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Abstract: Visual perception is a crucial component of autonomous driving systems. Traditional
approaches for autonomous driving visual perception often rely on single-modal methods, and
semantic segmentation tasks are accomplished by inputting RGB images. However, for semantic
segmentation tasks in autonomous driving visual perception, a more effective strategy involves
leveraging multiple modalities, which is because different sensors of the autonomous driving system
bring diverse information, and the complementary features among different modalities enhance
the robustness of the semantic segmentation modal. Contrary to the intuitive belief that more
modalities lead to better accuracy, our research reveals that adding modalities to traditional semantic
segmentation models can sometimes decrease precision. Inspired by the residual thinking concept,
we propose a multimodal visual perception model which is capable of maintaining or even improving
accuracy with the addition of any modality. Our approach is straightforward, using RGB as the
main branch and employing the same feature extraction backbone for other modal branches. The
modals score module (MSM) evaluates channel and spatial scores of all modality features, measuring
their importance for overall semantic segmentation. Subsequently, the modal branches provide
additional features to the RGB main branch through the features complementary module (FCM).
Leveraging the residual thinking concept further enhances the feature extraction capabilities of all the
branches. Through extensive experiments, we derived several conclusions. The integration of certain
modalities into traditional semantic segmentation models tends to result in a decline in segmentation
accuracy. In contrast, our proposed simple and scalable multimodal model demonstrates the ability
to maintain segmentation precision when accommodating any additional modality. Moreover, our
approach surpasses some state-of-the-art multimodal semantic segmentation models. Additionally,
we conducted ablation experiments on the proposed model, confirming that the application of the
proposed MSM, FCM, and the incorporation of residual thinking contribute significantly to the
enhancement of the model.

Keywords: autonomous driving; visual perception; multimodal; semantic segmentation; multimodal
semantic segmentation

1. Introduction

With rapid advancement of autonomous driving technology, visual perception has be-
come an indispensable component of autonomous driving systems. In order to enable swift
and safe operations by the autonomous driving decision-making system, a profound and
accurate understanding of the surrounding environment is essential. While the traditional
RGB cameras play a foundational role in the visual perception, the limited information
acquisition has led to the integration of a growing number of sensors in autonomous
driving vehicles to compensate for the limitations in the visual perception.

Recent research in the field of semantic segmentation has achieved significant progress,
with some studies proposing efficient semantic segmentation methods such as [1–3]. These
methods demonstrate remarkable results in terms of both accuracy and speed. The authors
of [4] have developed a real-time semantic segmentation framework that allows researchers
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to easily add or replace encoders and decoders via a flexible encoding–decoding frame-
work, providing a powerful tool for achieving efficient real-time semantic segmentation.
In addition to RGB data, RGB-D data provides rich information for semantic segmenta-
tion. Numerous studies, such as [5–9], focus on developing more precise RGB-D semantic
segmentation methods that combine depth information for more reliable segmentation
results. Researchers have also explored the combination with other sensors, such as com-
bining infrared sensors for RGB-T semantic segmentation [10,11], or integrating event
cameras [12,13] for multimodal semantic segmentation. These studies not only expand
the application scope of semantic segmentation, but also enhance the segmentation per-
formance in various environments and scenarios. Cross-modal fusion is also a current
research hotspot, as seen in studies like [14–16], which explore how to effectively integrate
data from different modalities for more comprehensive semantic segmentation.

There are generally three approaches to implementing multimodal semantic segmen-
tation, shown in Figure 1. The first approach involves merging multiple modalities of
visual perception data and feeding them into a feature extraction module; the second
approach involves separate feature extraction modules for the different modalities, which
share the same structure; and the third approach involves optimizing feature extraction
modules specifically for different modalities, with each modality utilizing a distinct feature
extraction module. While the first method is the simplest, its effectiveness is often not
optimal. The third method is challenging to implement as it requires the construction
of the specialized feature extraction modules for each modality. Our approach improves
upon the second method, enabling easy expansion to any modality without the need for
modality-specific feature extraction module design.

Figure 1. Three Approaches to Implementing Multimodal Semantic Segmentation.

Despite the above-mentioned significant progress in multimodal semantic segmen-
tation, we have identified some remaining challenges. Firstly, simply adding modalities
does not always improve accuracy and may, at times, result in decreased accuracy, contra-
dicting the common belief that more modal information should lead to higher accuracy.
Secondly, current multimodal semantic segmentation methods mostly rely on RGB images
supplemented by another modality, lacking the capability to incorporate more modalities.
Finally, previous multimodal semantic segmentation models require modification of the
neural network backbone for specific sensors, making it a complex task for scalable multi-
modality, implying that optimizing the backbone is needed for each additional modality.

To address these issues, we propose a simple and easily expandable multimodal
semantic segmentation model. The proposed model adopts the same feature extraction
backbone to handle all modalities, facilitating the addition of modalities while keeping the
model concise. We design two sets of branches: one as the main branch using RGB, and the
other as an expandable branch incorporating additional modalities. To fully leverage the
advantages of various modalities, we introduce the multimodal score module (MSM) to
assess the importance of each additional modality feature in overall semantic segmentation.
These additional modality features are incorporated into the RGB main branch via the
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features complementary module (FCM) to enhance the semantic segmentation performance.
Additionally, we incorporate the residual idea to ensure that all modalities can better extract
features at each stage.

2. Related Works

In this section, we will present the relevant research on semantic segmentation and
multimodal semantic segmentation.

2.1. Semantic Segmentation

The Fully Convolution Network (FCN) [17], as the first deep learning model to achieve
end-to-end training, achieved groundbreaking significance in the field of semantic segmen-
tation. By utilizing deconvolution layers for upsampling, FCN cleverly transforms low-
resolution feature maps into high-resolution segmentation results. The Unet [18] model, on the
other hand, successfully integrates low-level and high-level feature information via unique
skip connections, providing a classical solution for semantic segmentation.

The innovation of Pyramid Scene Parsing Network (PSPnet) [19] lies in pyramid
pooling, a method that performs pooling operations on feature maps at multiple scales,
thereby obtaining richer feature representations. Deeplabv3 [20], combining skip connec-
tions and dilated convolutions, further enhances the accuracy of semantic segmentation.
The HRNet [21] model achieves precise segmentation at high resolutions by employing
parallel convolution paths at multiple resolutions.

Recently, methods based on boundary retrieval have made significant progress in
the field of semantic segmentation. Approaches like those presented in [22,23] transform
semantic segmentation into a boundary retrieval problem, significantly improving the
segmentation performance by learning boundary information, offering a new perspective
for semantic segmentation research.

With the emergence of Vision Transformers (ViT) [24] in the field of computer vision,
algorithms based on them have also demonstrated remarkable performance in semantic
segmentation. Models like segFormer [25] and SEgementation TRansformer (SETR) [26]
employ encoder structures similar to ViT and combine them with pixel-level segmentation
methods, achieving efficient semantic segmentation. Swin-Unet [27] is a pure Transformer
model designed specifically for medical image segmentation, where its encoder–decoder
structure and skip connections ensure effective extraction and fusion of contextual features.

Despite the significant achievements of the aforementioned methods in semantic seg-
mentation tasks related to visual perception in autonomous driving, pure RGB images often
fail to provide sufficient information in practical applications. Additionally, RGB cameras
may be affected by lighting conditions or exhibit image blur during rapid movements,
posing challenges to the accuracy of semantic segmentation. Therefore, future research
needs to explore further the fusion of multimodal data and the integration of other sensor
technologies to enhance the robustness and accuracy of semantic segmentation.

2.2. Multimodal Semantic Segmentation

Research in multimodal semantic segmentation aims to compensate for the limitations
of RGB images in information acquisition by integrating data from different types of sensors.
The primary goal of this technology is to leverage the complementarity among different
modalities to improve the accuracy and the robustness of semantic segmentation.

In the task of semantic segmentation with RGB-D data, where RGB data primarily
focuses on color information and depth data that provides spatial information, the Gated-
Residual Block [28] effectively combines these two types of information using a gating
mechanism to exploit their complementarity. On the other hand, CANet [29] achieves
interaction and fusion of RGB and depth information via an innovative co-attention module.

For RGB-T (RGB-Thermal) data, models such as RTFNet [30] and FuseSeg [31] utilize
RGB-thermal fusion networks to combine RGB and thermal data, thereby improving the
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accuracy of semantic segmentation in urban scenes. This approach demonstrates the
effectiveness of thermal imaging data in semantic segmentation tasks.

Additionally, research explores the combination of optical flow with RGB data to
enhance the semantic segmentation performance in autonomous driving [32]. In the case of
RGB-LiDAR, researchers propose various methods to fuse data from these two modalities,
including perception-aware multisensor fusion methods and 2D prior-assisted laser point
cloud semantic segmentation methods [33].

CMX [14] and TokenSelect [15], through the use of Transformers architecture, achieve
cross-modal feature fusion, enhancing the accuracy of RGB-X semantic segmentation.
This method processes features from different modalities in parallel and utilizes cross-
modal interactions to generate more robust cross-modal feature representations. CM-
NeXt [16] achieves performance improvement in semantic segmentation by extending the
model asymmetrically.

In general, the design of multimodal semantic segmentation models mainly involves
two approaches: firstly, fusing inputs from multiple modalities as the input to the overall
model. However, this method has significant limitations as it can only be designed for a
specific modality. The second approach involves extracting features separately for each
modality, requiring the use of different backbones for different types of the modality
feature extraction tasks. Although this method demonstrates reasonable effectiveness in
cross-modal semantic segmentation, designing complex feature extraction modules for the
specific modalities makes it challenging to easily extend the modality types.

3. Methodology

We will elaborate the comprehensive architecture of the proposed model in this
section, elucidating the pivotal modules and techniques employed for standardizing diverse
modal transformations.

3.1. Framework Overview

The proposed structure for our scalable multimodal semantic segmentation is based
on an encoder–decoder architecture, as shown in Figure 2. Our model is logically designed
with two branches: the main branch for RGB image feature extraction, and the secondary
branch for extended modality feature extraction. Notably, the feature extraction part of our
extended modality uses the exact same backbone. This approach makes it easier to handle
additional modalities without the need to modify the backbone for each specific modality.
In the field of computer vision, image processing models based on transformers, such
as Vision Transformer (ViT) [24] and Swin Transformer (Swin) [34], continue to emerge.
Through extensive prior research, it has been established that having four stages in the
encoder yields optimal results. Consequently, to extract pyramid features, we have opted
for a structure comprising four stages [35].

We will illustrate the detailed encoder structure using stage i as an example i ∈ {0,
1, 2, 3, 4}, as shown in Figure 3. Here, stage 0 corresponds to the input layer, while the
other stages share the same structure. Stage i consists of two branches: one is the RGB
main branch, and the other is the auxiliary branch for extended modalities. Both branches
derive their features from stage i− 1. The main branch RGB extraction incorporates the
multi-head self-attention (MHSA) module [36], while each of the M extended modalities
employs a block with the same structure to extract features.

This process yields M + 1 features, denoted as fRGB and fXm for m ∈ {modal1, modal2, . . . ,
modalN}. The M extended modality features fXm go through the MSM module to obtain
the fused extended modality feature fX . Then, fRGB and fX pass through the FCM module
to produce the feature output fouti for stage i, where i ∈ {1, 2, 3, 4}. The next stage receives
f ′RGB and f ′X as input, with f ′X being segmented back into its original modality form f ′Xm.
We also incorporate the residual idea, retaining the previous fRGB and fXm . In summary,
the outputs fRGB + f ′RGB and fXm + f ′Xm

serve as inputs for the next stage.
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Figure 2. The Structure of Scalable Multimodal Semantic Segmentation Framework.

Figure 3. The Details of the Stage in Scalable Multimodal Semantic Segmentation Model.

After the four stages of the feature extraction, we obtain feature outputs fouti for
i ∈ {1, 2, 3, 4}. These outputs are then input into the segment head to obtain the semantic
segmentation image, as shown in Figure 4.
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Figure 4. The Structure of Multimodal Semantic Segmentation Head.

3.2. MSM and FCM

The Multimodal Score Module (MSM) and Feature Complementary Module (FCM)
are pivotal components in constructing the scalable multimodal semantic segmentation
model, as illustrated in Figure 5 and Figure 6, respectively.

In the MSM module, we perform max-pooling and average-pooling operations on the
features of each extended modality fXm for m ∈ {modal1, modal2 . . . , modalN}, obtaining
two features that are subsequently merged into a fused feature fX. The fused feature
then undergoes operations in the Channel Attention Module [37] and Spatial Attention
Module [38]. The channel attention mechanism method is specified in Equation (1), and the
spatial attention mechanism method is defined in Equation (2), of which these processes
yields channel scores and spatial scores, respectively, for the extended modality.

WCAM = Sigmoid(MLP(x)) (1)

WSAM =
exp(xi,j)

∑ i,jexp(xi,j)
(2)

To compute channel attention, we feed the input feature x into a Multi-Layer Percep-
tron. After processing through the MLP, the resulting output is passed through a Sigmoid
activation function to generate the channel attention weight, denoted as WCAM. In the
calculation of the spatial attention mechanism, we compute attention weights for all feature
pixels. Herein, i and j denote the indices of feature locations, and xi,j represents the feature
value at that specific location. We utilize the exponential function exp(xi,j) to determine
the feature mapping values and obtain the spatial attention weight WSAM.

Through channel scores and spatial scores, we assess the channel importance and the
spatial importance of the extended modality features. This operation is crucial, as features
from different modalities contribute differently to the final semantic segmentation results.
The merged feature then undergoes Multilayer Perceptron by Equation (3) to obtain a new
fused feature fX , as defined in Equation (4),

x′ = MLP(x) = Sigmoid(Linear(ReLU(Linear(x)))) (3)

where x is the input feature that undergoes processing through a linear layer Linear,
followed by a non-linear transformation using the ReLU activation function. Subsequently,
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it passes through another linear layer Linear and is transformed by the Sigmoid activation
function to yield the final output feature x′.

fCAM = f + f ×WCAM

fSAM = f + f ×WSAM

fX = MLP(Concat( fCAM, fSAM))

(4)

In this process, f serves as the input feature. Firstly, it is transformed by the channel
attention weight WCAM to obtain the channel attention output feature fCAM. Subsequently,
it is processed through the spatial attention weight WSAM to yield the spatial attention
output feature fSAM. The features fCAM and fSAM are then combined using concatenation
Concat. The concatenated feature undergoes further processing through a Multi-Layer
Perceptron MLP before delivering the final output feature fX of the MSM module.

Figure 5. The Structure of Multimodal Score Module (MSM).

In the FCM, we ingeniously design a Cross Attention Mechanism, a transformation
based on the traditional attention mechanism [36]. The input to the FCM module includes
the main branch RGB feature fRGB and the secondary branch extended modality feature fX .
We need to facilitate information interaction between these two branches. By using linear
embedding for both the branches and then retaining the initial features fX and fRGB for the
subsequent residual connections, we prepare for the later residual operations. Through
the attention mechanism, we compute the Context Vectors CRGB and CX for both branches,
as specified in Equation (5). The attention results are obtained by multiplying the Query
and Context Vectors,

CRGB = So f tmax(KT
RGBVRGB)

CX = So f tmax(KT
XVX)

(5)

where KT
RGB and KT

X denote the keys for the RGB feature branch and the extended modality
branch, respectively, while VRGB and VX represent the corresponding values for these
branches. By applying the So f tmax activation function, we determine the cross-attention
weights, denoted as CRGB and CX .

We transform the attention mechanism into a Cross Attention Mechanism by exchang-
ing information between the two branches, as defined in Equation (6). Subsequently,
the features from both branches are merged and passed through MLP to obtain a stage
feature output fout as specified in Equation (7). Finally, we separate the features back into
the original two branches and connect them using the residual approach,

f ′RGB = fRGB + fRGBCX

f ′X = fX + fXCRGB
(6)
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where CX denotes the attention weight for the extended modality branch, and fRGB rep-
resents the feature of the RGB branch. By employing the cross-attention mechanism, we
obtain a new feature for the RGB branch, denoted as f ′RGB. Similarly, CRGB signifies the
attention weight for the RGB branch, while fX stands for the feature of the extended modal-
ity branch. Through the utilization of the cross-attention mechanism, we can generate a
new feature for the extended modality branch, denoted as f ′X ,

fout = MLP(Concat( f ′RGB, f ′X)) (7)

by performing concatenation Concat on multiple features and subsequently processing
them through a Multi-Layer Perceptron MLP, we can obtain the feature output of a specific
stage, denoted as fout.

Figure 6. The Structure of Feature Complementary Module (FCM).

3.3. Modal Data Representation

In the field of autonomous driving, leveraging multimodal data is crucial for enhancing
the perceptual capabilities of the system. Commonly used data types include RGB images,
depth images, flow maps, LiDAR data, infrared data, and polarization data. Each of these
carries unique information contributing to a more comprehensive understanding of the
driving environment. The transformation methods for these data types are detailed below.

RGB images represent the most common visual perception modality, where the in-
formation from three channels (red, green, and blue) simulate human visual perception.
However, RGB images may face issues of overexposure or underexposure in excessively
bright or dark scenes, affecting the accurate perception of the autonomous driving system.
To address this, we normalize the range of RGB image data from [0, 255] to [0, 1] to better
align with the input requirements of the semantic segmentation model.

Depth images provide information about the spatial depth of a scene, compensating
for the lack of spatial depth information in RGB images. By transforming depth infor-
mation into a standardized format, we can incorporate more texture, disparity, position,
and contour information into the model. We convert the depth images into the HHA
format [39], which provides geometric characteristics such as horizontal disparity, ground
height, and angle information.

Flow maps contain information about the direction and the speed of motion for
each pixel, exhibiting temporal characteristics and being unaffected by motion-induced
blurriness. We convert the flow maps into a format that the model can process. Convert the
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u, v format of flow data into the R, G, B format of an image as defined in Equation (8), and
finally, the R, G, B values need to be normalized,

mapu =
f lowu

max(
√

∑ f low2
u)

mapv =
f lowv

max(
√

∑ f low2
v)

R = 1 + mapu

G = 1− 0.5(mapu + mapv)

B = 1 + mapv

(8)

where f lowu represents the motion vector in the X-axis direction of the image, while
f lowv represents the motion vector in the Y-axis direction. The magnitude of f lowu and
f lowv indicates the amount of offset, and the positive or negative sign of f lowu and f lowv
indicates the direction of the offset, respectively. mapu and mapv are intermediate mapping
features for converting flow images to RGB images, respectively. We can colorize the optical
flow calculation results using a color model, with mapu and mapv being the mapping
process values for converting optical flow data to RGB data, respectively. We represent
optical flow data in RGB form, ultimately yielding values for the R, G, B components.

LiDAR–camera fusion provides reliable and accurate spatial depth information about
the physical world. To align the representation of LiDAR data with RGB images, we convert
it into a format similar to a range-view image. The Field-of-View of the camera FV and the
image size is H ×W. The origin is (u0, v0) = (H/2, W/2). Equation (9) defines the focal
length fx and fy, respectively. Then, we use LiDAR 3D point cloud data to project it onto a
2D image by Equation (10),

fx = H/(2tan(FV × π/360))

fy = W/(2tan(FV × π/360))
(9)

where H and W are the 2D image’s height and width, respectively; FV is the Field-of-View
of the camera; and fx and fy are intermediate features for 3D radar data to convert to 2D
images. In practical calculations, we use 3.1415 as an approximation for π,

u
v
1

 =

 fx 0 u0 0
0 fy v0 0
0 0 1 0

[R t
0 1

]
X
Y
Z
1

 (10)

where X, Y, Z are the points of the LiDAR data; u, v are the 2D image pixels; R are the
rotation matrices; and t are the translation matrices [40].

Near-infrared light consists of electromagnetic waves of different wavelengths. The ra-
diation behavior of light varies with the wavelength, and objects exhibit different colors
because their reflectivity depends on the wavelength. To better integrate infrared data with
other modalities, we conduct necessary preprocessing and transformation.

Polarization data is a specific type in the field of autonomous driving [41], capturing
information about the polarization state of reflected light to perceive details such as road
signs, lane markings, and traffic signals. This allows the autonomous driving system to
more accurately identify and interpret road signs and other targets. We apply specific
transformation methods to convert polarization data into a format which can be handled
by the model. In Equation (11), the image consists of four aligned pixel images obtained at
polarization angles of I0◦ , I45◦ , I90◦ , I135◦ , and S0 represents the total light intensity, while
S1 and S2 represent the ratios of linear polarization at 0◦ and 45◦ to their respective
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perpendicular polarized components. The polarization state of light, represented by S0, S1,
and S2, can be derived from I0◦ , I45◦ , I90◦ , I135◦ ,

S0 = I0◦ + I90◦ = I45◦ + I135◦

S1 = I0◦ − I90◦

S2 = I45◦ + I135◦

(11)

in Equation (11), we use two representations: Degree of Linear Polarization (DoLP) and
Angle of Linear Polarization (AoLP), as specified in Equation (12).

fDoLP =

√
S2

1 + S2
2

S0

fAoLP =
1
2

arctan
S1

S2

(12)

where fDoLP and fAoLP represent the transformed features, specifically the Degree of Linear
Polarization and Angle of Linear Polarization characteristics, respectively.

Through these transformation methods, we standardize multimodal data into a format
the model can process. This simplifies the model and significantly enhances the perfor-
mance of semantic segmentation by synthesizing information from various modalities.

4. Experiments

This section will outline the datasets employed in our model experimentation and will
also elaborate on the experimental parameters and showcase the experimental outcomes
alongside their analysis.

4.1. Dataset

To validate the effectiveness of the model proposed in this paper, we conducted experi-
ments using the SHIFT dataset [42] and the MCubeS dataset [43]. The SHIFT dataset is a
comprehensive simulated autonomous driving dataset that offers rich sensor data, including
RGB images, stereo images, depth images, optical flow maps, and LiDAR data. Generated
in a highly realistic manner, these data comprehensively simulate various scenarios in real
driving environments, providing invaluable support for research in autonomous driving
technology. The images in the SHIFT dataset have a resolution of 1280× 800, comprising
150,000 training images and 25,000 validation images. The dataset encompasses 23 dif-
ferent semantic classes, offering abundant materials for our experiments in multimodal
semantic segmentation.

Additionally, we chose the MCubeS dataset for experimentation. The MCubeS dataset
incorporates various modalities, such as RGB, Near-Infrared (NIR), Degree of Linear Polar-
ization (DoLP), and Angle of Linear Polarization (AoLP), focusing on semantic material
segmentation for 20 classes. The images in this dataset have a resolution of 1224 × 1024,
consisting of 302 training images and 90 validation images. A notable feature of this dataset
is the presence of paired multimodal data, making it highly suitable for validating the effec-
tiveness of our multimodal fusion and feature complementation methods. By conducting
experiments using these two datasets, we can comprehensively assess the performance of
our model in the context of autonomous driving scenarios.

4.2. Experiment Setup

To ensure the accuracy, consistency, and fairness of our experiments, we adopted a
uniform set of parameter configurations throughout the entire research process. Specifically,
we fixed the number of iterations at 300,000, utilized Stochastic Gradient Descent (SGD)
as the optimizer, and set the batch size to 8. We employed the cross-entropy loss function.
For more detailed model training hyperparameters, please refer to Table 1. We set the
learning rate to 0.01 and utilized SGD as the optimizer. The Dropout rate is configured
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as 0.1, and the activation function chosen is ReLU. The width of the MHSA (Multi-Head
Self-Attention) blocks is set to [64, 128, 320, 512], while the depth is set to [3, 4, 6, 3].

Table 1. Model Training Hyperparameters.

Hyperparameter Names Value

Batch Size 8
Learning Rate 0.01
Optimizer SGD
%midrule Dropout Rate 0.1
Activation Function ReLU
MHSA Block Width [64, 128, 320, 512]
MHSA Block Depth [3, 4, 6, 3]

Regarding the experimental environments, we operated on the Windows 11 operation
system and implemented them on the PyTorch 1.6 deep learning framework. Our hardware
configuration included an INTEL Core i9-13900 processor (Santa Clara, CA, USA) and
two NVIDIA GeForce RTX 3090 graphics cards (Santa Clara, CA, USA). To streamline the
computational load, we downsized the resolution of all data to 640× 400.

4.3. Experiment Results

Through the extensive comparative experiments, including traditional RGB image
semantic segmentation models such as Unet, PSPnet, Deeplabv3+, HRnet, and state-of-the-
art multimodal models like TokenSelect and CMNeXt, we aimed to evaluate the impact
of different modalities on the semantic segmentation performance. Using traditional RGB
image semantic segmentation models as a baseline, we conducted further comparisons by
incorporating various modalities into the models and contrasting their performance against
state-of-the-art multimodal semantic segmentation models. Metrics such as mean accuracy
and mean IoU are employed as benchmarks for model evaluation, with tests conducted on
the SHIFT and MCubeS datasets.

As illustrated in Table 2, experiments were conducted on the SHIFT dataset, initially
utilizing the performance of traditional RGB image semantic segmentation models as the
baseline. We then explored the influence on model accuracy by progressively adding
different modalities. A counterintuitive observation emerged from our experiments: the
inclusion of stereoscopic imagery in the PSPnet, a traditional RGB image semantic seg-
mentation model, resulted in lower accuracy compared to using only RGB images; the
Deeplabv3+ model showed a similar situation. This discrepancy is attributed to the fact that
traditional semantic segmentation models like PSPnet were not specifically optimized or cal-
ibrated for this modality. Additionally, we have conducted performance comparisons with
the multimodal model MMAF-Net [44], specifically optimized for the RGB-depth modality.
In the RGB-depth approach, methods specifically tailored for multimodal scenarios consis-
tently outperform traditional approaches by a significant margin. Our model outperformed
others when incorporating the stereoscopic visual modality. The addition of depth imagery
further demonstrated the superiority of our model compared to other models.

Our proposed model is specifically optimized for extended modalities, particularly in
the MSM (Modality-specific Self-attention) and FCM (Feature Calibration Module) modules.
The MSM module employs a cross-attention mechanism, allowing the RGB main branch to
acquire features from the extended modality, thereby improving the semantic segmentation
performance. The FCM module combines spatial attention and channel attention, as the
contribution of each modality may vary. Traditional semantic segmentation models do
not undergo these optimizations, so sometimes adding modalities performs even worse
than using only RGB for semantic segmentation. Both tokenselect and CMNeXt are also
optimized for multimodal semantic segmentation, making them superior to traditional
semantic segmentation models. Our proposed model even slightly outperforms the state-
of-the-art multimodal semantic segmentation model CMNeXt.
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Table 2. Experimental results on the SHIFT dataset.

Modal Mean Acc (%) Mean IoU (%)
HRnet RGB-only 45.5 39.1
PSPnet RGB-only 39.8 33.8
Unet RGB-only 44.3 38.5
Deeplabv3+ RGB-only 47.4 41.0
ours RGB-only 43.3 37.2

PSPnet RGB-Stereo 39.2 33.6
HRnet RGB-Stereo 45.7 39.2
Unet RGB-Stereo 45.3 39.3
Deeplabv3+ RGB-Stereo 41.8 35.4
tokenselect RGB-Stereo 42.8 36.6
CMNeXt RGB-Stereo 47.9 41.2
our RGB-Stereo 49.0 42.2
PSPnet RGB-Depth 45.7 39.9
Deeplabv3+ RGB-Depth 51.2 43.0
MMAF-NET RGB-Depth 54.6 48.1
tokenselect RGB-Depth 55.2 48.9
CMNeXt RGB-Depth 54.3 47.9
our RGB-Depth 57.8 51.3

tokenselect RGB-S-D-F-L 55.1 48.9
CMNext RGB-S-D-F-L 57.5 51.1
ours RGB-S-D-F-L 57.9 51.5

The values in bold indicate the best performance in this set of experiments.

Expanding our experiments on the SHIFT dataset to include multiple modalities’
stereoscopic imagery, depth imagery, optical flow imagery, and radar imagery, our model
consistently maintained its superiority over other advanced multimodal models. The perfor-
mance improvement over traditional RGB semantic segmentation models was substantial,
affirming the benefits of incorporating diverse modalities for semantic segmentation tasks.
The visualization results can be seen in Figure 7, which demonstrates that the images
segmented by our model are more accurate compared to other models.

Figure 7. The Visualization of Experiment Results.

Moreover, we conducted additional experiments on the MCubeS dataset, the experi-
ment results are shown in Table 3, employing a similar baseline approach with traditional
RGB image semantic segmentation models and assessing the impact of simple multimodal
processing on these models. Consistent with the findings from the SHIFT dataset exper-
iments, a decline in accuracy was observed when introducing certain modalities on the
MCubeS dataset.

For instance, the incorporation of infrared imagery resulted in a reduction in accuracy
for the PSPnet model compared to using RGB images alone. Similar accuracy declines were
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observed for both Deeplabv3+ and PSPnet with the addition of the DoLP (Degree of Linear
Polarization) modality, underscoring the non-arbitrary nature of modality integration; thus,
specific optimization for each modality is imperative.

Furthermore, as we introduced more modalities, including infrared imagery, the DoLP
modality, and the AoLP (Angle of Linear Polarization) modality, our model consistently
outperformed other state-of-the-art multimodal semantic segmentation models. This
emphasizes the importance of tailoring the model’s architecture to the unique characteristics
of each modality for optimal performance in multimodal scenarios. The results showcase
the robustness and effectiveness of our proposed model in handling diverse modalities
within the MCubeS dataset.

The notable improvement in performance can be attributed to the incorporation of the
MSM and FCM modules into our model. These modules play a crucial role in enhancing
the model’s ability to effectively process and integrate information from diverse modalities.
Unlike traditional semantic segmentation models, our approach leverages the specific
characteristics of each modality through the use of the MSM module, which employs a
cross-attention mechanism. This enables the RGB main branch to capture features from
the extended modalities, contributing to a significant boost in the semantic segmentation
performance. Additionally, we included performance comparisons with some multimodal
models optimized specifically for the RGB-thermal modality, such as FEANet [45]. In the
RGB-thermal approach, methods tailored for multimodal scenarios consistently outperform
traditional approaches by a significant margin.

In comparison to tokenselect and CMNeXt, our model outperforms these state-of-the-art
multimodal semantic segmentation models. This superiority is particularly evident when
handling the MCubeS dataset and incorporating various modalities, such as infrared imagery,
DoLP modality, and AoLP modality. The comprehensive attention mechanisms implemented
in our MSM and FCM modules, considering both spatial and channel attention, contribute to
the model’s robustness in capturing distinctive features from different modalities.

Table 3. Experimental results on the MCubeS dataset.

Modal Mean Acc (%) Mean IoU (%)
PSPnet RGB-only 31.8 23.9
HRnet RGB-only 29.7 21.0
Deeplabv3+ RGB-only 29.9 21.2
ours RGB-only 29.6 21.2

PSPnet RGB-NIR_warped 30.7 22.5
Deeplabv3+ RGB-NIR_warped 30.4 21.3
FEANet RGB-NIR_warped 32.1 23.0
tokenselect RGB-NIR_warped 31.5 22.8
CMNeXt RGB-NIR_warped 32.3 23.1
ours RGB-NIR_warped 32.9 23.5
PSPnet RGB-DoLP 29.7 22.5
Deeplabv3+ RGB-DoLP 29.8 21.0
tokenselect RGB-DoLP 31.8 22.8
CMNeXt RGB-DoLP 32.2 23.1
ours RGB-DoLP 32.2 23.1

tokenselect RGB-AoLP 32.9 23.3
CMNeXt RGB-AoLP 33.1 23.5
ours RGB-AoLP 33.2 23.6

tokenselect RGB-N-D-A 35.6 26.0
CMNeXt RGB-N-D-A 36.6 26.4
ours RGB-N-D-A 37.0 27.0

The values in bold indicate the best performance in this set of experiments.

We conducted ablation experiments on the SHIFT dataset and the MCubeS dataset by
comparing the removal of the MSM module using a simple concatenate method (Concat)
to merge features from the extended modal branch, the removal of the FCM module
using a simple concatenate method (Concat) to merge features from the RGB main branch,
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and scenarios where residual connections were omitted. As shown in Tables 4 and 5,
the results indicate that removing each proposed module led to a decrease in model
accuracy. This is because the MSM module employs a cross-attention mechanism, allowing
the RGB main branch to better integrate features from the extended modal branch, which is
more advantageous for overall performance improvement in semantic segmentation tasks
compared to simple concatenate methods (Concat). Additionally, the FCM module, via
the combination of the spatial attention mechanism and the channel attention mechanism,
can extract more crucial features between different modalities, as the contribution of
features between different modalities to the final semantic segmentation varies. Residual
connections, inspired by the classical residual concept, ensure that the model maintains a
certain level of robustness. These results confirm the beneficial impact of the introduced
modules on multimodal semantic segmentation tasks.

Table 4. Ablation experiments on the SHIFT dataset.

Mean Acc (%) Mean IoU (%)

full 57.9 51.5
MSM→Concat 55.1 48.9
FCM→Concat 56.7 50.3
-Residual 57.5 51.1

The values in bold indicate the best performance in this set of experiments.

Table 5. Ablation experiments on the MCubeS dataset.

Mean Acc (%) Mean IoU (%)

full 37.0 27.0
MSM→Concat 33.0 23.8
FCM→Concat 34.6 25.1
-Residual 34.3 24.9

The values in bold indicate the best performance in this set of experiments.

5. Conclusions

In this paper, we propose a novel multimodal semantic segmentation model. By com-
bining the multimodal data and the deep learning techniques, our model can perform
semantic segmentation tasks more effectively. Specifically, we design multiple modules,
including the multimodal fusion module (MSM) and the feature complementation module
(FCM), to fully utilize the complementarity of information between different modalities.
These modules can capture and fuse the features from the different modalities, thereby
improving the accuracy of semantic segmentation.

To verify the effectiveness of our model, we conducted extensive experiments on the
SHIFT and MCubeS datasets, which represent different challenges and complex scenarios
in the field of autonomous driving. Compared with traditional semantic segmentation
models and the advanced multimodal models, our method outperforms them in terms
of average accuracy and Mean IoU. In particular, after adding the multiple extended
modalities, our model even outperforms the latest multimodal models. These experimental
results demonstrate the superior performance of our model in semantic segmentation tasks.

To further explore the specific contributions of each component in our model for
performance, we conducted an ablation experiment. By removing the MSM module, the
FCM module, and the residual connection one by one from the model, we found that
the absence of any one component resulted in a decrease in performance, which fully
demonstrates the important role of these components in our model and their contribution
to the model’s performance improvement.

Although our model has achieved significant performance improvement in the experi-
ments, there are still some challenges and future research directions. Firstly, we can further
explore more effective multimodal fusion strategies to fully leverage the complementary
information among different modalities. Secondly, we can investigate how to introduce
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semi-supervised learning methods into our model to reduce the dependence on large
amounts of the labeled data. In addition, we can also consider applying our model to the
other fields.

Finally, we look forward to further promoting the development of multimodal semantic
segmentation technology via continuous research and optimization, making more beneficial
contributions to the research and application of autonomous driving.
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