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Abstract: In the research of robot systems, path planning and obstacle avoidance are important
research directions, especially in unknown dynamic environments where flexibility and rapid decision
makings are required. In this paper, a state attention network (SAN) was developed to extract
features to represent the interaction between an intelligent robot and its obstacles. An auxiliary actor
discriminator (AAD) was developed to calculate the probability of a collision. Goal-directed and
gap-based navigation strategies were proposed to guide robotic exploration. The proposed policy
was trained through simulated scenarios and updated by the Soft Actor-Critic (SAC) algorithm. The
robot executed the action depending on the AAD output. Heuristic knowledge (HK) was developed
to prevent blind exploration of the robot. Compared to other methods, adopting our approach in
robot systems can help robots converge towards an optimal action strategy. Furthermore, it enables
them to explore paths in unknown environments with fewer moving steps (showing a decrease of
33.9%) and achieve higher average rewards (showning an increase of 29.15%).

Keywords: autonomous driving; reinforcement learning (RL); auxiliary actor discriminator (AAD);
heuristic knowledge (HK)

1. Introduction

In recent years, driverless technology has caused much attention with the development
of artificial intelligence and information perception [1]. Avoiding obstacles efficiently is
important for intelligent robots to explore an accurate route in unknown environments,
which include sweeping robots, mining robots, and rescue robots [2]. Commonly used
obstacle avoidance methods include the gap-based algorithm [3], artificial potential field
algorithm [4], velocity obstacle algorithm, and neural network algorithms [5]. The gap-
based algorithms are based on classical reactive navigation and show good performance in
areas with dense obstacles by sensing real-time environment information. One problem is
that they may cause unreasonable deviation toward free areas, increasing the total distance
and time to execute the mission. The artificial potential field algorithm is commonly
developed for dynamic obstacle avoidance, and always has a local minimum. It calculates
the resultant virtual force to facilitate the real-time control of the intelligent robot’s control
layer. The local minimum causes the robot to fall into a local oscillation and fail to find a
global optimal solution, and many studies solve the problem by performing a random walk
mechanism [6] and by using a navigation function [7]. Bounini et al. solved the problem by
adding some extra repulsive potential, inspired by pouring a liquid with high pressure [4].

Reciprocal velocity obstacles (RVO) and its subsequent products aim to formulate a
potential collision area for a moving obstacle using the relative velocity and position [8]. In
these methods, a velocity outside this area is chosen for the robot to complete the collision
avoidance task, and a distributed real-time multiple vehicle collision avoidance (MVCA)
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algorithm is proposed by extending the reciprocal n-body collision avoidance method [9].
However, it requires a perfect sensing situation in the approaches [10]. Fuzzy algorithms
do not require an exact mathematical model and perform well to overcome local extreme
value problems. One needs to define all the regular behaviors for a fuzzy algorithm [11].
The application of artificial intelligence in obstacle avoidance has received a lot of attention
in recent years. Jiang et al. [2] proposed the Deep Q-learning (DQL) algorithm to achieve
obstacle avoidance in unknown environments for navigation. Zhang et al. [12] proposed
a novel adaptive obstacle avoidance algorithm for USVs, based on the Sarsa on-policy
Reinforcement Learning (RL) algorithm. Generally, neural network algorithms need to be
trained with a big number of obstacle avoidance data.

Intelligent robots need detailed environment information to autonomously plan a
path. In path planning, one common method is using global environmental data, and the
other one is only using local environmental information [7]. Using global environmental
data, predefined maps are usually constructed to describe the geometric information of the
environment and are constantly updated during the navigation process, which requires a
lot of memory and computational resources [13]. The whole process needs a model of the
entire gridded/topology map and includes search-based algorithms (Dijkstra [14], A* [15],
D* [16]) and sampling-based algorithms (RRT [17], RPM [18]). The artificial potential field
method uses local environmental information obtained by airborne sensors to treat the
robot environment as a potential field, in which the target point generates gravity to attract
the robot and obstacles generate repulsion to repel the robot [19]. Velocity obstacle (VO)-
based approaches [20,21] are widely used to predict collision regions and determine the
robot’s velocity in real time. They incorporate the sensor information (e.g., laser scanners
and cameras) within the control loop [22]. Gap-based methods have been proposed to
determine subsequent actions in navigation tasks. Most reactive methods face the problems
of falling into local minima and tending to oscillate in a narrow passage [3]. One can build
a global environment map online, but it takes a lot of time to implement.

With the rapid development of deep learning, the capabilities of feature extraction and
function approximation have become more powerful. Combined with neural networks,
high-dimensional state space information can be obtained [23]. Deep learning-based
methods use deep neural networks to extract reasonable navigation behavior patterns from
large amounts of labeled expert data. However, collecting labeled samples for navigation
in unknown environments is time-consuming and energy-consuming, which hinders the
widespread application of deep learning-based methods to solve the proposed problem [7].
DRL learns from labeled data, but its experience is generated from interactions between
the agent and the environment, and thus it trains the neural networks with manually
designed rewards [24,25]. The DRL approach transforms extensive training experience into
the ability to think multiple steps ahead for more proactive movement decisions [21].

The deep reinforcement learning (DRL)-based collision avoidance approach can learn
from a large amount of training experience, which is advantageous, and it can perform
well in complex scenarios with high efficiency and robustness. Mnih et al. [26] applied
a DRL algorithm to perform better than human players in a video game, in which the
algorithm combined deep learning (DL) with reinforcement learning (RL) to solve complex
decision-making problems. Based on the strong feature presentation ability of Q-learning
(QL) [27] and convolutional neural network (CNN), deep Q-network (DQN) has shown its
tremendous potential in robot control and decision making. Haarnoja et al. [28] developed
the Soft Actor-Critic (SAC) algorithm to deal with inefficient exploration in continuous
action settings. This model has been used with great success in control tasks such as
dexterous hand manipulation [29] and DeepMind Control Suite [30]. In the field of robot
control, the DRL methods in continuous action spaces can establish concise mapping
from image inputs to the control policy [31]. Researchers have been applying DRL to
navigate the intelligent agents in an unknown environment. Zeng et al. [7] proposed a
novel DRL algorithm for continuously controllable navigation of non-holonomic robots in
unknown dynamic environments with moving obstacles. A RL framework in decentralized
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collision avoidance was proposed in [32], in which each agent can independently make
its decision without communicating with others. Zhelo et al. [33] proposed a curiosity-
driven exploration strategy and discussed the robot’s ability to explore in complex and
unknown environments.

The state representation is critical for the performance of DRL, especially for real-time
decision-making tasks of navigation in complex environments. Many previous works [7,34]
have targeted RL models with vector-based state representations. Choi et al. [32] used
the LiDAR data, the forward velocity (v) and the rotational velocity (ω) of the robot, and
the relative distances of (x) and (y) from the robot to the target position to describe the
robot’s state in the environment. Sparse LiDAR data is usually insufficient to describe the
environment in detail, and in the case of any surrounding vehicles, it is necessary to find the
interacting areas that have a more significant impact on the autonomous robot’s decision
to make decision behavior safe and effective. Attentional mechanisms [35] have achieved
great success in different areas, and self-attention is one of the most used approaches. The
self-attention mechanism [36,37] uses a self-supervised approach to calculate the response
at a certain position in the sequence. The attention mechanism can discover the inter-
dependencies between a variable number of inputs and is suitable for autonomous driving
decision making problems.

In this article, we proposed a state attention network (SAN) to extract features to
represent the interaction state of an intelligent robot with its environment using a self-
attentive mechanism. Based on the Soft Actor-Critic (SAC) algorithm, an auxiliary actor
discriminator (AAD) was designed to evaluate for collisions before executing the action and
guide the agent to explore the environment safely and improve exploration efficiency. Goal-
directed and gap-based navigation strategies were proposed to guide robotic exploration
and help the network converge faster.

The structure of this paper is organized as follows: Section 2 introduces the framework
of our approach and presents a method to train the neural network with AAD, goal-
directed, and gap-based navigation strategies; Section 3 shows the simulation experiment
and experimental result; and finally, Section 4 gives some conclusions about this paper.

2. Materials and Methods
2.1. Experiment Design and Data Collection

The virtual training environments were simulated by Gazebo, in which two indoor
environments were constructed to demonstrate the effect of the environment on the model
(Figure 1). A Turtlebot3 was applied as the robot platform to test the adaptability of the
model in different environments. In our model, the control frequency is 5 Hz, and the
moving steps of the robot are up to a maximum of 5000 in one episode. In every episode,
the target position is randomly initialized throughout the area and is guaranteed not to
collide with other obstacles.
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Figure 1. Two indoor environments (8 × 8 m2) were created, in which solid black lines were walls 
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training steps which took almost 20 h. 
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The hyper-parameters of our method are described as follows: The learning rates for
the critic and actor network are both 0.0001, the discount factor is 0.98, the goal tolerance
distance is 0.15, and the replay buffer size is 1 × 106. We trained the model with an
Adam optimizer on a single Nvidia GeForce GTX 3070 GPU (i7-11700, RAM 16 G) for
1 × 108 training steps which took almost 20 h.

The robot was tested to move from the given start point to the given end point without
collision in an unknown environment. It sensed its own state and local environment state (S)
through on-board sensors (Equation (1)). The inertial measurement unit calculates its own
posture with the Euler angle description

[
θr, θp, θy

]
, velocity information

[
vx, vy, ωz

]
, GPS

estimates of the robot’s position
[
px, py

]
, and LiDAR scans of the surrounding obstacles.

S =
[
slidar

t , sgoal
t , srobot

t

]
(1)

sgoal
t =

[
sgoal , θgoal

]
(2)

srobot
t =

[
px, py, vx, vy, θy

]
(3)

where slidar
t are the LiDAR data which indicate the relationship of the obstacles and the

robot by measuring the distance between the recognizing objects, sgoal
t are the relative

distance and heading angle from the robot to the target’s position, and srobot
t describe the

state of the robot itself.
The action space is the robot’s linear velocity increment in the x-plane (∆vx) and

the angular velocity increment in the z-coordinate axis (∆ωz) (Equation (4)). The control
velocity at the next time step (vt+1) should be the current velocity (vt) plus the robot’s action
space with a constant µ (Equation (5)). The reward function (r) of RL model was set as
Equation (6).

a = [∆vx, ∆ωz] (4)

vt+1 = vt + µ·a, vt ∈ [vmin, vmax] (5)

r =


500.0 i f dcurrent < 0.2, dcurrent = dist(robot, goal)
−500.0 i f dobs < 0.2
−λ· dcurrent

dinit
other case

(6)

where dcurrent indicates the distance of the current robot from the target point, dinit is the
initial distance, and λ is a factor that regulates the scale of the reward value.

2.2. Model Development

A modified SAC model was developed in this work. The SAC algorithm was devel-
oped to reduce inefficient sample sizes in continuous action settings [29], and it attempts to
find a policy that maximizes the entropy objective (Equation (7)).

π∗ = argmax
π

T
∑

t=0
E(st ,at)∼τπ

[
γt(r(st, at) + αH(π(. | st))]

r : S× A→ R, γ ∈ [0, 1], st ∈ S, at ∈ A
(7)

H(π(. | st)) = −log π(. | st) (8)

where π is a policy; π* is the optimal policy; T is the number of timesteps (t); r is the reward
function; γ is the discount rate falling; st is the state at timestep t; at is the action at timestep
t; τπ is the distribution of trajectories induced by policy π; α is the temperature parameter
which is used to determine the relative importance of the entropy term versus the reward;
andH(π(. | st)) is the entropy of the policy π at state st and was calculated in Equation (8).

The soft state value function (V) was applied to maximize the objective within the
maximum entropy framework (Equation (9)). The soft q-function can be obtained by
starting from a randomly initialized function Q(st, at) and repeatedly applying the modified
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Bellman backup operator (Tπ) (Equation (10)). In the continuous state space, the soft q-
function Qθ(st, at) was parameterized using a neural network with parameter θ. The soft
q-function was trained to minimize the soft Bellman residual (Equation (11)).

V(st) := Eat∼π [Q(st, at)− αlog(π(at | st))] (9)

TπQ(st, at) := r(st, at) + γEst+1∼p(st ,at)[V(st+1)]

Q : S× A→ R, p : S× A→ S
(10)

JQ(θ) = E(st ,at)∼D

[
1
2

(
Qθ(st, at)−

(
r(st, at) + γEst+1∼p(st ,at)

[
Vθ(st+1)

]))2
]

(11)

where p gives the distribution over the next state when the current state and action have
been given; Tπ is the modified Bellman backup operator; θ is the parameter of a neural
network; D is the replay buffer of past experiences; and Vθ(st+1) is an estimate of a target
network of Q.

The soft q-function can guide the policy improvement step by updating the policy in
a direction to maximize the obtained rewards. In the continuous state setting, the policy
πϕ(at | st) was parameterized using a neural network with parameter ϕ, and output a mean
and a covariance to define a Gaussian policy. The policy parameters (πnew ) were updated
by minimizing the expected KL divergence (DKL) using πold (Equation (12)). Usually, the
partition function Zπold (st) can be ignored since it does not impact the gradient.

πnew = argmin
π∈Π

DKL

π(. | st) ∥
exp

(
1
αQπold(st, .)

)
Zπold(st)

 (12)

The output distribution of this strategy means that errors cannot be backpropagated
in the normal way. To solve this, we used the reparameterization trick (Equation (13)) and
obtained the new policy objective (Equation (15)).

Jπ(ϕ) = Est∼D

[
Eat∼πϕ

[
αlog

(
πϕ(at | st)

)
−Qθ(st, at)

]]
(13)

at = fϕ(ϵt; st), ϵt ∈ N(0, 1) (14)

Jπ(ϕ) = Est∼D,ϵt∼N
[
αlog

(
πϕ

(
fϕ(ϵt; st) | st

))
−Qθ

(
st, fϕ(ϵt; st)

)]
(15)

where πϕ is now defined implicitly in terms of fϕ. Policy evaluation and policy improve-
ment will converge to optimal policies. In continuous state space, the SAC algorithm has
advantages in continuous state space. Therefore, the SAC algorithm was used as the base
model in this paper.

The modified SAC model included a SAN for state learning, and an auxiliary action
discriminator for collision probability calculation (Figure 2). It introduced prior knowledge
to propose goal-based and gap-based navigation strategies to guide the learning strategies.
Raw data from the LiDAR sensor and inertial measurement unit were aligned using a
SAN based on an attention mechanism to a uniform state (st). It is hard to prepare enough
data to train neural networks when robots are exploring unknown environments. A
replay memory D was applied to store experience (s, a, s′, r) to train the neural network
by randomly sampling data. During the training phase, the robot moved randomly in
unknown environments and generated a lot of collision data, which can make the model
fall into local best. An AAD based on the RVO algorithm was developed to calculate
the probability of a collision for the current action and reduce the number of collisions.
With the help of prior knowledge, neural networks can quickly converge to an optimal
action strategy.
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Figure 2. The modified SCA model. The actor was a neural network that can learn a navigation
strategy from current state and make an action in real time, and the critic was a q-value function
fitted using a neural network to evaluate state–action pairs. & means and.

2.3. State Attention Network (SAN)

The state representation is critical in an autonomous driving task using DRL with
multi-sensor data. For path planning tasks, the state space contains information related to
the robot’s own state (e.g., speed, position, orientation angle) and the environment (e.g.,
obstacles). The input of the SAN includes the vector-based states and the image-based states.
In this work, the vector-based states included the robot position, velocity, and distance to
the target point. The orientation angle and the image-based states were represented by the
LiDAR measurements using a signed distance field algorithm (Figure 3a).

The spatial attention module was proposed by CBAM to extract the weights of the
spatial information, in which a CNN encoder was developed to extract image deep-level
features. Two feature maps were obtained from maximum pooling and average pooling,
and a deep-level fusion map was created through a convolution operation (Figure 3b).
The segmented attention (seg-attention) module was developed to study correlations
between different regions of the fusion map, which consisted of input segmentation, feature
extraction, and fusion feature (Figure 3c). The input segmentation module segmented
the fusion map into multiple partial states (small image patches in the grid). The feature
extraction module extracted key (Equation (16)) and value (Equation (17)) features from
each partial state to determine where the model should attend to encode information for
path planning tasks.

Ki = Lk ∗ si (16)

Vi = fc(LV ∗ si) (17)

where si is i-th partial state, LK and LV are the weight matrixes, Ki is the key feature for i-th
partial state, Vi is the value feature for i-th partial state, and fc is the ReLU function.

The attention layers (neural network θ) determined important partial states based
on key features (K) to obtain the attention weight vector (A) (Equation (18)). They were
randomly initialized in the beginning of training. Value features were weighted by A
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(Equation (19)). After processing the image-based state, the robot’s own related state was
encoded by the MLP and connected f to form a unified state space (Figure 3c).

A = so f tmax(θ ∗ K) (18)

f = ∑i Vi ∗ Ai (19)
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2.4. Auxiliary Actor Discriminator (AAD)

The velocity obstacle (VO) was developed for mobile robots to deal with dynamic
obstacles in their local path planning. Robots A and B are obstacles to each other and both
have independent target points. They both need to perform obstacle avoidance and plan
a path to reach the target point (Figure 4a). The VO of A to B contains all possible collide
velocities, and the VO area of the robot A generated by the robot B (VOA|B) is a cone area
with an apex at vB (Figure 4b) and can be calculated using Equations (20) and (21).

A⊕ B = {a + b|a ∈ A, b ∈ B},−A = {−a|a ∈ A} (20)

VOA|B = {v|λ(pA, vA − vB) ∩ B⊕−A ̸= ∅} (21)

where A⊕ B is the Minkowski sum of two points sets in A and B, −A denotes the robot A
reflects in its references point, and λ(p, v) denotes the ray with a starting point of p and in
the direction of v. In order to avoid collision with obstacles, robot A should choose a speed
outside the VO area (vA /∈ VOA|B). The reciprocal velocity obstacle (RVO) was calculated to
reduce oscillations of the VO method (Equation (16)). The RVO was translated geometrically
from VOA|B with a vector (vA − vB)/2, and an apex at (vA + vB)/2 (Figure 4c).

RVOA|B =
{

v
∣∣∣2v− vA ∈ VOA|B

}
(22)
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rent speed, and × is cross operate. After the action collision probability was calculated by 
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rithm, the robot randomly selected actions to explore, and the replay buffer stored many 
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Figure 4. VO and RVO in a workspace configuration, where A and B are two moving robots in the 2D
workspace (px, py), rA and rB mean the radius that described the current state of robot A and B, pA

and pB mean the quality hearts’ positions, vA and vB mean the current velocity of A and B, VOA|B
means the VO area of the robot A generated by the robot B, and RVOA|B means the set of speeds that
robot A can choose to be safe. (a) Workspace, (b) VO, (c) RVO, and (d) static line obstacle.

An AAD was developed based on the RVO to calculate the probability of collision for
the next action. The collision probability function (Pt) at time t represented the quality of
the selected velocity vt judged by the joint RVO area (Equation (23)).

Pt =

{
0 i f vt /∈ RVOA|O
(ξ + 1)−1 i f vt ∈ RVOA|O{

vt /∈ RVOA|O vt × vl < 0
∨

vt × vr > 0
vt ∈ RVOA|O vt × vl ≥ 0

∧
vt × vr ≤ 0

(23)

where ξ is the estimated shortest time for the robot to collide with an obstacle at the current
speed, and × is cross operate. After the action collision probability was calculated by
the auxiliary action discriminator, the ε-greedy algorithm was applied to perform action
selection (goal orientation or actor output) if no collision will occur. Otherwise, reactive
navigation based on gaps was used to avoid obstacles and move towards the target point.

2.5. Prior Knowledge

It is important to have many valid data in the replay buffer to train the neural network
effectively in learning strategies for navigation. In the traditional actor-critic algorithm, the
robot randomly selected actions to explore, and the replay buffer stored many collision
data, which were randomly selected to train the neural network. This can help the robot to
learn collision avoidance strategies but may cause the robot to get stuck in a local solution,
where the robot oscillates in a safe region and fails to achieve the effect of navigation. We
used a priori knowledge and goal-directed/gap-based strategies (Algorithm 1) to guide
the robot and reduce the network training time.

The goal-directed knowledge is based on the angle (yawerr) between the robot’s direc-
tion and the end point. The angle (yawerr) is defined as the rotating angle from 0 to 360
degrees at which the robot rotates counterclockwise until it points to the end point. When
the robot acquired the environment state data, the actor network gave the current action
at. The probability of collision after executing this action was calculated by an auxiliary
action discriminator, and an ε-greedy algorithm was used to select the final action to be
executed between the goal-based ag

t (Equation (24)) and at when the probability was less
than a threshold η. With probability ε, the robot selected the action ag

t that would bring it
closer to the end point according to the goal-directed knowledge.

ag
t = [0.05, ω] (24)

ω =

{
yawerr/180 i f yawerr < 180
1− yawerr/180 othercase

(25)
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To determine subsequent actions, the gap-based strategy analyzed the form of high-
level descriptions of the environment on the basis of sensor information. The boundary
gap model first extracted the gaps by analyzing the radar data to filter out the gaps that
satisfied the passage conditions. The movement direction was selected according to the
target point and the robot could be smoothly controlled through the gap.

Algorithm 1: Our proposed algorithm

1: Initialize replay buff D, actor network πθ , old actor network parameters θ ← θ , critic
network Vψ1 and target critic network Vψ2 , actor learning rate lra, critic learning rate lrc,
update frequency K, Collision threshold th, Temperature parameter α, target critic network
update weight τ

2: for episode = 1, N do
3: Initialize environment and set robot to the start point
4: for steps = 1, T do
5: Get Lidar data lt, robot data rt
6: Get uniform state st using SAN module
7: Get current action at by Actor Network
8: define final action a∗t
9: Compute collision probability pt by AAD module.
10: if pt < η then
11: With probability ε select an action a∗t = ag

t through goal-directed knowledge
12: With probability 1− ε select an action a∗t = at
13: else
14: Get an action a∗t = ar

t through Gap-based knowledge
15: end if
16: Execute action a∗t , get reward rt, and new state śt
17: Store (st, a∗t , rt, śt) in D
18: if steps%K == 0 then

19: Randomly sample a minibatch ( sj, aj, rj, śj

)
ϵD

20: Compute the target Q value:

ytarget = rj + γVψ2

(
śj, áj

)
− αlog(πθ( áj

∣∣∣ śj

)
)

áj ∼ πθ

(
śj

)
21: Update critic network parameters ψ1 by minimizing the following loss function

Lloss
V (ψ1) =

1
2 ∑
(sj ,aj ,rj ,śj)ϵD

(
ytarget −Vψ1

(
sj, sj

))2

22: Update actor network parameters θ by minimizing the following loss function

Lloss
π (θ) = ∑

(sj ,aj ,rj ,śj)ϵD

(
αlog

(
πθ

(
fϕ

(
ϵj; sj

)∣∣∣sj

))
−Vψ1

(
sj, fϕ

(
ϵj; sj

)))
, ϵj ∼ N(0, 1)

23: Update temperature parameter α by minimizing the following loss function

Lloss
α (α) = −αlog πθ

(
aj

∣∣∣sj

)
+ H0, H0 = −dim(A)

24: Update target critic network parameters

ψ2 = τψ1 + (1− τ)

25: Update old actor network parameters

θ ← θ

26: end if
27: end for
28: end for
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3. Results
3.1. Radar Data Representation

Radar data was graphically represented to apply high-dimensional LiDAR data to RL
model. The distance obstacle map smap

t was calculated using the signed distance field (SDF)
algorithm (Figure 5). We use the smap

t as the description of the robot’s local environment.
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Figure 5. Graphical representation of radar data in process: (a) Represent the radar data in images,
(b) extract the obstacle boundary, (c) calculate the distance obstacle map smap

t using the signed
distance field algorithm, and (d) show in Gazebo environment. (a) Current LiDar data, (b) Extract
obstacles, (c) Signed Distance Field, and (d) Gazebo environment.

The robot will keep moving closer to the target point while avoiding obstacles to get a
higher reward. The reward function of Environment II is shown in Figure 6b.
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Figure 6. Reward function in Environment II. The start point is [3.0, −3.0]T, the end point is
[−3.0, 3.0]T, λ = 100, and the reward value falls in [−2, 1]. (a) map, (b) reward.

3.2. Model Performance

The training phase and generalization of SAC, SAN+SAC, and SAN+SAC+AAD
models were compared, and the parameters used in training were summarized in Table 1.
In Environemnt I, the models were trained until the average reward of the smart car was
stable, and the robot trajectories are shown in Figure 7. The figure shows that those three
methods can guide the robot to the end point without collision. In general, the robot can
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move in the best trajectory in the SAN+SAC+AAD model. The robot can travel in a shorter
path when it has learned heuristic knowledge.

Table 1. The values of training parameters.

Parameter Value

Learning rate lra 0.001
Update frequency K 1 × 104

Replay memory 1 × 106

Collision threshold th 0.6
Temperature parameter α, τ 0.5

Mini-batch size 1024
Discount factor γ 0.99

Action selection factor ε 0.5
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Figure 7. Nine trajectories that the robot obtained by using (a) SAC, (b) SAN+SAC, and
(c) SAN+SAC+AAD models for three different end points in Environment I, in which the blue
dot denotes the start point, the red circle in the upper right corner is the end point, and the black
areas are four walls and obstacles.

The average reward of each model was calculated in an epoch (Figure 8). The average
reward value fluctuates greatly in the early stage of training when we encourage robots to
explore the map and expand the footprint range of the robot. SAC and SAN+SAC obtain
similar average reward values in the convergence stage. Adding AAD, the number of
collision obstacles reduced, and the highest average reward value was obtained in the early
stage of training.

The map was changed to Environment II to verify the model universality in different
scenarios. The trajectories of the robot are shown in Figure 9. The obstacles in Environment
II are relatively long. The robot chooses to bypass obstacles instead of looking for different
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topologies in SAC model. Adding SAN, the robot tries to find a better topological path. In
the middle row, the target point [0,−1]T is close to the starting point [−2,−3]T . The robot
may keep away from the target point because of the obstacle direction. The robot needs to
have a long-term vision and not be trapped in local minima. The robot oscillates constantly
in the SAC model, but it has a better understanding of the environment in the SAN+SAC
and SAN+SAC+ADD models.
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The moving step count and average reward were calculated in Environment II (Table 
2). The SAN module can enhance the model understanding of the environment and help 
the robots to find different topological paths. Adding SAN, the robot can reach the end 
point without hitting obstacles, and changing the obstacles and the environment cannot 
affect the robot’s performance (Figure 10). It shows the multi-heads’ attention can filter 
irrelevant areas, focus on obstacle walls, and find safe paths. The AAD module aims to 
find the shorter path to arrive at the target point. Adding AAD, the moving steps dropped 
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Figure 9. Nine trajectories that the robot obtained by using (a) SAC, (b) SAN+SAC, and
(c) SAN+SAC+AAD models for three different end points in Environment II, in which the blue
dot denotes the start point, the red circle in the upper right corner is the end point, and the black
areas are four walls and obstacles.
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The moving step count and average reward were calculated in Environment II (Table 2).
The SAN module can enhance the model understanding of the environment and help the
robots to find different topological paths. Adding SAN, the robot can reach the end point
without hitting obstacles, and changing the obstacles and the environment cannot affect
the robot’s performance (Figure 10). It shows the multi-heads’ attention can filter irrelevant
areas, focus on obstacle walls, and find safe paths. The AAD module aims to find the
shorter path to arrive at the target point. Adding AAD, the moving steps dropped and the
average reward increased quickly.

Table 2. Moving step count and average training steps in Environment II.

Model Target Point 1 Target Point 2 Target Point 3

Moving step
count

SAC 1805 2049 2224
SAN+SAC 1708 1921 2085

SAN+SAC+ADD 1573 1351 1558

Average reward
SAC −415.26 −524.36 −583.46

SAN+SAC −365.28 −460.87 −468.23
SAN+SAC+ADD −294.57 −136.86 −281.39

The numbers in bold mean the best model performance.
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Figure 10. The visual feature map bypasses the SAN module, the SDF picture was used as the input
of the SAN module, the feature maps were extracted using CNN, the feature maps were fused using
spatial attention, and the seg-attention network was used to correlate the characteristics of different
regions in the fused feature map, in which the blue areas mean the safe path and the yellow areas
mean the obstacle wall.

The moving step count and the average training steps of the robot when it reaches
the end point in Environment I and Environment II are listed in Table 3. The SAN module
greatly reduces the average moving step counts and training steps, because SDF can provide
more abundant environmental information for the model, and with CNN’s powerful
reasoning ability, it can help the model to reach the target point faster. Compared to
SAC, our method with SAN+SAC+AAD reduced training steps by 42.78% and 40.88% on
each map.
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Table 3. Moving step count and average training steps.

Model Environment I Environment II

Moving steps
SAC 3190 2594

SAN+SAC 2714 1793
SAN+SAC+AAD 2106 1394

Average train steps
(M)

SAC 15.24 9.27
SAN+SAC 12.68 8.26

SAN+SAC+AAD 8.72 5.48
The numbers in bold mean the best model performance.

3.3. Real Scenario Validation

In a real scenario, the RL algorithm collects robot data as the input to the model during
the navigation process to decide the actions, including the robot velocity increments and
the angular velocity increments. Commands are executed when the navigation task is
completed or a collision occurs (Figure 11). On the outside, the mapping effect is poor
because of the big LiDar measurement error and convex ground. The robot cannot actively
explore because of the cumulative error.
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obstacles, and it makes good use of the distance information provided by the SDF map 
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Figure 11. (a) Real scenario, (b) a map created using the Gmapping algorithm, (c) robot trajectory, in
which the blue point is the starting point, and the green point is the target point.

Using the SAN module, the robot collected the LiDAR data and extracted the obstacle
information to obtain SDF picture (Figure 12). The feature map focusses on safe paths and
obstacles, and it makes good use of the distance information provided by the SDF map
(Figure 13).
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4. Conclusions

In this article, we combine SAC with a SAN module and an AAD module (SAN+SAC
+ADD) for intelligent robots’ path planning and obstacle avoidance. The method has been
tested in different environments and the results show that the robot is able to converge to
the optimal policy faster and reach the end point in fewer steps than other methods. Exper-
iments also show that our model has better adaptability in unknown environments. In this
paper the obstacles are static. In the future, we will work on dynamic obstacle avoidance.
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