMU frames to the knee joint frame, and k
indicates the discrete time index as follows:

tk = k∆t (3)

The minimization of the cost function in Equation (2) is established as a means of
finding the best alignment of the two sensor frames to minimize the angular velocity along
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the knee axis. This equation is derived based on the assumptions that the knee joint can be
approximated as a hinge joint and that most of the angular velocity should occur in the
sagittal plane. Following this alignment, the knee flexion angle can be calculated using
gyroscopes through integration as follows:

αgyr(t) =
∫ t

o
(g1(τ) · j1 − g2(τ) · j2)dτ (4)

After the joint axes have been determined, the coordinates of the joint centers in
the local sensor coordinates, o1 and o2, are determined from an additional optimization
procedure as follows:

Ψ̃(ô1, ô2) =
N
∑

k=1

[∥∥∥a1(tk)− Γg1(tk)
(ô1)

∥∥∥
2
−

∥∥∥a2(tk)− Γg2(tk)
(ô2)

∥∥∥
2

]2

Γg(t)(ô) = g(t)× (g(t)× ô) +
.
g(t)× ô

o1 = ô1 − j1
ô1·j1+ô2·j2

2 , o2 = ô2 − j2
ô1·j1+ô2·j2

2

(5)

The optimization algorithm presented in Equation (5) consists of correcting the accel-
eration signals for the normal and tangential acceleration components due to the position
of the sensors relative to the joint. This type of correction is sometimes referred to as a lever
arm correction. These joint centers are then used to correct the accelerometer measurements
as follows:

ãi(t) = ai(t)− Γgi(t)(oi), i = 1, 2 (6)

which are then used to identify the joint angle using the accelerometer data as follows:

αacc(t) = ∢2D

([
ã1(t) · x1
ã1(t) · y1

]
,
[

ã2(t) · x2
ã2(t) · y2

])
x1 = j1 × c, y1 = j1 × x1, x2 = j2 × c, y2 = j2 × x2,

(7)

where ∢2D(·) denotes the signed angle between two vectors in R2, and c is any vector not
parallel to j1 or j2. For this study, we use c =

[
1 0 0

]T . The coordinates (x1, y1) and
(x2, y2) represent arbitrary 2D coordinates in the knee joint plane and are used as a means
for determining the angle between the two IMU sensors.

The joint angle estimates from Equations (4) and (7) can then be combined using
sensor fusion to get a better overall estimate. This is a necessary step because the gyroscope
estimate from Equation (4) is prone to drift over time owing to integration, while the
accelerometer estimate from Equation (7) exhibits noise and is less reliable at moments of
large acceleration changes [17].

2.2.2. IMU Data Processing and Modifications to the Seel et al. Algorithm

The overall general procedure outlined in Section 2.2.1 is implemented in this study.
However, the information flow through this methodology is modified strategically in this
study, specifically for the application of running. This is motivated by the significant errors
encountered in the accelerometer knee flexion angle estimates from Equation (7) when
implementing the methods from Section 2.2.1 directly. Owing to the high-speed conditions
during running, the dynamics of the leg-mounted sensors are subjected to significantly
higher accelerations than the walking data considered in Seel et al. [17]. Additionally, the
higher impact due to foot strikes results in large acceleration spikes in the measurement
data. However, because these peaks tend to be clearly identifiable within the accelerometer
data, these accelerometer spikes are used to our advantage to detect foot strikes using a
simple peak detection algorithm [44]. Note that the peak detection algorithm is applied
to unfiltered accelerometer data. Then, the data between the foot strikes from 40% to
80% of each gait cycle are used for the gyroscope optimization procedure, as outlined in
Equation (2). These portions of the gait cycle give a better alignment and identification
of the joint plane based on the dynamic conditions typically encountered during those
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phases of the gait cycle. In other words, this specific selection of data offers relevant knee
angle dynamics while reducing other effects on the motion, such as soft-tissue artifacts.
Additionally, this reduces the other effects of the observed dynamics due to the impact and
ground reaction.

After the joint axes in the local sensor coordinate frames, i.e., j1 and j2, have been
determined, the accelerometer and gyroscope signals are filtered using a 4th-order zero-lag
low-pass Butterworth filter with a 7 Hz cutoff frequency [20]. The filtered accelerometer
signals are used to determine the projected angular velocity components as follows:

g̃i(t) = gi(t) · ji, i = 1, 2 (8)

The filtered accelerometer data corresponding to 40%–80% of each gait cycle are then
sent to the optimization algorithm in Equation (5) to determine the joint centers, o1 and o2,
which are then used to determine the corrected accelerometer signals using Equation (6).

In addition to strategically selecting a certain portion of the gait cycle for the optimiza-
tion portions of the algorithm, one additional modification is considered. That is, owing to
the significant effects of impact and soft-tissue artifacts on the accelerometer signals around
the impact, a certain portion of the accelerometer data is omitted from the measurement
update of all the considered filtering algorithms. Specifically, the accelerometer data corre-
sponding to 5% of the gait cycle before and after each detected accelerometer peak are not
used for the measurement update portion of any considered filtering algorithm. Note that
during this time, each filtering algorithm relies on gyroscope-only estimation for the knee
flexion angle, which is reliable for short time periods. This is a reasonable assumption for
the running application. A flowchart detailing the flow of information for the considered
algorithm is provided in Figure 3.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 21 
 

 

significantly higher accelerations than the walking data considered in Seel et al. [17]. Ad-
ditionally, the higher impact due to foot strikes results in large acceleration spikes in the 
measurement data. However, because these peaks tend to be clearly identifiable within 
the accelerometer data, these accelerometer spikes are used to our advantage to detect foot 
strikes using a simple peak detection algorithm [44]. Note that the peak detection algo-
rithm is applied to unfiltered accelerometer data. Then, the data between the foot strikes 
from 40% to 80% of each gait cycle are used for the gyroscope optimization procedure, as 
outlined in Equation (2). These portions of the gait cycle give a better alignment and iden-
tification of the joint plane based on the dynamic conditions typically encountered during 
those phases of the gait cycle. In other words, this specific selection of data offers relevant 
knee angle dynamics while reducing other effects on the motion, such as soft-tissue arti-
facts. Additionally, this reduces the other effects of the observed dynamics due to the im-
pact and ground reaction. 

After the joint axes in the local sensor coordinate frames, i.e., j1 and j2, have been 
determined, the accelerometer and gyroscope signals are filtered using a 4th-order zero-
lag low-pass Butterworth filter with a 7 Hz cutoff frequency [20]. The filtered accelerom-
eter signals are used to determine the projected angular velocity components as follows: 

    , 1,2i i ig t g t j i    (8)

The filtered accelerometer data corresponding to 40%–80% of each gait cycle are then 
sent to the optimization algorithm in Equation (5) to determine the joint centers, o1 and o2, 
which are then used to determine the corrected accelerometer signals using Equation (6). 

In addition to strategically selecting a certain portion of the gait cycle for the optimi-
zation portions of the algorithm, one additional modification is considered. That is, owing 
to the significant effects of impact and soft-tissue artifacts on the accelerometer signals 
around the impact, a certain portion of the accelerometer data is omitted from the meas-
urement update of all the considered filtering algorithms. Specifically, the accelerometer 
data corresponding to 5% of the gait cycle before and after each detected accelerometer 
peak are not used for the measurement update portion of any considered filtering algo-
rithm. Note that during this time, each filtering algorithm relies on gyroscope-only esti-
mation for the knee flexion angle, which is reliable for short time periods. This is a rea-
sonable assumption for the running application. A flowchart detailing the flow of infor-
mation for the considered algorithm is provided in Figure 3. 

 
Figure 3. Flowchart summarizing the data processing prior to the knee flexion angle estimation fil-
tering algorithms. 

  

Figure 3. Flowchart summarizing the data processing prior to the knee flexion angle estimation
filtering algorithms.

2.3. Considered Filtering Algorithms
2.3.1. Kalman Filter (KF)

Consider a linear discrete-time state space system given by

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1
yk = Hkxk + vk

(9)

where x is the state vector, u is the input vector, y is the output vector, and w and v are zero-
mean Gaussian process and measurement noise terms, respectively. With these definitions,
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the linear KF algorithm can be summarized as follows. First, the mean and covariance, P,
for the state are predicted using the following equations:

x̂k|k−1 = Fk−1 x̂k−1 + Gk−1uk−1
Pk|k−1 = Fk−1Pk−1FT

k−1 + Qk−1
(10)

where Q is the process noise covariance matrix. Then, the Kalman gain matrix, K, is
calculated using the following equation:

Kk = Pk|k−1Hk

(
HkPk|k−1HT

k + Rk

)−1
(11)

where R is the measurement noise covariance matrix. Using this Kalman gain, the state
and covariance estimates are updated with

x̂k = x̂k|k−1 + Kk

(
zk − Hk x̂k|k−1

)
Pk = (I − Kk Hk)Pk|k−1

(12)

where z is the measurement of the output, y, and I is an identity matrix possessing appro-
priate dimensions.

2.3.2. Extended Kalman Filter (EKF)

The EKF is an extension of the KF that works for nonlinear systems of the following
form:

xk = f (xk−1, uk−1) + wk−1
yk = h(xk) + vk

(13)

where f is the nonlinear state prediction function, and h is the nonlinear observation
function. The EKF uses Jacobian matrices to handle the nonlinearity as follows:

Fk−1 = ∂ f
∂x

∣∣∣
x̂k−1,uk−1

, Hk =
∂h
∂x

∣∣∣
x̂k|k−1

(14)

where F is the state transition matrix, and H is the observation matrix. The EKF equations
then follow a format similar to that of the KF and are summarized as follows:

x̂k|k−1 = f (x̂k−1, uk−1)

Pk|k−1 = Fk−1Pk−1FT
k−1 + Qk−1

Kk = Pk|k−1Hk

(
HkPk|k−1HT

k + Rk

)−1

x̂k = x̂k|k−1 + Kk

(
zk − h

(
x̂k|k−1

))
Pk = (I − Kk Hk)Pk|k−1

(15)

Note that the nonlinear functions f and h are used in the state estimate equations,
while the Jacobian matrices are used for the covariance calculations like the KF.

2.3.3. Complementary Filter (CF)

A CF typically consists of combining high-frequency information from one source
with low-frequency information from another source. For state x, the CF algorithm can be
summarized in the Laplace domain by [45]

x̂k =
s

s2 + ζCFωCFs + ω2
CF

.
x +

ζCFωCFs + ω2
CF

s2 + ζCFωCFs + ω2
CF

x (16)

where ζCF and ωCF represent the damping ratio and natural frequency for the CF. Alterna-
tively, specifically for the knee flexion angle application, an example CF for discrete time is
offered in Seel et al. as follows [17]:
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αacc+gyr(t) = λαacc(t) + (1 − λ)
(
αacc+gyr(t − ∆t) + αgyr(t)− αgyr(t − ∆t)

)
(17)

where λ is the fixed gain for the CF, which ranges from 0 to 1.

2.4. Knee Flexion Angle Estimation Algorithms
2.4.1. Knee Flexion Angle Estimation using Kalman Filter (KF)

The KF algorithm considers the following state space definitions:

x(t) = α(t)
u(t) = g̃1(t)− g̃2(t)
y(t) = α(t)

(18)

With these definitions, the state dynamics are given in continuous time by

.
x(t) =

.
α(t) = u(t) = g̃1(t)− g̃2(t) (19)

A first-order discretization is used to express the state dynamics in discrete time
as follows:

xk = xk−1 + ∆tuk−1 (20)

which corresponds to a state space system of the form in Equation (9) with the following
matrix definitions:

Fk−1 = 1
Gk−1 = ∆t
Hk = 1

(21)

The output is a direct measurement of the state, which is the accelerometer-based
estimate of the knee flexion angle, as provided by Equation (7), while the gyroscope
information is used as an input to the filter. Effectively, the Q matrix, which is a scalar in
this case, represents the uncertainty in the gyroscope measurement, while the R matrix,
which is also a scalar in this case, represents the uncertainty in the accelerometer knee
flexion angle estimate.

2.4.2. Knee Flexion Angle Estimation using Extended Kalman Filter (EKF)

The EKF algorithm considers the following state space definitions:

x(t) = α(t)
u(t) = g̃1(t)− g̃2(t)

y(t) =
[

ã2(t) · x2
ã2(t) · y2

] (22)

The coordinates (x1, y1) and (x2, y2) are determined from Equation (7). Note that
owing to the selections of the state and input, the state prediction equation is linear in
this case, resulting in the Jacobian matrix F = 1 for all time, and the discrete-time state
prediction equation is the same as the KF, as in Equation (20). The output, however, is
based on Equation (7) and is expressed in terms of a rotation from the shank sensor to the
thigh sensor in the joint plane as follows:[

ã2(t) · x2
ã2(t) · y2

]
=

[
cos x(t) − sin x(t)
sin x(t) cos x(t)

][
ã1(t) · x1
ã1(t) · y1

]
(23)

This results in a nonlinear observation equation, which gives the following Jaco-
bian matrix:

Hk =

[
− sin x(t)(ã1(t) · x1)− cos x(t)(ã1(t) · y1)
cos x(t)(ã1(t) · x1)− sin x(t)(ã1(t) · y1)

]
(24)
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For the EKF, the Q matrix, like in the KF, is a scalar that represents the uncertainty in
the gyroscope measurement. Here, however, the R matrix is a 2 × 2 matrix. A diagonal
R matrix is assumed, with the first component corresponding to the uncertainty in the x-
components of the acceleration in the joint plane and the second component corresponding
to the uncertainty in the y-components of the acceleration in the joint plane.

2.4.3. Knee Flexion Angle Estimation using Complementary Filter (CF)

The CF algorithm implemented herein is the same as the one offered in Seel et al. [17],
as provided in Equation (17). Herein, the selection of the λ parameter represents the blend
between the accelerometer- and gyroscope-estimated knee flexion angles. A higher λ
parameter more heavily weights the accelerometer-based knee flexion angle estimates,
while a lower λ favors the gyroscope-based estimates.

3. Results

First, a pilot dataset was collected from a 38-year-old female runner. The runner was
a forefoot striker and ran an average of 12 miles per week. The sagittal plane knee angle
ranged from 13.7◦ to 121.2◦ of knee flexion. The participant ran on a treadmill at 2.9 m/s,
and running data were collected for 60 s following a 2 min warmup. These pilot data were
used for developing and tuning the algorithm but not used for validation.

An additional series of data was collected from a different female runner, age 21, who
was a rearfoot striker and ran an average of 14 miles per week. These data were used
as validation data to evaluate the effectiveness of this proposed knee flexion estimation
approach. Four different sets of data were collected for this participant. At the beginning
of each dataset, the runner held a static T-pose for approximately 10 s. Then, the treadmill
was set at a different speed, and the participant ran for approximately 3–4 min. The details
for the treadmill settings are provided in Table 1.

Table 1. Description of treadmill speeds for the test participant. The first three datasets used a fixed
treadmill speed, while the fourth dataset contained varying speed conditions throughout the testing.

Dataset # Speed Condition Treadmill Speed (mph) Treadmill Speed (m/s)

1 Constant 5.0 2.24
2 Constant 6.5 2.91
3 Constant 8.0 3.58
4 Varying 5.0–8.0 2.24–3.58

3.1. Data Processing and Filtering

As outlined in Section 2.2.2, data processing is a key contribution of this study. The
selection of data segments for the optimization relies on identifying foot strikes through
a peak detection algorithm in the unfiltered accelerometer signals. The example figures
in this section are provided from the pilot dataset. A plot showing the results of the peak
detection is offered for a segment of pilot data in Figure 4. The large acceleration spikes
due to foot strikes are distinguishable from the rest of the dataset and are marked with
circles in Figure 4. After the peak detection is completed, the IMU signals are filtered.
Example results for the 4th-order, zero-lag, low-pass Butterworth filtering at a 7 Hz cutoff
frequency for the pilot data are shown for the accelerometers in Figure 5 and gyroscopes in
Figure 6. Figures 5 and 6 show the attenuation of the sensor noise as well as a reduction in
the oscillations due to the foot strikes. Then, by leveraging the locations of the foot strikes,
a portion of the gait cycle is selected for use in the optimization algorithms. An example
plot illustrating this data selection for the pilot data is provided in Figure 7. In Figure 7,
the segments of interest corresponding to the selected gait cycle percentages are identified
and show the relevant dynamic behavior of interest for accurately identifying the joint
plane. The results from gyroscope-only knee flexion angle estimates from Equation (4)
and accelerometer-only knee flexion angle estimates from Equation (7) are shown as an
example for the pilot data in Figure 8. Note that in Figure 8a, which shows data at the
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beginning of the dataset, the gyroscope estimates are close to the Vicon reference data
while in Figure 8b, the gyroscope estimate shows significant drift, as expected, over time.
However, the accelerometer estimate is generally not close to the Vicon reference data but
does not exhibit any drift error. These results motivate the need for a well-tuned sensor
fusion algorithm to combine the strengths of each individual sensor estimation. Example
plots from the filtering algorithms for the pilot data are shown in Figure 9. Figure 9 shows
reasonable agreement between the estimated signals and the Vicon reference data, thus
demonstrating the feasibility of the algorithm. Each of the filters in Figure 9 show similar
estimates, and the algorithms have the most significant errors in identifying some of the
peaks of the knee flexion angle.
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the pilot data. The unfiltered magnitude of the shank acceleration is used to identify peaks, while the
filtered acceleration signals are used within the estimation algorithms.
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Figure 5. Excerpts from accelerometer measurements from the pilot data showing the unfiltered
(solid line) and filtered (dotted line) accelerometer measurements from the pilot dataset for the IMU
sensors mounted on the (a) shank and (b) thigh.
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Figure 6. Excerpts from gyroscope measurements from the pilot data showing the unfiltered (solid
line) and filtered (dotted line) gyroscope measurements from the pilot dataset for the IMU sensors
mounted on the (a) shank and (b) thigh.
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Figure 7. Excerpts from gyroscope measurements from the pilot data showing the original data
(as dotted lines) and the regions that were selected for optimization (as solid lines) from the pilot
dataset. (a) A portion of the shank gyroscope measurements. (b) A portion of the thigh gyroscope
measurements.
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Figure 8. Excerpts from knee flexion angle estimation from gyroscope only and accelerometer only
with respect to the Vicon motion-capture system reference measurements. (a) A portion of the knee
flexion angle estimates at the beginning of the pilot dataset. (b) A portion of the knee flexion angle
estimates toward the end of the pilot dataset.
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Figure 9. Excerpts from knee flexion angle estimations from CF, KF, and EKF with respect to the Vicon
motion-capture system reference measurements. (a) A portion of the knee flexion angle estimates at
the beginning of the pilot dataset. (b) A portion of the knee flexion angle estimates toward the end of
the pilot dataset.

3.2. Comparison of Different Filtering Approaches for Knee Angle Estimation

The methods described in Sections 2.2.1 and 2.2.2 were implemented for the four
datasets outlined in Table 1. For this study, the root-mean-square error (RMSE) was selected
as the metric to assess the accuracy and reliability of the estimation algorithms. For each
filter, the parameters were manually tuned to minimize the RMSE of the estimated knee
flexion angle with respect to the reference measurement obtained from the Vicon motion-
capture system. This tuning procedure is illustrated in Figure 10 for each dataset. For the
KF and EKF, the measurement noise covariance, R, was set at 1, and the process noise
covariance was varied to adjust the blending between the gyroscope and accelerometer
information. The lower values of the tuning parameters in Figure 10 correspond to the use
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of more gyroscope information relative to the accelerometer information, while the higher
values of the tuning parameters indicate the use of more accelerometer information.

Example plots of the knee flexion angle estimates are shown with respect to the motion-
capture reference data for a portion of each validation dataset in Figure 11. For each filtering
algorithm, the RMSE was calculated for the filters described in Section 2.4. The resulting
RMSE values for each filtering algorithm are provided in Table 2. As an additional visual-
ization of the knee angle estimations throughout the entire dataset, Figure 12 provides the
mean and standard deviation for each gait cycle throughout the dataset. This information
is shown along with a 95% confidence interval for the Vicon motion-capture data, which
show the natural variation in the knee angle for the different steps taken throughout the
dataset. It is shown in Figures 11 and 12 that the range of the knee angle increases as the
treadmill speed increases. Larger variations in the knee angle are shown in Figure 12 for
dataset #4 relative to the other datasets. This is likely due to the varying treadmill speeds
for this particular dataset. Also in Table 2 are the RMSE values for the knee flexion angle,
using only the accelerometer measurement from Equation (7). This is provided as a bench-
mark to indicate how much the filtering algorithms can improve upon this accelerometer
information by fusing it with the gyroscope information. Gyroscope-only estimates were
not included owing to the significant drift over time that occurs when this information is
unregulated. Using the same filter parameters as in Table 2, Pearson correlation coefficients
were calculated for each of the filtering algorithm knee flexion angle estimates and are
shown in Table 3.
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Figure 10. RMSE tuning results for the filter tuning parameters for (a) dataset #1, (b) dataset #2,
(c) dataset #3, and (d) dataset #4.
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Figure 11. Illustration of knee flexion angles from CF, KF, and EKF with respect to the Vicon motion-
capture system reference measurements from the validation data in (a) dataset #1, (b) dataset #2,
(c) dataset #3, and (d) dataset #4.

Table 2. RMSE values for each of the considered filtering algorithms in degrees for the proposed
algorithm. The filter parameters were manually tuned to optimize the RMSE estimation results.
RMSE values were calculated with respect to the Vicon and Visual3D reference measurements for the
validation data.

Dataset # Filtering Algorithm RMSE (◦)

KF EKF CF Accelerometer Only

1 2.726 3.876 3.140 23.09
2 2.758 3.148 2.703 27.69
3 3.636 3.866 3.110 28.61
4 3.460 3.639 3.415 31.90
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Figure 12. Visualization of knee flexion angle distributions from CF, KF, and EKF with respect to
the Vicon motion-capture system reference measurements from the validation data in (a) dataset #1,
(b) dataset #2, (c) dataset #3, and (d) dataset #4. The gray shaded region represents a 95% confidence
interval for the motion-capture knee angle estimates. This represents the variation in the knee angle
throughout the dataset. Mean (solid lines) and mean ± 2 standard deviations (dotted lines) are shown
for each estimation filter.

Table 3. Pearson correlation coefficients for each of the considered filtering algorithms with respect to
the Vicon and Visual3D reference measurements for the validation data.

Dataset # Filtering Algorithm Correlation Coefficient

KF EKF CF Accelerometer Only

1 0.9967 0.9978 0.9965 0.7735
2 0.9968 0.9958 0.9969 0.7424
3 0.9955 0.9948 0.9968 0.7729
4 0.9945 0.9934 0.9948 0.6776

4. Discussion

The results in Table 2 show a similar performance between the KF and CF algorithms,
resulting in the best knee flexion angle estimates. The EKF algorithm yielded values close to
those of the KF and CF but generally performed worse and, therefore, this particular imple-
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mentation of the EKF is not recommended for this application. Owing to the mathematical
structure of the EKF formulation, the filter effectively seeks to align the acceleration signals
from the shank and thigh IMUs through a single rotation angle. Although the lever arm
correction was applied to correct for the normal and tangential acceleration components
relative to the knee joint, there were still potential differences in the acceleration signals
due to the sensor noise, soft-tissue artifacts, etc., which likely led to the higher uncertainty
for this formulation. Note that although the EKF, in general, as a filtering structure is more
capable for handling certain aspects of the estimation problem than the CF owing to its
time-varying gain calculation, in this instance, the underlying state space structure that
was used to implement the EKF was inherently different from that in the CF formulation,
thus resulting in the significant differences in performance.

In general, the accuracy of the knee angle estimates decreases as the treadmill speed
increases, as shown in Table 2 for datasets 1–3. The faster running speeds result in more
dynamic conditions, resulting in faster accelerations as well as more significant foot-strike
impacts, which likely cause an increase in the error. Because the CF offered the lowest
overall RMSE and was more computationally efficient than the KF algorithm, the CF
method is recommended for this application, though the KF is a feasible approach. All
three filters indicated a strong correlation with the motion-capture data, as shown in Table 3.

When comparing the filtering methods for the accelerometer-only data in Table 2,
the gyroscope information significantly improves the knee flexion angle estimates. It is
worth noting that in this application for running, the accelerometer-only estimates are
quite poor. This is also apparent in Figure 8. This poor accelerometer estimate of the
knee flexion angle significantly motivates this study. The walking dataset analyzed in
Seel et al. [17] contained much lower accelerations and yielded much more accurate knee
flexion angle estimates from the accelerometers. However, despite the significantly worse
accelerometer performance in this application, a comparable amount of error was achieved
in Seel et al. [17], which reported 3◦ of error for the human leg. Other researchers have
reported RMSE errors for running speeds of approximately 5 mph of 3.4◦ [22] and 7.3◦ [21].
Jakob et al. also reported an RMSE error of 10.2◦ [21] for a speed of 3.0 m/s, which is close
to the speed for dataset #2 in this paper. The proposed method in this study offers better
results when comparing these values with the RMSE values from Table 2. The estimates
shown in Table 2 satisfy the recommendation from McGinley et al. [46], which concluded
that errors greater than 5◦ should not be used for gait analysis decision making. Therefore,
the methods proposed in this study can be used as a portable and low-cost means for
estimating knee angles for studying running gait kinematics. This has potential use in
analyzing running in various outdoor applications.

The work in this study has some limitations. The results were obtained using a single
set of pilot data and validated with respect to datasets from a single test participant. A more
thorough dataset containing data from multiple human participants would be necessary
to ensure the results are more generalizable. There may be differences in the accuracy of
the algorithms owing to how the IMU sensors were attached to each participant. Another
limitation of this study is that the filtering algorithms were initialized using the initial
knee flexion angle, as determined by the motion-capture system. Ideally, this initialization
would be obtained using only the IMU sensors or through other simple means, such as a
goniometer. For practical implementation purposes, static IMU data, such as a standing
pose at the start of the data collection, could reasonably be used to identify the initial
condition. In this study, by initializing with the motion-capture system data, the results
focused on analyzing the long-term sensor estimation errors rather than compounding
these errors with additional uncertainty due to the initialization error. Future work should
explore this initialization in more detail. Finally, the filter parameters were tuned manually
for each dataset according to the calculated RMSE values. In practice, if this method is
applied to the data without the motion-capture reference data, this type of tuning procedure
would not be possible, so a more generally applicable tuning procedure is desirable. In real-
world scenarios where the motion-capture reference data are not available, one possible
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approach for tuning would be to adjust the filter parameters until the gyroscope drift is
sufficiently corrected. That is, when the tuning parameters are too low, a drift in the knee
angle estimates is observed over time. This is readily apparent when viewing the peaks in
the estimated knee signals, for example, as shown in Figure 8b. Incrementally increasing
the tuning parameters until this drift becomes stabilized should result in a reasonable knee
flexion angle estimate. If the parameter is increased too far, the estimation results will begin
to favor the accelerometer angle estimates. This approach could be automated in future
work, such as by minimizing the line fitted to the estimated knee flexion angle peaks.

This study was performed on a treadmill, which has known differences in knee
kinematics compared with those of overground running, notably, a 2◦ increase in knee
flexion at the foot strikes and a 6◦ increase in the knee flexion excursion on the treadmill
as compared with those on a variety of overground surfaces [47]. This small kinematic
difference is not expected to affect the method’s generalizable applicability to overground
running, as it was validated using two runners with different overall knee kinematics
that exceeded the differences expected on overground surfaces. However, it should be
considered that the environmental considerations of outdoor, overground running may
contain turns that may adversely influence the IMU readings. Future work should consider
the transfer of this method to outdoor running over varied terrains.

5. Conclusions

This study presented a novel approach for knee flexion angle estimation using only
shank- and thigh-mounted IMUs. The considered approach used strategically selected
portions of the gait cycle through foot strike detection to help guide an optimization
technique for aligning the sensors to the sagittal plane. This approach was evaluated using
three filter variations for four sets of running data measured on a treadmill and validated
with respect to reference data from a motion-capture system. The results of this study
indicate that a complementary filter approach is the most effective for this methodology of
knee flexion angle estimation for running applications.
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